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The models were discovered in 1970’s. Tremendous applications

• soliton theory

• quantum field theory

• solvable models of stat. mechanics

• black hole physics

• condensed matter physics

• quantum chaos
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Ruijsenaars-Schneider models

Relativistic generalization of Calogero-Moser models

Rational model
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Here c is the speed of light. Expanding in the limit c ! 1 one recovers the Hamiltonians of the corresponding
CM models.

How to quantise preserving integrability?
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Equations of motion of the spin RS model

Krichever & Zabrodin, 1995

collective spin variables
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for solvability of the equations of motion. Some technical details are collected in appendix. All
considerations in the paper are done in the context of holomorphic integrability.

2 Heisenberg Double

We start with recalling the construction of the double of of a factorisable Lie bialgebra. Let G

be a Lie group with the Lie algebra g. Denote by g⇤ the dual of g. We assume that (g, g⇤) is a
factorisable Lie bialgebra and we use the corresponding invariant form on g to identify g⇤ ' g. The
double D of (g, g⇤) can be identified with D = g � g supplied with the Lie algebra structure of
the direct sum of two copies of the Lie algebra. The Lie algebra g ⇢ D is embedded in D as the
diagonal sublagebra, while the Lie subalgebra g⇤ is identified inside D as a subset

(X+, X�) = (r̂+X, r̂�X) ⇢ D , 8X 2 g⇤ ' g .

Here r̂± = r̂ ± 1
2 are two linear operators, r̂± : g ! g± ⇢ g, constructed from a skew-symmetric

split solution r 2 g^g of the modified Yang-Baxter equation. AnyX 2 g has a unique decomposition
X = X+ �X�.

Let D = G ⇥ G be the double Lie group corresponding to D . The connected Lie group G⇤

corresponding to the Lie algebra g⇤ is embedded in D as G⇤ ' (u+, u�) ⇢ D by extending the Lie
algebra homomorphisms given by r̂±. Here u± 2 G±, where G± are the corresponding subgroups
of G. In the following we assume the existence of a global di↵eomorphism � : G⇤ ' G,

�(u+, u�) = u+u
�1
� = u , (2.1)

such that the factorisation problem (2.1) has a unique solution for any u 2 G.
Now we introduce the Heisenberg double D+(G) of G. Consider a pair of matrices (A,B) 2 D,

A,B 2 G. The entries of A,B can be regarded as generators of the coordinate ring of the algebra
or regular functions on D. The Heisenberg double D+(G) is D viewed as a Poisson manifold with
the following Poisson relations between the generators

1

{ {A1, A2} = �r� A1A2 �A1A2 r+ +A1 r� A2 +A2 r+ A1 ,

1

{ {B1, B2} = �r� B1B2 �B1B2 r+ +B1 r� B2 +B2 r+ B1 ,

1

{ {A1, B2} = �r� A1B2 �A1B2 r� +A1 r� B2 +B2 r+ A1 ,

1

{ {B1, A2} = �r+ B1A2 �B1A2 r+ +B1 r� A2 +A2 r+ B1 .

(2.2)

where { is a complex parameter. Here r± are two canonical solutions of the classical Yang-Baxter
equation associated with the factorisable Lie algebra g; they correspond to the operators r̂±.

In this work we are primarily interested in the case G = GLN (C) for which the matrices r± are

r± = ±1

2

NX

i=1

Eii ⌦ Eii ±
NX

i7j

Eij ⌦ Eji . (2.3)

Here Eij are the standard matrix unities, (Eij)kl = �ik�jl . We also recall that

r± 21 = �r⌥ 12 , r+ � r� = C12 =
NX

i,j=1

Eij ⌦ Eji , (2.4)

and introduce r = 1
2 (r+ + r�), which is a skew-symmetric split solution to the modified classical

Yang-Baxter equation mentioned above.
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The Poisson-Lie structure of G is given in terms of the Sklyanin bracket

{h1, h2} = �{ [r±, h1h2] , h 2 G . (2.6)

The non-abelian moment map for this action (M+,M�) takes values in the group G⇤. Under � it
maps onto an element M = M+M

�1
� 2 G, where

M = BA�1B�1A . (2.7)

The Poisson algebra relations between the entries of M form the Semenov-Tian-Schansky bracket

1

{ {M1,M2} = �r+M1M2 �M1M2r� +M1r�M2 +M2r+M1 . (2.8)

The Poisson algebra (2.2) has two obvious involutive subalgebras - one is generated by TrAk

and the other by TrBk, where k 2 Z. There is yet another involutive family which plays an essential
role in this work, namely,

Hk = Tr(BA�1)k = Tr(A�1B)k , k 2 Z . (2.9)

The fact that {Hk, Hm} = 0 for any k,m 2 Z can be verified by direct computation. A deeper
observation is that the map of generators

A ! A , B ! BA�1 , (2.10)

is a canonical transformation, i.e. under this map the Poisson structure (2.2) remains invariant.
Note that all the involutive families mentioned above are generated by invariants of the adjoint
action (2.5).

In the following we need two facts about the group G⇤. First, G⇤ is a Poisson-Lie group. In
terms of the generators u± 2 G± ⇢ G the corresponding Poisson-Lie structure is given by the
following Poisson brackets

1

{ {u±1, u±2} = �[r, u±1u±2] ,
1

{ {u±1, u⌥2} = �[r±, u±1u⌥2] . (2.11)

Under the map (2.1), these brackets endow G with the structure of a Poisson manifold given by the
Semenov-Tian-Shansky bracket [20]

1

{ {u1, u2} = �r+u1u2 � u1u2r� + u1r�u2 + u2r+u1 . (2.12)

Comparing (2.8) with (2.12) shows that the Poisson algebra of M coincides with the Semenov-Tian-
Shansky bracket.

The product in G⇤ induces under (2.1) a new product in G⇤ which we denote by ?. For any
u, v 2 G⇤ it is defined as

v ? u = v+u+u
�1
� v�1

� = v+uv
�1
� . (2.13)

where u± and v± are solutions of the factorisation problems u = u+u
�1
� and v = v+v

�1
� . The

Poisson-Lie structure of G⇤ is then encoded in the following relation

{v1 ? u1, v2 ? u2} = {v+1u1v
�1
�1 , v+2u2v

�1
�2} = {u1, u2}(v ? u) ,

where the bracket of u’s is (2.12), while the brackets of v± are evaluated according to (2.11).
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where the bracket of u’s is (2.12), while the brackets of v± are evaluated according to (2.11).
Second, the Poisson-Lie group G acts on G⇤ by dressing transformations [20]. Modelling G⇤

over G, these transformations take the form of the adjoint action2

u ! huh�1 , h 2 G , (2.14)

and they are Poisson maps of the Semenov-Tian-Shansky bracket provided the Poisson-Lie structure
on G is given by (2.6). The moment map N of this action coincides with N = u. It is well known
that the symplectic leaves of (2.12) coincide with the orbits of the dressing transformation (2.14).

3 Oscillator manifold

As the next step, we introduce a manifold ⌃N,` as the product of two linear spaces of all rectangular
N ⇥ `-matrices

⌃N,` = MatN,`(C)⇥Mat`,N (C) , (3.1)

where N is the number of particles of the model and ` is the length of spin vectors. Let (a, b) be
two arbitrary N ⇥ `- and `⇥N -matrices. Their entries

ai↵ ⌘ (a)i↵ , b↵j ⌘ (b)↵j i = 1, . . . , N , ↵ = 1, . . . , ` . (3.2)

provide a global coordinate system on ⌃N,`. We call ai↵ and b↵j oscillators and refer to ⌃N,` as to
an oscillator manifold.

Now we endow ⌃N,` with two di↵erent ±-structures of a Poisson manifold ⌃±
N,` by defining the

following Poisson brackets { , }± between oscillators

{a1, a2}± = { ( r a1a2 ⌥ a1a2 ⇢) ,

{b1, b2}± = { ( b1b2 r ⌥ ⇢ b1b2) ,

{a1, b2}± = { (�b2 r+ a1 ± a1 ⇢⌥ b2 ) � C
rec
12 ,

{b1, a2}± = { (�b1 r� a2 ± a2 ⇢± b1 ) + C
rec
21 .

(3.3)

Here we have introduced a “rectangular split Casimir”

C
rec
12 =

NX

i=1

X̀

↵=1

Ei↵ ⌦ E↵i , (3.4)

where (Ei↵)j� = �ij�↵� . The matrices ⇢± are the following analogues of r± in the spin space

⇢± = ±1

2

X̀

↵=1

E↵↵ ⌦ E↵↵ ±
X̀

↵7�

E↵� ⌦ E�↵ (3.5)

and ⇢ = 1
2 (⇢+ + ⇢�). One also has

⇢+ � ⇢� = C
s
12 =

X̀

↵,�=1

E↵� ⌦ E�↵ . (3.6)

For { = 0 the brackets (3.3) turn into the standard oscillator algebra formed by N` pairs of
canonically conjugate variables

{ai↵, b�j} = ��ij�↵� . (3.7)

2
This is in fact the coadjoint action of G on G⇤

.
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This is in fact the coadjoint action of G on G⇤
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Oscillator manifold

The brackets (3.3) satisfy the Jacobi identity for any , i.e. the constant and quadratic structures
in (3.3) form a Poisson pencil being a one-parametric deformation of the canonical relations (3.7).
It remains to note that if we define

! = + {ab , (3.8)

where ab is N ⇥N -matrix being a natural product of two rectangular matrices, then due to (3.3),
! will satisfy the Poisson algebra

1

{ {!1,!2} = r+!1!2 + !1!2r� � !1r�!2 � !2r+!1 , (3.9)

which is di↵erent from (2.12) by an overall sign only. In particular, the contribution of the spin
matrices ⇢, ⇢± completely decouples. Thus, formulae (3.8) give a realisation of the Semenov-Tian-
Shansky bracket in terms of the oscillator algebra (3.3). We also point out the Poisson relations
between ! and oscillators

1

{ {!1, a2} = (r+!1 � !1r�)a2 ,
1

{ {!1, b2} = �b2(r+!1 � !1r�) . (3.10)

In deriving (3.9) and (3.10) one has to use the relations

a1C
rec
21 = C12a2 , C

rec
12 b1 = b2C12 , C

s
12b1b2 = b1b2C12 .

