Hyperbolic spin Ruijsenaars-Schneider model from Poisson reduction

Gleb Arutyunov
II. Institute for Theoretical Physics
Hamburg University

"Supersymmetries and Quantum Symmetries SQS"19" 26-31.08.2019

Calogero-Moser-Sutherland models

Rational model

Invert oscillator potential

$$
H=\frac{1}{2} p^{2}+\frac{1}{2} \omega^{2} q^{2} \rightarrow H=\frac{1}{2} p^{2}+\frac{\varkappa^{2}}{q^{2}}
$$

Integrable generalisation to many particles $\{q\}_{i=1, \ldots, N}$

$$
H=\frac{1}{2} \sum_{i=1}^{N} p_{i}^{2}+\varkappa^{2} \sum_{i<j}^{N} \frac{1}{q_{i j}^{2}}, \quad q_{i j}=q_{i}-q_{j}
$$

Hyperbolic model

The models were discovered in 1970's.
Wide applications

- soliton theory
- quantum field theory
- solvable models of stat. mechanics
- black hole physics
- condensed matter
- quantum chaos
- representation theory
- harmonic analysis
- random matrix theory
- complex geometry

Ruijsenaars-Schneider models

Rational model

$$
H=c^{2} \sum_{i=1}^{N} \cosh \frac{p_{i}}{c} \prod_{i \neq j}^{N} \sqrt{1+\frac{\varkappa^{2}}{c^{2} q_{i j}^{2}}}
$$

Hyperbolic model

$$
H=c^{2} \sum_{i=1}^{N} \cosh \frac{p_{i}}{c} \prod_{i \neq j}^{N} \sqrt{1+\frac{\varkappa^{2}}{c^{2} \sinh ^{2} q_{i j}^{2}}}
$$

Elliptic model

$$
H=c^{2} \sum_{i=1}^{N} \cosh \frac{p_{i}}{c} \prod_{i \neq j}^{N} \sqrt{\lambda+\mu \wp\left(q_{i j}\right)}
$$

$\left\{p_{i}, q_{j}\right\}=\delta_{i j}$
Expanding in the limit $c \rightarrow \infty$ the corresponding Hamiltonians of the CMS models are recovered

©unctinione

- Spin RS models: equations of motion
- Heisenberg double
- Oscillator manifold
- Poisson-Lie group action on a product manifold
- Reduction
- Superintegrability
- Conclusions and future directions

Krichever \& Zabrodin, 1995

$$
f_{i j}=\sum_{\alpha=1}^{\ell} \mathbf{a}_{i \alpha} \mathbf{c}_{\alpha j} \quad \sum_{\alpha=1}^{\ell} \mathbf{a}_{i \alpha}=1 \quad \forall \alpha
$$

$$
L_{i j}=\frac{f_{i j}}{q_{i j}+\gamma}
$$

$$
\begin{aligned}
& \left\{q_{i}, q_{j}\right\}=0, \quad\left\{q_{i}, \mathbf{a}_{i \alpha}\right\}=0, \quad\left\{q_{i}, \mathbf{c}_{j \alpha}\right\}=\delta_{i j} \mathbf{c}_{j \alpha}, \\
& \left\{\mathbf{a}_{i \alpha}, \mathbf{a}_{j \beta}\right\}=\frac{\delta_{i \neq j}}{q_{i j}}\left(\mathbf{a}_{i \alpha} \mathbf{a}_{j \beta}+\mathbf{a}_{i \beta} \mathbf{a}_{j \alpha}-\mathbf{a}_{i \alpha} \mathbf{a}_{i \beta}-\mathbf{a}_{j \alpha} \mathbf{a}_{j \beta}\right) \\
& \left\{\mathbf{a}_{i \alpha}, \mathbf{c}_{\beta j}\right\}=\mathbf{a}_{i \alpha} L_{i j}-\delta_{\alpha \beta} L_{i j}-\frac{\delta_{i \neq j}}{q_{i j}}\left(\mathbf{a}_{i \alpha}-\mathbf{a}_{j \alpha}\right) \mathbf{c}_{\beta j}, \\
& \left\{\mathbf{c}_{\alpha i}, \mathbf{c}_{\beta j}\right\}=\frac{\delta_{i \neq j}}{q_{i j}}\left(\mathbf{c}_{i \alpha} \mathbf{c}_{\beta j}+\mathbf{c}_{\beta i} \mathbf{c}_{\alpha j}\right)-\mathbf{c}_{\alpha i} L_{i j}+\mathbf{c}_{\beta j} L_{j i}
\end{aligned}
$$

G.A. \& Frolov, 1997

Hamiltonian reduction

$$
\mathscr{M}=T^{*} G \times \Sigma, \quad \Sigma=\underbrace{\Theta \times \Theta \times \ldots \times \mathcal{\Theta}}_{\ell}
$$

\mathcal{O} - coadjoint orbit of minimal dimension

$$
\begin{gathered}
G: \mathscr{M} \rightarrow \mathscr{M} \Longrightarrow \mu: \mathscr{M} \rightarrow \mathfrak{g}^{*} \\
\mathscr{P}=\mu^{-1}(\gamma \mathbb{1}) / G
\end{gathered}
$$

On the other hand, there is a deformation hierarchy of initial phase spaces

$$
T^{*} G \quad \longrightarrow \quad D_{+}(G)
$$

Heisenberg double
Gorsky \& Nekrasov, 1994
G.A. \& Frolov, 1996

Feher \& Klimcik, 2009

$$
\mathscr{M}=D_{+}(G) \times ? ? ?
$$

What should be there in the spin case?
$\left(\mathfrak{g}, \mathfrak{g}^{*}\right)$ - factorisable Lie bialgebra, $\mathfrak{g}^{*} \simeq \mathfrak{g}$

$$
\mathscr{D}=\mathfrak{g} \oplus \mathfrak{g} \longleftarrow \text { double }
$$

$(X, X) \subset \mathscr{D}, \quad \forall X \in \mathfrak{g}$
$\left(X_{+}, X_{-}\right)=\left(\hat{\varepsilon}_{+} X, \hat{\varepsilon}_{-} X\right) \subset \mathscr{D}, \quad \forall X \in \mathfrak{g}^{*} \simeq \mathfrak{g}$

$$
\hat{\varepsilon}_{ \pm} \stackrel{\hat{\imath} \pm \frac{1}{2} \mathbb{1} \text { are two linear operators, } \hat{\varepsilon}_{ \pm}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}_{ \pm} \subset \mathfrak{g}}{\boldsymbol{z} \in \mathfrak{g} \wedge \mathfrak{g} \text { split solution of mCYBE }}
$$

$$
D=G \times G \longleftarrow \text { double Lie group }
$$

$G^{*} \simeq\left(u_{+}, u_{-}\right) \subset D$
diffeomorphism $\sigma: G^{*} \simeq G$

$$
\sigma\left(u_{+}, u_{-}\right)=u_{+} u_{-}^{-1}=u
$$

$$
\begin{gathered}
\frac{1}{\varkappa}\left\{A_{1}, A_{2}\right\}=-\varepsilon_{-} A_{1} A_{2}-A_{1} A_{2} \varepsilon_{+}+A_{1} \varepsilon_{-} A_{2}+A_{2} \varepsilon_{+} A_{1} \\
\frac{1}{\varkappa}\left\{B_{1}, B_{2}\right\}=-\varepsilon_{-} B_{1} B_{2}-B_{1} B_{2} \varepsilon_{+}+B_{1} \varepsilon_{-} B_{2}+B_{2} \varepsilon_{+} B_{1} \\
\frac{1}{\varkappa}\left\{A_{1}, B_{2}\right\}=-\varepsilon_{-} A_{1} B_{2}-A_{1} B_{2} \varepsilon_{-}+A_{1} \varepsilon_{-} B_{2}+B_{2} \varepsilon_{+} A_{1} \\
\frac{1}{\varkappa}\left\{B_{1}, A_{2}\right\}=-\tau_{+} B_{1} A_{2}-B_{1} A_{2} \varepsilon_{+}+B_{1} \varepsilon_{-} A_{2}+A_{2} \varepsilon_{+} B_{1} \\
r_{ \pm}= \pm \frac{1}{2} \sum_{i=1}^{N} E_{i i} \otimes E_{i i} \pm \sum_{i \lessgtr j}^{N} E_{i j} \otimes E_{j i} \\
\varepsilon_{+}-\varepsilon_{-}=C_{12}=\sum_{i, j=1}^{N} E_{i j} \otimes E_{j i}
\end{gathered}
$$