Importantly, one can now verify that if we allow G to act infinitesimally on oscillators as

�Xai↵ = (Ad⇤!X a)i↵ �Xb↵i = �(bAd⇤!X )↵i , X 2 g , (3.11)

then this action G⇥ ⌃±
N,` ! ⌃±

N,` is a mapping of Poisson manifolds provided that G is equipped
with the Sklyanin bracket (2.6). Here Ad⇤gX for g ⌘ (g+, g�) 2 G⇤ is the dressing action of G⇤ of
the Lie algebra g. In addition, if we factorise ! = !+!

�1
� according to (2.1), then

N = !�1
+ !� 2 G⇤ (3.12)

is the moment map for the Poisson action (3.11). This can be deduced from the Poisson brackets
(3.10) together with the fact that ! ? {N, . } = �{!, . } ? N. The Poisson algebra of N coincides
with (2.12).

Further, the oscillator manifolds carries an action of the spin Poisson-Lie group S = GL`(C)

ai↵ �! (ag)i↵ , b↵i �! (g�1b)↵i , g 2 S . (3.13)

This action is Poisson provided the Poisson-Lie structure on S is taken for ⌃±
N,` to be

{g1, g2} = ±{[⇢, g1g2] . (3.14)

4 Poisson-Lie group action on a product manifold

Let M1 and M2 be two Poisson manifolds with brackets {· , ·}M1 and {· , ·}M2 that carry the Poisson
action of a Poisson-Lie group G. Let Mi : Mi ! G⇤ be the corresponding non-abelian moment
maps which are assumed to be Poisson. Then, one can define the Poisson action of G on the product
manifold M = M1 ⇥ M2 by taking the product3 of the moment maps [21]4

M = M1M2 ,

3
The product is naturally taken in G⇤

.

4
We are grateful to Lásló Fehér for drawing our attention to this work.
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M = T ⇤G⇥ ⌃ , ⌃ = O ⇥O ⇥ . . .⇥O| {z }
`

G : M ! M =) µ : M ! g⇤

P = µ�1(� )/G

O - coadjoint orbit of minimal dimension
(X,Z, V↵,W↵), ↵ = 1, . . . `
X,Z 2 MatN⇥N , V↵ 2 Mat1⇥N , W↵ 2 MatN⇥1

Jordan quiver/G
On the other hand, there is a deformation hierarchy of initial phase spaces

T ⇤G �! D+(G)
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What should be there in the spin case?

A,B 2 G = GLN (C)

(g, g⇤) - factorisable Lie bialgebra, g⇤ ' g
�! double Lie group
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Define the following action of G on oscillators
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The Heisenberg double (2.2) carries a Poisson action of a Poisson-Lie group G

A ! hAh�1 , B ! hBh�1 , h 2 G . (2.5)

The Poisson-Lie structure of G is given in terms of the Sklyanin bracket

{h1, h2} = �{ [r±, h1h2] , h 2 G . (2.6)

The non-abelian moment map for this action (M+,M�) takes values in the group G⇤. Under � it
maps onto an element M = M+M

�1
� 2 G, where

M = BA�1B�1A . (2.7)

The Poisson algebra relations between the entries of M form the Semenov-Tian-Schansky bracket

1

{ {M1,M2} = �r+M1M2 �M1M2r� +M1r�M2 +M2r+M1 . (2.8)

The Poisson algebra (2.2) has two obvious involutive subalgebras - one is generated by TrAk

and the other by TrBk, where k 2 Z. There is yet another involutive family which plays an essential
role in this work, namely,

Hk = Tr(BA�1)k = Tr(A�1B)k , k 2 Z . (2.9)

The fact that {Hk, Hm} = 0 for any k,m 2 Z can be verified by direct computation. A deeper
observation is that the map of generators

A ! A , B ! BA�1 , (2.10)

is a canonical transformation, i.e. under this map the Poisson structure (2.2) remains invariant.
Note that all the involutive families mentioned above are generated by invariants of the adjoint
action (2.5).

In the following we need two facts about the group G⇤. First, G⇤ is a Poisson-Lie group. In
terms of the generators u± 2 G± ⇢ G the corresponding Poisson-Lie structure is given by the
following Poisson brackets

1

{ {u±1, u±2} = �[r, u±1u±2] ,
1

{ {u±1, u⌥2} = �[r±, u±1u⌥2] . (2.11)

Under the map (2.1), these brackets endow G with the structure of a Poisson manifold given by the
Semenov-Tian-Shansky bracket [20]

1

{ {u1, u2} = �r+u1u2 � u1u2r� + u1r�u2 + u2r+u1 . (2.12)

Comparing (2.8) with (2.12) shows that the Poisson algebra of M coincides with the Semenov-Tian-
Shansky bracket.

The product in G⇤ induces under (2.1) a new product in G⇤ which we denote by ?. For any
u, v 2 G⇤ it is defined as

v ? u = v+u+u
�1
� v�1

� = v+uv
�1
� . (2.13)

where u± and v± are solutions of the factorisation problems u = u+u
�1
� and v = v+v

�1
� . The

Poisson-Lie structure of G⇤ is then encoded in the following relation

{v1 ? u1, v2 ? u2} = {v+1u1v
�1
�1 , v+2u2v

�1
�2} = {u1, u2}(v ? u) ,
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N,` to be
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g⇤. We have

⇠Xf = hX, {M1, f}M1M
�1
1 +M1{M2, f}M2M

�1
2 M�1

1 i . (4.2)

Let ⇠
(1)
X and ⇠

(2)
X be the fundamental vector fields induced by the group action on M1 and M2,

respectively. Formula (4.2) is equivalent to the statement that at a point x = (x1, x2) 2 M , where
x1 2 M1 and x2 2 M2, the vector field ⇠X is defined as

⇠X(x) = ⇠
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X (x1) + ⇠

(2)
Ad⇤

M
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X(x2) , (4.3)

where Ad⇤h, h 2 G⇤ is the coadjoint action of G⇤ on G. One can show that the map X ! ⇠X , where
⇠X is defined by (4.3), is the Lie algebra homomorphism, so that ⇠X is the fundamental vector field
of the group action on G [21, 22]. Since G⇤ is the Poisson-Lie group, M will have the same Poisson
brackets between its entries as M1 or M2.

To construct the Hamiltonian structure of the spin RS model, we take the product of symplectic
manifolds M1 = D+(G) and M2 = ⌃±

N,`,

M = D+(G)⇥ ⌃±
N,` . (4.4)

Here the Poisson structure on the Heisenberg double D+(G) is given by (2.2) and that on the
oscillator manifold is (3.3). We define the Poisson action of G of M through its moment map

M ? N = M+NM�1
� , (4.5)

where N is the moment map (3.12) of the action (3.11) and M is (2.7). Since M and N are elements
of G⇤ modelled by G, we multiply them with the star product. To obtain the RS model on the
reduced phase space, we fix the moment map to the following value

M ? N = q , (4.6)

where is the group identity in G and q is the coupling constant. Since the right hand side of (4.6)
is proportional to the identity, the stability group of the moment map coincides with the whole
group G and, therefore, all the entries of M ? N are constraints of the first class. Equation (4.6)
can be written as the following equation in G

M = q!+!
�1
� = q! . (4.7)

Some comments are in order. The choice of the initial manifold (4.4), as well as the use of
relevant reduction techniques to obtain the spin RS models on the reduced phase space was already
suggested earlier, see e.g. [4, 23]. Also, a similar construction was developed in [15], where G

was taken to be the compact Lie group U(N). In this case the underlying Lie bialgebra (g, g⇤)
is not factorisable and the corresponding double D can be identified with the complexification of
g = su(N). The dynamical system one finds on the reduced phase space coincides the trigonometric
spin RS model. The point, however, is that working with the collective spin variable ! alone leaves
invisible the evolution of individual spin components of a spin vector associated to each particle.
The aim of our present construction is to further resolve ! 2 G⇤ in terms of internal spin degrees
of freedom and obtain the dynamical equations for individual spins, as in [3].
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and allowing it to act on functions on M by means of the formula

⇠Xf = hX, {M, f}MM�1i , f 2 Fun(M ) , (4.1)

where ⇠X is a vector field corresponding to X 2 g and h· , ·i is the canonical pairing between g and
g⇤. We have

⇠Xf = hX, {M1, f}M1M
�1
1 +M1{M2, f}M2M

�1
2 M�1

1 i . (4.2)

Let ⇠
(1)
X and ⇠

(2)
X be the fundamental vector fields induced by the group action on M1 and M2,

respectively. Formula (4.2) is equivalent to the statement that at a point x = (x1, x2) 2 M , where
x1 2 M1 and x2 2 M2, the vector field ⇠X is defined as

⇠X(x) = ⇠
(1)
X (x1) + ⇠

(2)
Ad⇤

M
�1
1 (x1)

X(x2) , (4.3)

where Ad⇤h, h 2 G⇤ is the coadjoint action of G⇤ on G which is also an example of dressing
transformations [20]. One can show that the map X ! ⇠X , where ⇠X is defined by (4.3), is the
Lie algebra homomorphism, so that ⇠X is the fundamental vector field of the group action on G

[21, 22]. Since G⇤ is the Poisson-Lie group, M will have the same Poisson brackets between its
entries as M1 or M2.

To construct the Hamiltonian structure of the spin RS model, we take the product of symplectic
manifolds M1 = D+(G) and M2 = ⌃±

N,`,

M = D+(G)⇥ ⌃±
N,` . (4.4)

Here the Poisson structure on the Heisenberg double D+(G) is given by (2.2) and that on the
oscillator manifold is (3.3). We define the Poisson action of G of M through its moment map

M ? N = M+NM�1
� , (4.5)

where N is the moment map (3.12) of the action (3.11) and M is (2.7). Since M and N are elements
of G⇤ modelled by G, we multiply them with the star product. To obtain the RS model on the
reduced phase space, we fix the moment map to the following value

M ? N = q , (4.6)

where is the group identity in G and q is the coupling constant. Since the right hand side of (4.6)
is proportional to the identity, the stability group of the moment map coincides with the whole
group G and, therefore, all the entries of M ? N are constraints of the first class. Equation (4.6)
can be written as the following equation in G

M = q!+!
�1
� = q! . (4.7)

Some comments are in order. The choice of the initial manifold (4.4), as well as the use of
relevant reduction techniques to obtain the spin RS models on the reduced phase space was already
suggested earlier, see e.g. [4, 23]. Also, a similar construction was developed in [15], where G

was taken to be the compact Lie group U(N). In this case the underlying Lie bialgebra (g, g⇤)
is not factorisable and the corresponding double D can be identified with the complexification of
g = su(N). The dynamical system one finds on the reduced phase space coincides the trigonometric
spin RS model. The point, however, is that working with the collective spin variable ! alone leaves
invisible the evolution of individual spin components of a spin vector associated to each particle.
The aim of our present construction is to further resolve ! 2 G⇤ in terms of internal spin degrees
of freedom and obtain the dynamical equations for individual spins, as in [3].
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5 Reduction

We can now develop the reduction procedure starting from the initial phase space (4.4)

M = D+(G)⇥ ⌃±
N,` . (5.1)

The moment map equation (4.7) takes the form

BA�1B�1A = q( + {ab) . (5.2)

The reduced phase space P is obtained by factoring solutions of (5.2) by the action of the group G

P = {Solutions of (5.2)}/G .

Note that for our reduction procedure the parameter { controlling the Poisson brackets (2.2) of the
Heisenberg double and the brackets (3.3) of the oscillator manifold is chosen to be the one and the
same.

We point out that under the Poisson action on the product manifold (5.1) the transformation
of oscillators get simplified over the hypersurface defined by (5.2). Indeed recalling (4.3) and (3.11),
we get

�Xai↵ = (Ad⇤!?M�1X a)i↵ �Xb↵i = �(bAd⇤!?M�1X )↵i , X 2 g , (5.3)

and since !?M�1 = !+M
�1
+ M�!

�1
� ⌘ q�1 the action of Ad⇤!?M�1 is ine↵ective and the oscillators

transform as

ai↵ �! (h a)i↵ b↵i �! (b h�1)↵i , h = eX 2 G . (5.4)

The most e�cient way to factor out solutions by the action of G is to reformulate and solve the
moment map equation (5.2) in terms of gauge-invariant variables. To this end, following [19] we
introduce a new coordinate system on the diagonalisable locus of the Heisenberg double

A = TQ T�1 , B = UP�1T�1 , (5.5)

where Q and P are diagonal matrices with entries

Q ij = �ijQ j Pij = �ijPj . (5.6)

The matrices T, U are Frobenius, i.e. they are subjected to the following constraints

NX

j=1

Tij =
NX

j=1

Uij = 1 , 8 i = 1, . . . , N . (5.7)

Imposition of these constraints renders decomposition (5.5) unique.

Under the transformations (3.11) the new variables transform as follows

Q ! Q , P ! P d�1
T dU , T ! hT dT , U ! hU dU , (5.8)

where (dX)ij = �ij
PN

k=1(hX)ik for any X 2 GLN (C). In particular, Q is invariant under the
G-action.

Substituting (5.5) into (5.2), we will get

UQ �1U�1TQ T�1 = q( + {ab) ,

– 8 –



Reduction

Lij =
fij

qij + �

M = T ⇤G⇥ ⌃ , ⌃ = O ⇥O ⇥ . . .⇥O| {z }
`

G : M ! M =) µ : M ! g⇤

P = µ�1(� )/G

O - coadjoint orbit of minimal dimension
(X,Z, V↵,W↵), ↵ = 1, . . . `
X,Z 2 MatN⇥N , V↵ 2 Mat1⇥N , W↵ 2 MatN⇥1

Jordan quiver/G
On the other hand, there is a deformation hierarchy of initial phase spaces

T ⇤G �! D+(G)

M = D+(G)⇥ ???

What should be there in the spin case?

A,B 2 G = GLN (C)

(g, g⇤) - factorisable Lie bialgebra, g⇤ ' g
�! double Lie group
(X,X) ⇢ D , 8X 2 g

Define the following action of the Poisson-Lie group G on oscillators
is the dressing transformation
This action is Poisson

1

{ {N1,N2} = �r+N1N2 � N1N2r� + N1r�N2 + N2r+N1 . (1.1)

G : M ! M

�!

Moment map for
the action of G
on the oscillator manifold

M,N 2 G
Product in G⇤

P = {Solutions of BA�1B�1A = q( + {ab)}/G .

– 2 –

5 Reduction

We can now develop the reduction procedure starting from the initial phase space (4.4)

M = D+(G)⇥ ⌃±
N,` . (5.1)

The moment map equation (4.7) takes the form

BA�1B�1A = q( + {ab) . (5.2)

The reduced phase space P is obtained by factoring solutions of (5.2) by the action of the group G

P = {Solutions of (5.2)}/G .

Note that for our reduction procedure the parameter { controlling the Poisson brackets (2.2) of the
Heisenberg double and the brackets (3.3) of the oscillator manifold is chosen to be the one and the
same.

We point out that under the Poisson action on the product manifold (5.1) the transformation
of oscillators get simplified over the hypersurface defined by (5.2). Indeed recalling (4.3) and (3.11),
we get

�Xai↵ = (Ad⇤!?M�1X a)i↵ �Xb↵i = �(bAd⇤!?M�1X )↵i , X 2 g , (5.3)

and since !?M�1 = !+M
�1
+ M�!

�1
� ⌘ q�1 the action of Ad⇤!?M�1 is ine↵ective and the oscillators

transform as

ai↵ �! (h a)i↵ b↵i �! (b h�1)↵i , h = eX 2 G . (5.4)

The most e�cient way to factor out solutions by the action of G is to reformulate and solve the
moment map equation (5.2) in terms of gauge-invariant variables. To this end, following [19] we
introduce a new coordinate system on the diagonalisable locus of the Heisenberg double

A = TQ T�1 , B = UP�1T�1 , (5.5)

where Q and P are diagonal matrices with entries

Q ij = �ijQ j Pij = �ijPj . (5.6)

The matrices T, U are Frobenius, i.e. they are subjected to the following constraints

NX

j=1

Tij =
NX

j=1

Uij = 1 , 8 i = 1, . . . , N . (5.7)

Imposition of these constraints renders decomposition (5.5) unique.

Under the transformations (3.11) the new variables transform as follows

Q ! Q , P ! P d�1
T dU , T ! hT dT , U ! hU dU , (5.8)

where (dX)ij = �ij
PN

k=1(hX)ik for any X 2 GLN (C). In particular, Q is invariant under the
G-action.

Substituting (5.5) into (5.2), we will get

UQ �1U�1TQ T�1 = q( + {ab) ,

– 8 –

5 Reduction

We can now develop the reduction procedure starting from the initial phase space (4.4)

M = D+(G)⇥ ⌃±
N,` . (5.1)

The moment map equation (4.7) takes the form

BA�1B�1A = q( + {ab) . (5.2)

The reduced phase space P is obtained by factoring solutions of (5.2) by the action of the group G

P = {Solutions of (5.2)}/G .

Note that for our reduction procedure the parameter { controlling the Poisson brackets (2.2) of the
Heisenberg double and the brackets (3.3) of the oscillator manifold is chosen to be the one and the
same.

We point out that under the Poisson action on the product manifold (5.1) the transformation
of oscillators get simplified over the hypersurface defined by (5.2). Indeed recalling (4.3) and (3.11),
we get

�Xai↵ = (Ad⇤!?M�1X a)i↵ �Xb↵i = �(bAd⇤!?M�1X )↵i , X 2 g , (5.3)

and since !?M�1 = !+M
�1
+ M�!