Poisson action of a Poisson-Lie group G

$$
A \rightarrow h A h^{-1}, \quad B \rightarrow h B h^{-1}, \quad h \in G
$$

The Poisson-Lie structure of G is given in terms of the Sklyanin bracket

$$
\left\{h_{1}, h_{2}\right\}=-\varkappa\left[\tau_{ \pm}, h_{1} h_{2}\right], \quad h \in G
$$

The non-abelian moment map for this action $\left(m_{+}, m_{-}\right)$

$$
\begin{aligned}
& m=m_{+} m_{-}^{-1} \in G \longrightarrow m=B A^{-1} B^{-1} A \\
& \frac{1}{\varkappa}\left\{m_{1}, m_{2}\right\}=-\varepsilon_{+} m_{1} m_{2}-m_{1} m_{2} \varepsilon_{-}+m_{1} \varepsilon_{-} m_{2}+m_{2} \varepsilon_{+} m_{1} \\
& \text { Semenov-Tian-Shansky bracket }
\end{aligned}
$$

Involutive family $\left\{H_{k}, H_{m}\right\}=0$

$$
H_{k}=\operatorname{Tr}\left(B A^{-1}\right)^{k}=\operatorname{Tr}\left(A^{-1} B\right)^{k}, \quad k \in \mathbb{Z}
$$

$$
\Sigma_{N, \ell}: \quad a_{i \alpha} \equiv(a)_{i \alpha}, \quad b_{\alpha j} \equiv(b)_{\alpha j} \quad i=1, \ldots, N, \quad \alpha=1, \ldots, \ell
$$

$$
\begin{aligned}
& \left\{a_{1}, a_{2}\right\}_{ \pm}=\varkappa\left(\varepsilon a_{1} a_{2} \mp a_{1} a_{2} \rho\right) \\
& \left\{b_{1}, b_{2}\right\}_{ \pm}=\varkappa\left(b_{1} b_{2} \varepsilon \mp \rho b_{1} b_{2}\right) \\
& \left\{a_{1}, b_{2}\right\}_{ \pm}=\varkappa\left(-b_{2} \tau_{+} a_{1} \pm a_{1} \rho_{\mp} b_{2}\right)-C_{12}^{\mathrm{rec}} \\
& \left\{b_{1}, a_{2}\right\}_{ \pm}=\varkappa\left(-b_{1} \tau_{-} a_{2} \pm a_{2} \rho_{ \pm} b_{1}\right)+C_{21}^{\mathrm{rec}}
\end{aligned}
$$

$$
\begin{aligned}
& C_{12}^{\mathrm{rec}}=\sum_{i=1}^{N} \sum_{\alpha=1}^{\ell} E_{i \alpha} \otimes E_{\alpha i} \\
& \rho_{ \pm}= \pm \frac{1}{2} \sum_{\alpha=1}^{\ell} E_{\alpha \alpha} \otimes E_{\alpha \alpha} \pm \sum_{\alpha \lessgtr \beta}^{\ell} E_{\alpha \beta} \otimes E_{\beta \alpha} \\
& \rho_{+}-\rho_{-}=C_{12}^{\mathrm{s}}=\sum_{\alpha, \beta=1}^{\ell} E_{\alpha \beta} \otimes E_{\beta \alpha} \\
& \rho=\frac{1}{2}\left(\rho_{+}+\rho_{-}\right)
\end{aligned}
$$

Oscillator manifold

$$
\omega=\mathbb{1}+\varkappa a b
$$

Define the following action of the Poisson-Lie group G on oscillators

$$
\delta_{X} a_{i \alpha}=\left(\operatorname{Ad}_{\omega}^{*} X a\right)_{i \alpha} \quad \delta_{X} b_{\alpha i}=-\left(b \operatorname{Ad}_{\omega}^{*} X\right)_{\alpha i}, \quad X \in \mathfrak{g}
$$