�1
� ⌘ q�1 the action of Ad⇤!?M�1 is ine↵ective and the oscillators

transform as

ai↵ �! (h a)i↵ b↵i �! (b h�1)↵i , h = eX 2 G . (5.4)

The most e�cient way to factor out solutions by the action of G is to reformulate and solve the
moment map equation (5.2) in terms of gauge-invariant variables. To this end, following [19] we
introduce a new coordinate system on the diagonalisable locus of the Heisenberg double

A = TQ T�1 , B = UP�1T�1 , (5.5)

where Q and P are diagonal matrices with entries

Q ij = �ijQ j Pij = �ijPj . (5.6)

The matrices T, U are Frobenius, i.e. they are subjected to the following constraints

NX

j=1

Tij =
NX

j=1

Uij = 1 , 8 i = 1, . . . , N . (5.7)

Imposition of these constraints renders decomposition (5.5) unique.

Under the transformations (3.11) the new variables transform as follows

Q ! Q , P ! P d�1
T dU , T ! hT dT , U ! hU dU , (5.8)

where (dX)ij = �ij
PN

k=1(hX)ik for any X 2 GLN (C). In particular, Q is invariant under the
G-action.

Substituting (5.5) into (5.2), we will get

UQ �1U�1TQ T�1 = q( + {ab) ,

– 8 –

5 Reduction

We can now develop the reduction procedure starting from the initial phase space (4.4)

M = D+(G)⇥ ⌃±
N,` . (5.1)

The moment map equation (4.7) takes the form

BA�1B�1A = q( + {ab) . (5.2)

The reduced phase space P is obtained by factoring solutions of (5.2) by the action of the group G

P = {Solutions of (5.2)}/G .

Note that for our reduction procedure the parameter { controlling the Poisson brackets (2.2) of the
Heisenberg double and the brackets (3.3) of the oscillator manifold is chosen to be the one and the
same.

We point out that under the Poisson action on the product manifold (5.1) the transformation
of oscillators get simplified over the hypersurface defined by (5.2). Indeed recalling (4.3) and (3.11),
we get

�Xai↵ = (Ad⇤!?M�1X a)i↵ �Xb↵i = �(bAd⇤!?M�1X )↵i , X 2 g , (5.3)

and since !?M�1 = !+M
�1
+ M�!

�1
� ⌘ q�1 the action of Ad⇤!?M�1 is ine↵ective and the oscillators

transform as

ai↵ �! (h a)i↵ b↵i �! (b h�1)↵i , h = eX 2 G . (5.4)

The most e�cient way to factor out solutions by the action of G is to reformulate and solve the
moment map equation (5.2) in terms of gauge-invariant variables. To this end, following [19] we
introduce a new coordinate system on the diagonalisable locus of the Heisenberg double

A = TQ T�1 , B = UP�1T�1 , (5.5)

where Q and P are diagonal matrices with entries

Q ij = �ijQ j Pij = �ijPj . (5.6)

The matrices T, U are Frobenius, i.e. they are subjected to the following constraints

NX

j=1

Tij =
NX

j=1

Uij = 1 , 8 i = 1, . . . , N . (5.7)

Imposition of these constraints renders decomposition (5.5) unique.

Under the transformations (3.11) the new variables transform as follows

Q ! Q , P ! P d�1
T dU , T ! hT dT , U ! hU dU , (5.8)

where (dX)ij = �ij
PN

k=1(hX)ik for any X 2 GLN (C). In particular, Q is invariant under the
G-action.

Substituting (5.5) into (5.2), we will get

UQ �1U�1TQ T�1 = q( + {ab) ,

– 8 –

Lij =
fij

qij + �

M = T ⇤G⇥ ⌃ , ⌃ = O ⇥O ⇥ . . .⇥O| {z }
`

G : M ! M =) µ : M ! g⇤

P = µ�1(� )/G

O - coadjoint orbit of minimal dimension
(X,Z, V↵,W↵), ↵ = 1, . . . `
X,Z 2 MatN⇥N , V↵ 2 Mat1⇥N , W↵ 2 MatN⇥1

Jordan quiver/G
On the other hand, there is a deformation hierarchy of initial phase spaces

T ⇤G �! D+(G)

M = D+(G)⇥ ???

What should be there in the spin case?

A,B 2 G = GLN (C)

(g, g⇤) - factorisable Lie bialgebra, g⇤ ' g
�! double Lie group
(X,X) ⇢ D , 8X 2 g

Define the following action of the Poisson-Lie group G on oscillators
is the dressing transformation
This action is Poisson

1

{ {N1,N2} = �r+N1N2 � N1N2r� + N1r�N2 + N2r+N1 . (1.1)

G : M ! M

�!

Moment map for
the action of G
on the oscillator manifold

M,N 2 G
Product in G⇤

P = {Solutions of BA�1B�1A = q( + {ab)}/G .

Construction of G-invariants becomes elementary !

– 2 –



Reduction

5 Reduction

We can now develop the reduction procedure starting from the initial phase space (4.4)

M = D+(G)⇥ ⌃±
N,` . (5.1)

The moment map equation (4.7) takes the form

BA�1B�1A = q( + {ab) . (5.2)

The reduced phase space P is obtained by factoring solutions of (5.2) by the action of the group G

P = {Solutions of (5.2)}/G .

Note that for our reduction procedure the parameter { controlling the Poisson brackets (2.2) of the
Heisenberg double and the brackets (3.3) of the oscillator manifold is chosen to be the one and the
same.

We point out that under the Poisson action on the product manifold (5.1) the transformation
of oscillators get simplified over the hypersurface defined by (5.2). Indeed recalling (4.3) and (3.11),
we get

�Xai↵ = (Ad⇤!?M�1X a)i↵ �Xb↵i = �(bAd⇤!?M�1X )↵i , X 2 g , (5.3)

and since !?M�1 = !+M
�1
+ M�!

�1
� ⌘ q�1 the action of Ad⇤!?M�1 is ine↵ective and the oscillators

transform as

ai↵ �! (h a)i↵ b↵i �! (b h�1)↵i , h = eX 2 G . (5.4)

The most e�cient way to factor out solutions by the action of G is to reformulate and solve the
moment map equation (5.2) in terms of gauge-invariant variables. To this end, following [19] we
introduce a new coordinate system on the diagonalisable locus of the Heisenberg double

A = TQ T�1 , B = UP�1T�1 , (5.5)

where Q and P are diagonal matrices with entries

Q ij = �ijQ j Pij = �ijPj . (5.6)

The matrices T, U are Frobenius, i.e. they are subjected to the following constraints

NX

j=1

Tij =
NX

j=1

Uij = 1 , 8 i = 1, . . . , N . (5.7)

Imposition of these constraints renders decomposition (5.5) unique.

Under the transformations (3.11) the new variables transform as follows

Q ! Q , P ! P d�1
T dU , T ! hT dT , U ! hU dU , (5.8)

where (dX)ij = �ij
PN

k=1(hX)ik for any X 2 GLN (C). In particular, Q is invariant under the
G-action.

Substituting (5.5) into (5.2), we will get

UQ �1U�1TQ T�1 = q( + {ab) ,

– 8 –

5 Reduction

We can now develop the reduction procedure starting from the initial phase space (4.4)

M = D+(G)⇥ ⌃±
N,` . (5.1)

The moment map equation (4.7) takes the form

BA�1B�1A = q( + {ab) . (5.2)

The reduced phase space P is obtained by factoring solutions of (5.2) by the action of the group G

P = {Solutions of (5.2)}/G .

Note that for our reduction procedure the parameter { controlling the Poisson brackets (2.2) of the
Heisenberg double and the brackets (3.3) of the oscillator manifold is chosen to be the one and the
same.

We point out that under the Poisson action on the product manifold (5.1) the transformation
of oscillators get simplified over the hypersurface defined by (5.2). Indeed recalling (4.3) and (3.11),
we get

�Xai↵ = (Ad⇤!?M�1X a)i↵ �Xb↵i = �(bAd⇤!?M�1X )↵i , X 2 g , (5.3)

and since !?M�1 = !+M
�1
+ M�!

�1
� ⌘ q�1 the action of Ad⇤!?M�1 is ine↵ective and the oscillators

transform as

ai↵ �! (h a)i↵ b↵i �! (b h�1)↵i , h = eX 2 G . (5.4)

The most e�cient way to factor out solutions by the action of G is to reformulate and solve the
moment map equation (5.2) in terms of gauge-invariant variables. To this end, following [19] we
introduce a new coordinate system on the diagonalisable locus of the Heisenberg double

A = TQ T�1 , B = UP�1T�1 , (5.5)

where Q and P are diagonal matrices with entries

Q ij = �ijQ j Pij = �ijPj . (5.6)

The matrices T, U are Frobenius, i.e. they are subjected to the following constraints

NX

j=1

Tij =
NX

j=1

Uij = 1 , 8 i = 1, . . . , N . (5.7)

Imposition of these constraints renders decomposition (5.5) unique.

Under the transformations (3.11) the new variables transform as follows

Q ! Q , P ! P d�1
T dU , T ! hT dT , U ! hU dU , (5.8)

where (dX)ij = �ij
PN

k=1(hX)ik for any X 2 GLN (C). In particular, Q is invariant under the
G-action.

Substituting (5.5) into (5.2), we will get

UQ �1U�1TQ T�1 = q( + {ab) ,

– 8 –

diagonal

Frobenius

where, in particular, the momentum variable P has completely decoupled. There are di↵erent ways
to solve the above equation, we follow the one which relies on the simplest invariant spin variables.
We have

T�1UQ �1 = q(Q �1T�1U + { T�1 ab TQ �1T�1U) ,

Following the spinless pattern in [10, 19], we introduce the Frobenius matrix W = T�1U and
reintroduce the momentum P by multiplying from the right both sides of the equations above by
P�1,

WP�1Q �1 � qQ �1WP�1 = q{ T�1 abA�1BT , (5.9)

Note that under (3.11) the variable WP�1 is not invariant, rather it transforms as

WP�1 ! d�1
T (WP�1)dT .