$\operatorname{Ad}_{g}^{*} X$ for $g \equiv\left(g_{+}, g_{-}\right) \in G^{*}$ is the dressing transformation
\star This action is Poisson
\star If $\omega=\omega_{+} \omega_{-}^{-1}$ then $\left(\omega_{+}^{-1}, \omega_{-}^{-1}\right) \in G^{*}$ is the moment map

$$
\begin{gathered}
n=\omega_{+}^{-1} \omega_{-} \in G \\
\frac{1}{\varkappa}\left\{n_{1}, n_{2}\right\}=-\imath_{+} n_{1} n_{2}-n_{1} n_{2 \varepsilon_{-}}+n_{1} \varepsilon_{-} n_{2}+n_{2 \imath_{+}} n_{1} \\
\text { Semenov-Tian-Shansky bracket }
\end{gathered}
$$

Let \mathscr{M}_{1} and \mathscr{M}_{2} be two Poisson manifolds with brackets $\{\cdot, \cdot\}_{\mathscr{M}_{1}}$ and $\{\cdot, \cdot\}_{\mathscr{M}_{2}}$ $m_{i}: \mathscr{M}_{i} \rightarrow G^{*}$

$$
\mathscr{M}=\mathscr{M}_{1} \times \mathscr{M}_{2}
$$

$$
m=m_{1} m_{2} \quad \longrightarrow \quad G: \mathscr{M} \rightarrow \mathscr{M}
$$

$$
\xi_{X} f=\left\langle X,\{m, f\}_{\mathscr{M}} m^{-1}\right\rangle, \quad f \in \operatorname{Fun}(\mathscr{M})
$$

$$
X \rightarrow \xi_{X} \quad \text { Lie algebra homomorphism }
$$

$$
\mathscr{M}=D_{+}(G) \times \Sigma_{N, \ell}^{ \pm}
$$

Moment map equation

Product in G^{*}

Moment map for the action of G on the double

Moment map for the action of G on the oscillator manifold

$$
m=q \omega_{+} \omega_{-}^{-1}=q \omega
$$

$$
B A^{-1} B^{-1} A=q(\mathbb{1}+\varkappa a b)
$$

$$
\begin{gathered}
\mathscr{P}=\left\{\text { Solutions of } B A^{-1} B^{-1} A=q(\mathbb{1}+\varkappa a b)\right\} / G \\
\delta_{X} a_{i \alpha}=\left(\operatorname{Ad}_{\omega \star m^{-1}}^{*} X a\right)_{i \alpha} \quad \delta_{X} b_{\alpha i}=-\left(b \operatorname{Ad}_{\omega \star m^{-1}}^{*} X\right)_{\alpha i}, \quad X \in \mathfrak{g}, \\
\omega \star m^{-1}=\omega_{+} m_{+}^{-1} m_{-\omega_{-}^{-1} \equiv q^{-1} \mathbb{1}} \\
\\
\end{gathered}
$$

Construction of G-invariants becomes elementary!

$$
A=T Q T^{-1}, \quad B=U P^{-1} T^{-1}
$$

G.A. \& Frolov, 1996

Frobenius

$$
t \text { diagonal } \rightarrow t_{i j}=\delta_{i j} \sum_{\alpha=1}^{\ell}\left(T^{-1} a\right)_{i \alpha}
$$

$$
L-q Q^{-1} L Q=q \varkappa \mathbf{a c} \quad \Longrightarrow \quad L=q \varkappa \sum_{i, j=1}^{N} \frac{Q_{i}}{Q_{i}-q Q_{j}}(\mathbf{a c})_{i j} E_{i j}
$$

$$
\begin{aligned}
& \left\{Q_{i}, \mathbf{a}_{j \alpha}\right\}=0, \quad\left\{Q_{i}, \mathbf{c}_{\alpha j}\right\}=\delta_{i j} \mathbf{c}_{\alpha j} Q_{j} \\
& \left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}_{ \pm}=\varkappa\left[\left(r^{\bullet} \mp Y\right) \mathbf{a}_{1} \mathbf{a}_{2} \mp \mathbf{a}_{1} \mathbf{a}_{2} \rho \mp \mathbf{a}_{1} X_{21} \mathbf{a}_{2} \pm \mathbf{a}_{2} X_{12} \mathbf{a}_{1}\right], \\
& \left\{\mathbf{a}_{1}, \mathbf{c}_{2}\right\}_{ \pm}=\varkappa\left[\mathbf{c}_{2}\left(r_{12}^{*} \pm Y\right) \mathbf{a}_{1} \pm \mathbf{a}_{1} \rho_{\mp} \mathbf{c}_{2} \pm \mathbf{a}_{1} \mathbf{c}_{2} X_{21} \mp X_{12}^{\mp} \mathbf{a}_{1} \mathbf{c}_{2}\right]+K_{21} \mathbf{a}_{1} Z_{2}-C_{12}^{\mathrm{rec}} Z_{2}, \\
& \left\{\mathbf{c}_{1}, \mathbf{a}_{2}\right\}_{ \pm}=\varkappa\left[\mathbf{c}_{1}\left(-r_{21}^{*} \pm Y\right) \mathbf{a}_{2} \pm \mathbf{a}_{2} \rho_{ \pm} \mathbf{c}_{1} \mp \mathbf{a}_{2} \mathbf{c}_{1} X_{12} \pm X_{21}^{\mp} \mathbf{a}_{2} \mathbf{c}_{1}\right]-K_{12} \mathbf{a}_{2} Z_{1}+C_{21}^{\mathrm{rec}} Z_{1}, \\
& \left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}_{ \pm}=\varkappa\left[\mathbf{c}_{1} \mathbf{c}_{2}\left(r^{\circ} \mp Y\right) \mp \rho \mathbf{c}_{1} \mathbf{c}_{2} \pm \mathbf{c}_{1} X_{12}^{\mp} \mathbf{c}_{2} \mp \mathbf{c}_{2} X_{21}^{\mp} \mathbf{c}_{1}\right]+\mathbf{c}_{2} K_{12} Z_{1}-\mathbf{c}_{1} K_{21} Z_{2},
\end{aligned}
$$

$$
\begin{aligned}
X_{12} & =\sum_{i \beta \sigma \delta}\left(\mathbf{a}_{1} \rho\right)_{i \beta \sigma \delta} E_{i i} \otimes E_{\sigma \delta}, & X_{12}^{ \pm} & =\sum_{i \beta \sigma \delta}\left(\mathbf{a}_{1} \rho^{ \pm}\right)_{i \beta \sigma \delta} E_{i i} \otimes E_{\sigma \delta} \\
K_{12} & =\sum_{i \sigma} E_{\sigma i} \otimes E_{i i}, & Y_{12} & =\sum_{i \beta k \delta}\left(\mathbf{a}_{1} \mathbf{a}_{2} \rho\right)_{i \beta k \delta} E_{i i} \otimes E_{k k}
\end{aligned}
$$

$$
r^{\bullet}=\frac{1}{2} \sum_{i, j=1}^{N} \frac{Q_{i}+Q_{j}}{Q_{i}-Q_{j}}\left(E_{i i}-E_{i j}\right) \otimes\left(E_{j j}-E_{j i}\right),
$$

$$
r^{*}=\frac{1}{2} \sum_{i, j=1}^{N} \frac{Q_{i}+Q_{j}}{Q_{i}-Q_{j}}\left(E_{i j}-E_{i i}\right) \otimes E_{j j}, \quad r^{\circ}=\frac{1}{2} \sum_{i, j=1}^{N} \frac{Q_{i}+Q_{j}}{Q_{i}-Q_{j}}\left(E_{i i} \otimes E_{j j}-E_{i j} \otimes E_{j i}\right)
$$

$$
\begin{aligned}
& \frac{1}{\varkappa}\left\{L_{1}, L_{2}\right\}_{ \pm}=\left(r_{12} \mp Y\right) L_{1} L_{2}-L_{1} L_{2}\left(\underline{r}_{12} \pm Y\right)+L_{1}\left(\bar{r}_{21} \pm Y\right) L_{2}-L_{2}\left(\bar{r}_{12} \mp Y\right) L_{1} \\
r & =\sum_{i \neq j}^{N}\left(\frac{Q_{j}}{Q_{i j}} E_{i i}-\frac{Q_{i}}{Q_{i j}} E_{i j}\right) \otimes\left(E_{j j}-E_{j i}\right), \\
\bar{r} & =\sum_{i \neq j}^{N} \frac{Q_{i}}{Q_{i j}}\left(E_{i i}-E_{i j}\right) \otimes E_{j j}, \quad \underline{r}=\sum_{i \neq j}^{N} \frac{Q_{i}}{Q_{i j}}\left(E_{i j} \otimes E_{j i}-E_{i i} \otimes E_{j j}\right) \\
Y & =\sum_{i \beta j \delta}\left(\mathbf{a}_{1} \mathbf{a}_{2} \rho\right)_{i \beta j \delta} E_{i i} \otimes E_{j j}
\end{aligned}
$$