On the other hand, a matrix T�1a transforms as

T�1a ! d�1
T T�1h�1ha = d�1

T T�1a ,

where we have taken into account the transformation law (3.11) for the spin variables. This suggests
to introduce a diagonal matrix t with entries

tij = �ij
X̀

↵=1

(T�1a)i↵ . (5.10)

Multiplying (5.9) from the left and from the right by t�1 and t, respectively, projects the moment
map equation of the space of G-invariants

t�1WP�1tQ �1 � qQ �1 t�1WP�1t = q{ t�1T�1abA�1BTt .

Introducing the G-invariant combinations

L = t�1WP�1tQ�1 , a = t�1T�1a , c = bA�1BTt , (5.11)

we rewrite the moment map equation in its final invariant form

L� qQ �1LQ = q{ ac . (5.12)

The last equation is elementary solved for L

L = q{
NX

i,j=1

Q i

Q i � qQ j
(ac)ij Eij . (5.13)

The quantity (5.13) is the Lax matrix of the hyperbolic spin RS model, as can be seen by by
introducing the following parametrisation

q = e�2� , Q i = e2qi , qij = qi � qj , (5.14)

so that L takes the familiar form

L = {e�2�
NX

i,j

eqij+�

2 sinh(qij + �)
fij Eij , fij ⌘ (ac)ij .

Computing the trace of Lk,

TrLk = Tr(WP�1Q �1)k = Tr(UP�1T�1TQ �1T�1)k = Tr(BA�1)k , (5.15)

we recognise that Hk originate from the G-invariant involutive family (2.9). Thus, TrLk are in
involution. We take H = H1 as the Hamiltonian.
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L = t�1T�1UP�1tQ�1 , a = t�1T�1a , c = bA�1BTt , (1.2)

– 3 –
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t diagonal !
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T�1UQ �1 = q(Q �1T�1U + { T�1 ab TQ �1T�1U) ,

Following the spinless pattern in [10, 19], we introduce the Frobenius matrix W = T�1U and
reintroduce the momentum P by multiplying from the right both sides of the equations above by
P�1,

WP�1Q �1 � qQ �1WP�1 = q{ T�1 abA�1BT , (5.9)

Note that under (3.11) the variable WP�1 is not invariant, rather it transforms as

WP�1 ! d�1
T (WP�1)dT .

On the other hand, a matrix T�1a transforms as

T�1a ! d�1
T T�1h�1ha = d�1

T T�1a ,

where we have taken into account the transformation law (3.11) for the spin variables. This suggests
to introduce a diagonal matrix t with entries

tij = �ij
X̀

↵=1

(T�1a)i↵ . (5.10)

Multiplying (5.9) from the left and from the right by t�1 and t, respectively, projects the moment
map equation of the space of G-invariants

t�1WP�1tQ �1 � qQ �1 t�1WP�1t = q{ t�1T�1abA�1BTt .

Introducing the G-invariant combinations

L = t�1WP�1tQ�1 , a = t�1T�1a , c = bA�1BTt , (5.11)

we rewrite the moment map equation in its final invariant form

L� qQ �1LQ = q{ ac . (5.12)

The last equation is elementary solved for L

L = q{
NX

i,j=1

Q i

Q i � qQ j
(ac)ij Eij . (5.13)

The quantity (5.13) is the Lax matrix of the hyperbolic spin RS model, as can be seen by by
introducing the following parametrisation

q = e�2� , Q i = e2qi , qij = qi � qj , (5.14)

so that L takes the familiar form

L = {e�2�
NX

i,j

eqij+�

2 sinh(qij + �)
fij Eij , fij ⌘ (ac)ij .

Computing the trace of Lk,

TrLk = Tr(WP�1Q �1)k = Tr(UP�1T�1TQ �1T�1)k = Tr(BA�1)k , (5.15)

we recognise that Hk originate from the G-invariant involutive family (2.9). Thus, TrLk are in
involution. We take H = H1 as the Hamiltonian.
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Poisson algebra

6 Poisson brackets of G-invariants

As we have found, the reduced phase space P has a natural parametrisation in terms of the following
G-invariant variables

ai↵ , c↵i , Q i , i = 1, . . . , N, ↵ = 1, . . . , ` . (6.1)

Note that by construction the spin variables ai↵ are constrained to satisfy

X̀

↵=1

ai↵ = 1 , (6.2)

which can be regarded as the Frobenius condition in the spin space. The Lax matrix (5.13) depends
on the collective spin variables fij only, which allows to perform the GL`(C)-rotations

ai↵ ! 1

ui
ai� (g

�1)�↵ , c↵i ! uig↵� c
�
i , ui =

X̀

↵,�=1

ai� (g
�1)�↵ , g 2 GL`(C) ,

without changing fij and preserving the Frobenius condition (6.2).
Now we are in a position to determine the Poisson brackets between the variables (6.1) consti-

tuting the phase space. For that we need the Poisson brackets between T, U,Q and P variables of
the double. They have been already found in our previous work [19] and for the reader convenience
we collect them in appendix A. The brackets between invariant spins and Q are then

{ai↵,Q j} = 0 , {c↵i,Q j} = ��ij c↵i Q i . (6.3)

For the brackets of spins between themselves we find

{a1,a2}± = {
⇥
(r• ± Y )a1a2 ± a1a2 ⇢± a1 X21 a2 ⌥ a2 X12 a1

⇤
,

{a1, c2}± = {
⇥
c2(r

⇤
12 ⌥ Y )a1 ⌥ a1⇢±c2 ⌥ a1c2 X21 ⌥X12 a1c2

⇤
+K21 a1Z2 � C

rec
12 Z2 ,

{c1,a2}± = {
⇥
c1(�r⇤21 ⌥ Y )a2 ⌥ a2⇢⌥c1 ± a2c1 X12 ±X21 a2c1

⇤
�K12 a2Z1 + C

rec
21 Z1 ,

{c1, c2}± = {
⇥
c1c2 (r

� ⌥ Y )⌥ ⇢ c1c2 ± c1 X
⌥
12 c2 ⌥ c2 X

⌥
21 c1

⇤
+ c2K12 Z1 � c1K21 Z2 ,

(6.4)

where we introduced the matrices Z = Q �1LQ and

X12 =
X

i���

(a1⇢)i��� Eii ⌦ E�� , X±
12 =

X

i���

(a1⇢
±)i��� Eii ⌦ E�� ,

K12 =
X

i�

E�i ⌦ Eii , Y12 =
X

i�k�

(a1a2⇢)i�k� Eii ⌦ Ekk .
(6.5)

While the matrices r•, r⇤, r� depend on coordinates Q i and they are defined as follows:

r• =
1

2

NX

i,j=1

Q i + Q j

Q i � Q j
(Eii � Eij)⌦ (Ejj � Eji) ,

r⇤ =
1

2

NX

i,j=1

Q i + Q j

Q i � Q j
(Eij � Eii)⌦ Ejj , r� =

1

2

NX

i,j=1

Q i + Q j

Q i � Q j
(Eii ⌦ Ejj � Eij ⌦ Eji) .

Writing the brackets (6.4) for the choice “+” in components one finds that it coincides with the
result obtained in [16] by means of a quasi-Hamiltonian reduction. There are further immediate
consequences of our findings. First, the rational limit of (6.4), which consists in rescaling qi !
{qi, � ! {� with further sending { to zero, reproduces the Poisson structure of invariant spins
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Writing the brackets (6.4) for the choice “�” in components one finds that it coincides with
the result obtained in [16] by means of a quasi-Hamiltonian reduction. There are further immediate
consequences of our findings. First, the rational limit of (6.4), which consists in rescaling qi ! {qi,
� ! {� with further sending { to zero, reproduces the Poisson structure of invariant spins established
in [4]. Second, as has been already explained in [16], the Poisson algebra of collective spin variables
fij that follows from (6.4) reproduces the result conjectured in [4]. As a result, the Lax matrix (5.13)
satisfies the same Poisson-algebra as in the spinless case

1

{ {L1, L2} = r12L1L2 � L1L2r 12 + L1r̄21L2 � L2r̄12L1 , (6.6)

where the dynamical r-matrices are [19]

r =
NX

i 6=j

⇣ Q j

Q ij
Eii �

Q i

Q ij
Eij

⌘
⌦ (Ejj � Eji) ,

r̄ =
NX

i 6=j

Q i

Q ij
(Eii � Eij)⌦ Ejj , r =

NX

i 6=j

Q i

Q ij
(Eij ⌦ Eji � Eii ⌦ Ejj) ,

(6.7)

where similarly to the rational case we introduced the notation Q ij = Q i � Q j .

7 Superintegrability

Here we explain how superintegrability of the spin RS model follows from our approach. Consider the
following two families of functions on the Heisenberg double

J+
n = Tr

⇥
S(BA�1)n

⇤
, J�

n = Tr
⇥
S(A�1B)n

⇤
, n 2 Z ,
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we rewrite the moment map equation in its final invariant form

L� qQ �1LQ = q{ ac . (5.12)

The last equation is elementary solved for L

L = q{
NX
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The quantity (5.13) is the Lax matrix of the hyperbolic spin RS model, as can be seen by by introducing
the following parametrisation

q = e�2� , Q i = e2qi , qij = qi � qj , (5.14)

so that L takes the familiar form
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NX
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Computing the trace of Lk,

TrLk = Tr(WP�1Q �1)k = Tr(UP�1T�1TQ �1T�1)k = Tr(BA�1)k , (5.15)

we recognise that TrLk originate from the G-invariant involutive family (2.9). Thus, TrLk are in
involution. We take H = H1 as the Hamiltonian.
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without changing fij and preserving the Frobenius condition (6.2).
Now we are in a position to determine the Poisson brackets between the variables (6.1) constituting

the phase space. For that we need the Poisson brackets between T, U,Q and P variables of the double.
They have been already found in our previous work [19] and for the reader convenience we collect
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n = Tr
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where S is an arbitrary N ⇥N -matrix which has a vanishing Poisson bracket with both A and B.
Using (2.2), it is elementary to find {Hm, In} = {Hm, Jn} = 0, where Hm = Tr(BA�1)m constitute
a commutative family containing the Hamiltonian H1. Thus, J±

n are integrals of motion. We take
as S a matrix S↵� with entries (S↵�)ij = ai↵b�j . Thus, on the initial phase space M we have two
families of integrals

J+↵�
n = Tr

⇥
S↵�(BA�1)n

⇤
, J�↵�

n = Tr
⇥
S↵�(A�1B)n

⇤
, 8 ↵,� = 1, . . . , ` . (7.1)

These integrals are actually the functions on the reduced phase space P as they can be ex-
pressed in terms of gauge-invariant variables. Indeed, we have BA�1 = TtL t�1T�1 and A�1B =
Tt(Q �1LQ )t�1T�1, so that

BA�1 = A�1B(B�1ABA�1) = A�1BTt(Q �1L�1Q L)t�1T�1

and, therefore,

J+↵�
n = Tr

⇥
S↵�Q �1L�1Q Ln

⇤
, J�↵�

n = Tr
⇥
S↵�Q �1Ln�1Q

⇤
,

where the matrix S↵� comprises invariant spins (S↵�)ij = ai↵b�j . Clearly, I↵�0 = J↵�
0 = TrS↵� .

In the rational limit J+
n and J�

n collapse to the same conserved quantities J↵�
n introduced in [4].

Because I↵�n and J↵�
n are gauge invariant, their Poisson algebra computed on M straightfor-

wardly descends on the reduced phase space. To compute the Poisson brackets of the integrals, we
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where the indices 1, 2 are associated to the N ⇥N matrix spaces. In deriving the last formula we
used the properties of the spin ⇢-matrices ⇢T = �⇢ and ⇢T± = �⇢⌥, where T means transposition.
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Poisson algebra
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For the brackets of spins between themselves we find

{a1,a2}± = {
⇥
(r• ⌥ Y )a1a2 ⌥ a1a2 ⇢⌥ a1 X21 a2 ± a2 X12 a1

⇤
,

{a1, c2}± = {
⇥
c2(r

⇤
12 ± Y )a1 ± a1⇢⌥c2 ± a1c2 X21 ⌥X⌥

12 a1c2
⇤
+K21 a1Z2 � C

rec
12 Z2 ,

{c1,a2}± = {
⇥
c1(�r⇤21 ± Y )a2 ± a2⇢±c1 ⌥ a2c1 X12 ±X⌥

21 a2c1
⇤
�K12 a2Z1 + C

rec
21 Z1 ,

{c1, c2}± = {
⇥
c1c2 (r

� ⌥ Y )⌥ ⇢ c1c2 ± c1 X
⌥
12 c2 ⌥ c2 X

⌥
21 c1

⇤
+ c2K12 Z1 � c1K21 Z2 ,

(6.4)

where we introduced the matrices Z = Q �1LQ and

X12 =
X

i���

(a1⇢)i��� Eii ⌦ E�� , X±
12 =

X

i���

(a1⇢
±)i��� Eii ⌦ E�� ,

K12 =
X

i�

E�i ⌦ Eii , Y12 =
X

i�k�

(a1a2⇢)i�k� Eii ⌦ Ekk .
(6.5)

While the matrices r•, r⇤, r� depend on coordinates Q i and they are defined as follows:

r• =
1

2

NX

i,j=1

Q i + Q j

Q i � Q j
(Eii � Eij)⌦ (Ejj � Eji) ,

r⇤ =
1

2

NX

i,j=1

Q i + Q j

Q i � Q j
(Eij � Eii)⌦ Ejj , r� =

1

2

NX

i,j=1

Q i + Q j

Q i � Q j
(Eii ⌦ Ejj � Eij ⌦ Eji) .

Writing the brackets (6.4) for the choice “�” in components one finds that for N = 1, 2 and any
spin `, either ` = 1, 2 and any number of particles N , it coincides with the result obtained in [16] by
means of a quasi-Hamiltonian reduction.5 There are further immediate consequences of our findings.
First, the rational limit of (6.4), which consists in rescaling qi ! {qi, � ! {� with further sending
{ to zero, reproduces the Poisson structure of invariant spins established in [4]. Second, the Poisson
algebra of collective spin variables fij that follows from (6.4) is in general di↵erent from the result
conjectured in [4], and their di↵erence written in the matrix form is

⌥ f1f2 Y ⌥Y f1f2 ± f1 Y f2 ± f2 Y f1 . (6.6)

As a result, the Lax matrix (5.13) does not satisfies the same Poisson algebra as in the spinless case,
due to the contributions of Y12. The Poisson bracket between Lax matrices reads

1

{ {L1, L2}± = (r12 ⌥ Y )L1L2 � L1L2(r 12 ± Y ) + L1(r̄21 ± Y )L2 � L2(r̄12 ⌥ Y )L1 , (6.7)

where the dynamical r-matrices are [19]

r =
NX

i 6=j

⇣ Q j

Q ij
Eii �

Q i

Q ij
Eij

⌘
⌦ (Ejj � Eji) ,

r̄ =
NX

i 6=j

Q i

Q ij
(Eii � Eij)⌦ Ejj , r =

NX

i 6=j

Q i

Q ij
(Eij ⌦ Eji � Eii ⌦ Ejj) ,

(6.8)

where similarly to the rational case we introduced the notation Q ij = Q i � Q j .
The bracket (6.7) has the general form of the r-matrix structure compatible with involutivity of

the spectral invariants of L, but the Q -dependent r-matrices of the spinless case receive now an extra
contribution from the spin variables. As to the Poisson structure of [16], the corresponding LL-algebra
is given by (6.7) where Y should be taken to zero.

5
We thank to Maxime Fairon for pointing out the di↵erence between the Poisson brackets (6.4) and those of [16] for

a generic choice of N and `.
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established in [4]. Second, as has been already explained in [16], the Poisson algebra of collective
spin variables fij that follows from (6.4) reproduces the result conjectured in [4]. As the result, the
Lax matrix (5.13) satisfies the same Poisson-algebra as in the spinless case

1
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(Eij ⌦ Eji � Eii ⌦ Ejj) ,

(6.7)

where similarly to the rational case we introduced the notation Q ij = Q i � Q j .

7 Superintegrability

Here we explain how superintegrability of the spin RS model follows from our approach. Consider
the following two families of functions on the Heisenberg double

J+
n = Tr

⇥
S(BA�1)n

⇤
, J�

n = Tr
⇥
S(A�1B)n

⇤
, n 2 Z ,

where S is an arbitrary N ⇥N -matrix which has a vanishing Poisson bracket with both A and B.
Using (2.2), it is elementary to find {Hm, In} = {Hm, Jn} = 0, where Hm = Tr(BA�1)m constitute
a commutative family containing the Hamiltonian H1. Thus, J±

n are integrals of motion. We take
as S a matrix S↵� with entries (S↵�)ij = ai↵b�j . Thus, on the initial phase space M we have two
families of integrals

J+↵�
n = Tr

⇥
S↵�(BA�1)n

⇤
, J�↵�

n = Tr
⇥
S↵�(A�1B)n

⇤
, 8 ↵,� = 1, . . . , ` . (7.1)

These integrals are actually the functions on the reduced phase space P as they can be ex-
pressed in terms of gauge-invariant variables. Indeed, we have BA�1 = TtL t�1T�1 and A�1B =
Tt(Q �1LQ )t�1T�1, so that

BA�1 = A�1B(B�1ABA�1) = A�1BTt(Q �1L�1Q L)t�1T�1

and, therefore,

J+↵�
n = Tr

⇥
S↵�Q �1L�1Q Ln

⇤
, J�↵�

n = Tr
⇥
S↵�Q �1Ln�1Q

⇤
,

where the matrix S↵� comprises invariant spins (S↵�)ij = ai↵b�j . Clearly, I↵�0 = J↵�
0 = TrS↵� .

In the rational limit J+
n and J�

n collapse to the same conserved quantities J↵�
n introduced in [4].