The L-algebra is not the same as in the spin case!

$$
\frac{1}{\varkappa}\left\{L_{1}, L_{2}\right\}=r_{12} L_{1} L_{2}-L_{1} L_{2} \underline{r}_{12}+L_{1} \bar{r}_{21} L_{2}-L_{2} \bar{r}_{12} L_{1}
$$

G.A. , Klabbers \& Olivucci, 2018

Poisson algebra

$$
H_{m}=\operatorname{Tr}\left(B A^{-1}\right)^{m} \quad \longleftarrow \text { commutative family }
$$

$$
\begin{aligned}
& J_{n}^{+}=\operatorname{Tr}\left[\mathrm{S}\left(B A^{-1}\right)^{n}\right], \quad J_{n}^{-}=\operatorname{Tr}\left[\mathrm{S}\left(A^{-1} B\right)^{n}\right] \\
& \left\{H_{m}, I_{n}\right\}=\left\{H_{m}, J_{n}\right\}=0 \\
& J_{n}^{+\alpha \beta}=\operatorname{Tr}\left[\mathrm{S}_{\kappa}^{\alpha \beta}\left(B A^{-1}\right)^{n}\right], \quad J_{n}^{-\alpha \beta}=\operatorname{Tr}\left[\mathrm{S}^{\alpha \beta}\left(A^{-1} B\right)^{n}\right] \\
& \left(\mathrm{S}^{\alpha \beta}\right)_{i j}=a_{i \alpha} b_{\beta j} \\
& \left.J_{n}^{+\alpha \beta}=\operatorname{Tr}\left[\mathbf{S}^{\alpha \beta} Q^{-1} L^{-1} Q L^{n}\right], \quad J_{n}^{-\alpha \beta}=\operatorname{Tr}\left[\mathbf{S}^{\alpha \beta}\right)_{i j}=\mathbf{a}_{i \alpha} \mathbf{c}_{\beta j} \quad \text { 者 } L^{n-1} Q\right]
\end{aligned}
$$

$$
J_{0}^{+\alpha \beta}=J_{0}^{-\alpha \beta}=\operatorname{Tr} \mathrm{S}^{\alpha \beta}
$$

$$
\begin{aligned}
& \frac{1}{\varkappa}\left\{J_{n}^{\alpha \beta}, J_{m}^{\gamma \delta}\right\}=\frac{1}{\varkappa}\left(\delta^{\beta \gamma} J_{n+m}^{\alpha \delta}-\delta^{\alpha \delta} J_{n+m}^{\gamma \beta}\right) \\
& \nexists\left[\rho_{\alpha \mu, \gamma \nu} J_{n}^{\mu \beta} J_{m}^{\nu \delta}+J_{n}^{\alpha \mu} J_{m}^{\gamma \nu} \rho_{\mu \beta, \nu \delta}-J_{m}^{\gamma \nu} \rho_{ \pm \alpha \mu, \nu \delta} J_{n}^{\mu \beta}-J_{n}^{\alpha \mu} \rho_{\mp \mu \beta, \gamma \nu} J_{m}^{\nu \delta}\right] \\
& \pm\left[-\frac{1}{2}\left(J_{n}^{\alpha \delta} J_{m}^{\gamma \beta}-J_{m}^{\alpha \delta} J_{n}^{\gamma \beta}\right)+\sum_{p=0}^{m}\left(J_{n+m-p}^{\alpha \delta} J_{p}^{\gamma \beta}-J_{m-p}^{\alpha \delta} J_{n+p}^{\gamma \beta}\right)\right] \\
& +\frac{1 \mp^{\alpha} 1}{2}\left(J_{n+m}^{\alpha \delta} J_{0}^{\gamma \beta}-J_{0}^{\alpha \delta} J_{n+m}^{\gamma \beta}\right) . \\
& J_{n}^{ \pm \alpha \beta}
\end{aligned}
$$

$$
\begin{gathered}
\left\{J_{0}^{\alpha \beta}, J_{0}^{\gamma \delta}\right\}=\delta^{\beta \gamma} J_{0}^{\alpha \delta}-\delta^{\alpha \delta} J_{0}^{\gamma \beta} \\
\pm \varkappa\left[\rho_{\alpha \mu, \nu \rho} J_{0}^{\mu \beta} J_{0}^{\nu \delta}+J_{0}^{\alpha \mu} J_{0}^{\gamma \nu} \rho_{\mu \beta, \nu \delta}-J_{0}^{\gamma \nu} \rho_{ \pm \alpha \mu, \nu \delta} J_{0}^{\mu \beta}-J_{0}^{\alpha \mu} \rho_{\mp \mu \beta, \gamma \nu} J_{0}^{\nu \delta}\right] \\
\varpi^{\mu \nu}=\delta^{\mu \nu}+\varkappa J_{0}^{\alpha \beta}
\end{gathered}
$$

$$
\left\{\varpi_{1}, \varpi_{2}\right\}_{ \pm}= \pm\left(\rho \varpi_{1} \varpi_{2}+\varpi_{1} \varpi_{2} \rho-\varpi_{2} \rho_{ \pm} \varpi_{1}-\varpi_{1} \rho_{\mp} \varpi_{2}\right)
$$

Semenov-Tian-Shansky bracket
$\boldsymbol{\omega} \longleftarrow$ moment map for the Poisson action of the spin Poisson-Lie group $S=\mathrm{GL}_{\ell}(\mathbb{C})$

$$
\begin{gathered}
a_{i \alpha} \longrightarrow(a g)_{i \alpha}, \quad b_{\alpha i} \longrightarrow\left(g^{-1} b\right)_{\alpha i}, \quad g \in S \\
\left\{g_{1}, g_{2}\right\}= \pm \varkappa\left[\rho, g_{1} g_{2}\right]
\end{gathered}
$$

Poisson algebra

$$
J(\lambda)=\sum_{n=0}^{\infty} J_{n}^{+} \lambda^{-n-1}
$$

$$
\begin{aligned}
& \left\{J_{1}(\lambda), J_{2}(\mu)\right\}_{ \pm}=\frac{1}{\lambda-\mu}\left[C_{12}^{\mathrm{s}}, J_{1}(\lambda)+J_{2}(\mu)\right] \\
& \quad \pm \varkappa\left[\rho_{ \pm}(\lambda, \mu) J_{1}(\lambda) J_{2}(\mu)+J_{1}(\lambda) J_{2}(\mu) \rho_{\mp}(\lambda, \mu)-J_{2}(\mu) \rho_{ \pm} J_{1}(\lambda)-J_{1}(\lambda) \rho_{\mp} J_{2}(\mu)\right]
\end{aligned}
$$

$$
\rho_{ \pm}(\lambda, \mu)=\rho \pm \frac{1}{2} \frac{\lambda+\mu}{\lambda-\mu} C_{12}^{s}=\frac{\lambda \rho_{ \pm} \mp \mu \rho_{\mp}}{\lambda-\mu}
$$

$$
H_{1} \longrightarrow \quad \dot{A}=-B, \quad \dot{B}=-B A^{-1} B, \quad \dot{a}=0=\dot{b}
$$

$B A^{-1}=I$ is an integral of motion and also $a=$ const, $b=$ const

$$
A(\tau)=e^{-I \tau} A(0), \quad B(\tau)=I e^{-I \tau} A(0)
$$

Initial data $A(0) \equiv Q, \quad a_{i \alpha}(0) \equiv a_{i \alpha}, \quad \sum a_{i \alpha}=1 \quad \forall i$

$$
\begin{gathered}
I=L(0) \\
e^{-L(0) \tau} Q=T(\tau) Q(\tau) T(\tau)^{-1} \\
\mathbf{a}_{i \alpha}(\tau)=\frac{T(\tau)_{i j}^{-1} a_{j \alpha}}{\sum_{\beta} T(\tau)_{i j}^{-1} a_{j \beta}}=T(\tau)_{i j}^{-1} a_{j \alpha}
\end{gathered}
$$

Conclusions

The Hamiltonian structure of the hyperbolic spin RS model is found from the Poisson reduction of $D_{+}(G) \times \Sigma_{N, \ell}^{ \pm}$

Elliptic version?

\star Quantum model?