Because I↵�n and J↵�
n are gauge invariant, their Poisson algebra computed on M straightfor-

wardly descends on the reduced phase space. To compute the Poisson brackets of the integrals, we
start with

1

{ {S↵�1 , S��2 }± =
1

{C12

�
���S↵�2 � �↵�S��1

�
+ r S↵�1 S��2 + S↵�1 S��2 r � S��2 r+S

↵�
1 � S↵�1 r�S

��
2

±
h
⇢↵µ,�⌫ S

µ�
1 S⌫�2 + S↵µ1 S�⌫2 ⇢µ�,⌫� � S�⌫2 ⇢±↵µ,⌫�S

µ�
1 � S↵µ1 ⇢⌥µ�,�⌫S

⌫�
2

i
, (7.2)

where the indices 1, 2 are associated to the N ⇥N matrix spaces. In deriving the last formula we
used the properties of the spin ⇢-matrices ⇢T = �⇢ and ⇢T± = �⇢⌥, where T means transposition.
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=)
The L-algebra is the same as in the non-spin case !
 � commutative family
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Poisson algebra

To present further results in a concise manner, we introduce a unifying notation
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where W should be identified with W + = BA�1 or with W � = A�1B. The Poisson brackets
between the entries of W ± is them
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By straightforward computation we then find the following result
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Here the signs “±” in the second line of this formula originate from that of (7.2) and they are
associated to the choice of the oscillator manifold ⌃±

N,`. The di↵erent signs on the third and
fourth lines have di↵erent origin and they are related to the choice of W , namely, the upper sign
corresponds to W + and the lower one to W �. The bracket (7.5) is not manifestly anti-symmetric,
but its anti-symmetry can be seen from the following identity
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Define for both choices of the sign in the last formula the quantity

$µ⌫ = �µ⌫ + {J↵�
0 . (7.6)

We then see that the Poisson bracket for the entries of $ is nothing else but the Semenov-Tian-
Shansky bracket in the spin space

{$1,$2}± = ±(⇢$1$2 +$1$2⇢�$2⇢±$1 �$1⇢⌥$2). (7.7)

We therefore recognise that $ is the non-abelian moment map for the Poisson actions (3.13) of
the spin Poisson-Lie group (3.14) on ⌃±

N,`. Thus, J
↵�
0 generates infinitesimal spin transformations,

while the conserved quantities J±↵�
n generate higher symmetries arising from conjunction of spin

transformations with abelian symmetries generated by Hk.
Since on P the passage from J�

n to J+
n can be understood as a redefinition of invariant spin

variables, it is enough to consider one of these families. As is clear from (7.5), the Poisson algebra
of J�↵�

n is simpler because a distinguished contribution of zero modes in the last line of (7.5)
decouples. Introducing a generating function of the corresponding modes

J(�) =
1X

n=0

J�
n ��n�1 , (7.8)
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established in [4]. Second, as has been already explained in [16], the Poisson algebra of collective
spin variables fij that follows from (6.4) reproduces the result conjectured in [4]. As the result, the
Lax matrix (5.13) satisfies the same Poisson-algebra as in the spinless case

1

{ {L1, L2} = r12L1L2 � L1L2r 12 + L1r̄21L2 � L2r̄12L1 , (6.6)

where the dynamical r-matrices are [19]

r =
NX

i 6=j

⇣ Q j

Q ij
Eii �

Q i

Q ij
Eij

⌘
⌦ (Ejj � Eji) ,

r̄ =
NX

i 6=j

Q i

Q ij
(Eii � Eij)⌦ Ejj , r =

NX

i 6=j

Q i

Q ij
(Eij ⌦ Eji � Eii ⌦ Ejj) ,

(6.7)

where similarly to the rational case we introduced the notation Q ij = Q i � Q j .

7 Superintegrability

Here we explain how superintegrability of the spin RS model follows from our approach. Consider
the following two families of functions on the Heisenberg double

J+
n = Tr

⇥
S(BA�1)n

⇤
, J�

n = Tr
⇥
S(A�1B)n

⇤
, n 2 Z ,

where S is an arbitrary N ⇥N -matrix which has a vanishing Poisson bracket with both A and B.
Using (2.2), it is elementary to find {Hm, In} = {Hm, Jn} = 0, where Hm = Tr(BA�1)m constitute
a commutative family containing the Hamiltonian H1. Thus, J±

n are integrals of motion. We take
as S a matrix S↵� with entries (S↵�)ij = ai↵b�j . Thus, on the initial phase space M we have two
families of integrals

J+↵�
n = Tr

⇥
S↵�(BA�1)n

⇤
, J�↵�

n = Tr
⇥
S↵�(A�1B)n

⇤
, 8 ↵,� = 1, . . . , ` . (7.1)

These integrals are actually the functions on the reduced phase space P as they can be ex-
pressed in terms of gauge-invariant variables. Indeed, we have BA�1 = TtL t�1T�1 and A�1B =
Tt(Q �1LQ )t�1T�1, so that

BA�1 = A�1B(B�1ABA�1) = A�1BTt(Q �1L�1Q L)t�1T�1

and, therefore,

J+↵�
n = Tr

⇥
S↵�Q �1L�1Q Ln

⇤
, J�↵�

n = Tr
⇥
S↵�Q �1Ln�1Q

⇤
,

where the matrix S↵� comprises invariant spins (S↵�)ij = ai↵c�j . Clearly, J
+↵�
0 = J�↵�

0 = TrS↵� .
In the rational limit J+

n and J�
n collapse to the same conserved quantities J↵�

n introduced in [4].
Because J±↵�

n are gauge invariants, their Poisson algebra computed on M straightforwardly
descends on the reduced phase space. To compute the Poisson brackets of the integrals, we start
with
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1 � S↵�1 r�S

��
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±
h
⇢↵µ,�⌫ S

µ�
1 S⌫�2 + S↵µ1 S�⌫2 ⇢µ�,⌫� � S�⌫2 ⇢±↵µ,⌫�S

µ�
1 � S↵µ1 ⇢⌥µ�,�⌫S

⌫�
2

i
, (7.2)

where the indices 1, 2 are associated to the N ⇥N matrix spaces. In deriving the last formula we
used the properties of the spin ⇢-matrices ⇢T = �⇢ and ⇢T± = �⇢⌥, where T means transposition.
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but its anti-symmetry can be seen from the following identity

mX

p=0

�
J↵�
n+m�pJ

��
p � J↵�

m�pJ
��
n+p

�
=

nX

p=0

�
J↵�
n+m�pJ

��
p � J↵�

n�pJ
��
m+p

�
+ J↵�

n J��
m � J↵�

m J��
n .

Further, we note that the zero modes J↵�
0 form a Poisson subalgebra

{J↵�
0 , J��

0 } = ���J↵�
0 � �↵�J��

0

± {
h
⇢↵µ,⌫⇢J

µ�
0 J⌫�

0 + J↵µ
0 J�⌫

0 ⇢µ�,⌫� � J�⌫
0 ⇢±↵µ,⌫�J

µ�
0 � J↵µ

0 ⇢⌥µ�,�⌫J
⌫�
0

i
.

Define for both choices of the sign in the last formula the quantity

$µ⌫ = �µ⌫ + {J↵�
0 . (7.6)

We then see that the Poisson bracket for the entries of $ is nothing else but the Semenov-Tian-
Shansky bracket in the spin space

{$1,$2}± = ±(⇢$1$2 +$1$2⇢�$2⇢±$1 �$1⇢⌥$2). (7.7)

We therefore recognise that $ is the non-abelian moment map for the Poisson actions (3.13) of
the spin Poisson-Lie group (3.14) on ⌃±

N,`. Thus, J
↵�
0 generates infinitesimal spin transformations,

while the conserved quantities J±↵�
n generate higher symmetries arising from conjunction of spin

transformations with abelian symmetries generated by Hk.
Since on P the passage from J�

n to J+
n can be understood as a redefinition of invariant spin
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The Heisenberg double (2.2) carries a Poisson action of a Poisson-Lie group G

A ! hAh�1 , B ! hBh�1 , h 2 G . (2.5)

The Poisson-Lie structure of G is given in terms of the Sklyanin bracket

{h1, h2} = �{ [r±, h1h2] , h 2 G . (2.6)

The non-abelian moment map for this action (M+,M�) takes values in the group G⇤. Under � it
maps onto an element M = M+M

�1
� 2 G, where

M = BA�1B�1A . (2.7)

The Poisson algebra relations between the entries of M form the Semenov-Tian-Schansky bracket

1

{ {M1,M2} = �r+M1M2 �M1M2r� +M1r�M2 +M2r+M1 . (2.8)

The Poisson algebra (2.2) has two obvious involutive subalgebras - one is generated by TrAk

and the other by TrBk, where k 2 Z. There is yet another involutive family which plays an essential
role in this work, namely,

Hk = Tr(BA�1)k = Tr(A�1B)k , k 2 Z . (2.9)

The fact that {Hk, Hm} = 0 for any k,m 2 Z can be verified by direct computation. A deeper
observation is that the map of generators

A ! A , B ! BA�1 , (2.10)

is a canonical transformation, i.e. under this map the Poisson structure (2.2) remains invariant.
Note that all the involutive families mentioned above are generated by invariants of the adjoint
action (2.5).

In the following we need two facts about the group G⇤. First, G⇤ is a Poisson-Lie group. In
terms of the generators u± 2 G± ⇢ G the corresponding Poisson-Lie structure is given by the
following Poisson brackets

1

{ {u±1, u±2} = �[r, u±1u±2] ,
1

{ {u±1, u⌥2} = �[r±, u±1u⌥2] . (2.11)

Under the map (2.1), these brackets endow G with the structure of a Poisson manifold given by the
Semenov-Tian-Shansky bracket [20]

1

{ {u1, u2} = �r+u1u2 � u1u2r� + u1r�u2 + u2r+u1 . (2.12)

Comparing (2.8) with (2.12) shows that the Poisson algebra of M coincides with the Semenov-Tian-
Shansky bracket.

The product in G⇤ induces under (2.1) a new product in G⇤ which we denote by ?. For any
u, v 2 G⇤ it is defined as

v ? u = v+u+u
�1
� v�1

� = v+uv
�1
� . (2.13)

where u± and v± are solutions of the factorisation problems u = u+u
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�1
� . The

Poisson-Lie structure of G⇤ is then encoded in the following relation
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�1
�1 , v+2u2v
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�2} = {u1, u2}(v ? u) ,
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L = t�1T�1UP�1tQ�1 , a = t�1T�1a , c = bA�1BTt , (1.2)
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To present further results in a concise manner, we introduce a unifying notation

J↵�
n = Tr(S↵�W n) , (7.3)

where W should be identified with W + = BA�1 or with W � = A�1B. The Poisson brackets
between the entries of W ± is them

1
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1 ,W ±

2 } = �r⌥ W ±
1 W ±

2 � W ±
1 W ±

2 r± + W ±
1 r⌥ W ±

2 + W ±
2 r± W ±

1 . (7.4)

By straightforward computation we then find the following result
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Here the signs “±” in the second line of this formula originate from that of (7.2) and they are
associated to the choice of the oscillator manifold ⌃±

N,`. The di↵erent signs on the third and
fourth lines have di↵erent origin and they are related to the choice of W , namely, the upper sign
corresponds to W + and the lower one to W �. The bracket (7.5) is not manifestly anti-symmetric,
but its anti-symmetry can be seen from the following identity

mX
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Further, we note that the zero modes J↵�
0 form a Poisson subalgebra
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± {
h
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0 J�⌫
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⌫�
0

i
.

Define for both choices of the sign in the last formula the quantity

$µ⌫ = �µ⌫ + {J↵�
0 . (7.6)

We then see that the Poisson bracket for the entries of $ is nothing else but the Semenov-Tian-
Shansky bracket in the spin space

{$1,$2}± = ±(⇢$1$2 +$1$2⇢�$2⇢±$1 �$1⇢⌥$2). (7.7)

We therefore recognise that $ is the non-abelian moment map for the Poisson actions (3.13) of
the spin Poisson-Lie group (3.14) on ⌃±

N,`. Thus, J
↵�
0 generates infinitesimal spin transformations,

while the conserved quantities J±↵�
n generate higher symmetries arising from conjunction of spin

transformations with abelian symmetries generated by Hk.
Since on P the passage from J�

n to J+
n can be understood as a redefinition of invariant spin

variables, it is enough to consider one of these families. As is clear from (7.5), the Poisson algebra
of J�↵�

n is simpler because a distinguished contribution of zero modes in the last line of (7.5)
decouples. Introducing a generating function of the corresponding modes

J(�) =
1X

n=0

J�
n ��n�1 , (7.8)
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The brackets (3.3) satisfy the Jacobi identity for any {, i.e. the constant and quadratic structures
in (3.3) form a Poisson pencil being a one-parametric deformation of the canonical relations (3.7).
It remains to note that if we define

! = + {ab , (3.8)

where ab is N ⇥N -matrix being a natural product of two rectangular matrices, then due to (3.3),
! will satisfy the Poisson algebra

1

{ {!1,!2} = r+!1!2 + !1!2r� � !1r�!2 � !2r+!1 , (3.9)

which is di↵erent from (2.12) by an overall sign only. In particular, the contribution of the spin
matrices ⇢, ⇢± completely decouples. Thus, formulae (3.8) give a realisation of the Semenov-Tian-
Shansky bracket in terms of the oscillator algebra (3.3). We also point out the Poisson relations
between ! and oscillators

1

{ {!1, a2} = (r+!1 � !1r�)a2 ,
1

{ {!1, b2} = �b2(r+!1 � !1r�) . (3.10)

In deriving (3.9) and (3.10) one has to use the relations

a1C
rec
21 = C12a2 , C

rec
12 b1 = b2C12 , C

s
12b1b2 = b1b2C12 .

Importantly, one can now verify that if we allow G to act infinitesimally on oscillators as

�Xai↵ = (Ad⇤!X a)i↵ �Xb↵i = �(bAd⇤!X )↵i , X 2 g , (3.11)

then this action G⇥ ⌃±
N,` ! ⌃±

N,` is a mapping of Poisson manifolds provided that G is equipped
with the Sklyanin bracket (2.6). Here Ad⇤gX for g ⌘ (g+, g�) 2 G⇤ is the dressing action of G⇤ on
the Lie algebra g. In addition, if we factorise ! = !+!

�1
� according to (2.1), then (!�1

+ ,!�1
� ) 2 G⇤

is the moment map for the Poisson action (3.11). Under (2.1) it defines the following element of G

N = !�1
+ !� 2 G . (3.12)

The fact that N generates the action (3.11) can be deduced from the Poisson brackets (3.10) together
with the fact that ! ? {N, . } = �{!, . } ? N. The Poisson algebra of N coincides with (2.12).

Further, the oscillator manifolds carries an action of the spin Poisson-Lie group S = GL`(C)

ai↵ �! (ag)i↵ , b↵i �! (g�1b)↵i , g 2 S . (3.13)

This action is Poisson provided the Poisson-Lie structure on S is taken for ⌃±
N,` to be

{g1, g2} = ±{[⇢, g1g2] . (3.14)

4 Poisson-Lie group action on a product manifold

Let M1 and M2 be two Poisson manifolds with brackets {· , ·}M1 and {· , ·}M2 that carry the Poisson
action of a Poisson-Lie group G. Let Mi : Mi ! G⇤ be the corresponding non-abelian moment
maps which are assumed to be Poisson. Then, one can define the Poisson action of G on the product
manifold M = M1 ⇥ M2 by taking the product3 of the moment maps [21]4

M = M1M2 ,

3
The product is naturally taken in G⇤

.

4
We are grateful to Lásló Fehér for drawing our attention to this work.
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Poisson algebra

we then convert (7.5) into the Poisson bracket between the currents. In the matrix notation this
bracket reads as

{J1(�), J2(µ)}± =
1

�� µ
[Cs

12, J1(�) + J2(µ)] (7.9)

± {
h
⇢±(�, µ)J1(�)J2(µ) + J1(�)J2(µ)⇢⌥(�, µ)� J2(µ)⇢±J1(�)� J1(�)⇢⌥J2(µ)

i
.

Here we have introduce two spectral dependent r-matrices in the spin space

⇢±(�, µ) = ⇢± 1

2

�+ µ

�� µ
C

s
12 =

�⇢± ⌥ µ⇢⌥
�� µ

, (7.10)

which are the standard solutions of the trigonometric5 Yang-Baxter equation with properties

⇢±(µ,�) = ⇢⌥(�, µ) , P⇢±(�, µ)P = �⇢±(µ,�) ,

where P = Cs is the permutation in the spin space. Note also that ⇢±(�, 0) = ⇢±.

Formula (7.9) is the symmetry algebra of non-abelian integrals of the hyperbolic spin RS model.
In the rational limit { ! 0 the bracket linearises and coincides with the defining relations of the
positive-frequency part of the GL(`)-current algebra [4]. The quadratic piece of (7.9) is the a�ne
version of the Semenov-Tian-Shansky bracket that extends the Poisson algebra of zero modes, while
the whole bracket is the Poisson pencil of the linear and quadratic structures.

Finally, we note that the superintegrable structure of the model is ultimately responsible for
the possibility to solve the equations of motion for invariant spins. Indeed, the equations of motion
on M triggered by H1 are

Ȧ = �B , Ḃ = �BA�1B , ȧ = 0 = ḃ .

These equations imply that BA�1 = I is an integral of motion and also a = const, b = const. Thus,
equations for A and B are elementary integrated

A(⌧) = e�I⌧A(0) , B(⌧) = Ie�I⌧A(0) . (7.11)

We assume that at the initial moment of time ⌧ = 0 the system is represented by a point on the
reduced phase space M . In particular, at this moment of time coordinates of particles constitute
a diagonal matrix A(0) ⌘ Q and the spin variables ai↵(0) ⌘ ai↵ obey the Frobenius conditionP

ai↵ = 1 for any i. With this assumption, it is easy to see that I = L(0), where L is the Lax
matrix containing the dependence of the initial data. Then, the positions of particles at ⌧ are given
by the solution Q (⌧) of the factorisation problem e�L(0)⌧Q = T (⌧)Q (⌧)T (⌧)�1, where T (⌧) is the
Frobenius matrix satisfying the initial condition T (⌧) = . Equations of motion for invariant spins
ai↵(⌧) are then solved with the help of T (⌧)

ai↵(⌧) =
T (⌧)�1

ij aj↵P
�
T (⌧)�1

ij aj�
.

A similar solution can be given for invariant spins c↵i. While oscillators ai↵ mix under the time
evolution with respect to their “particle” index i, the “spin” index ↵ remains essentially untouched
and the solution above is written for the whole `-dimensional vector. This situation is, of course, a
consequence of the spin symmetry commuting with the evolution flow.

5
In the di↵erence parametrization.
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and the lower one to W �. The bracket (7.5) is not manifestly anti-symmetric, but its anti-symmetry
can be seen from the following identity

mX

p=0

�
J↵�
n+m�pJ

��
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m�pJ
��
n+p

�
=

nX

p=0

�
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��
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n�pJ
��
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�
+ J↵�

n J��
m � J↵�

m J��
n .

Further, we note that the zero modes J↵�
0 form a Poisson subalgebra

{J↵�
0 , J��

0 } = ���J↵�
0 � �↵�J��

0
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h
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µ�
0 J⌫�

0 + J↵µ
0 J�⌫
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0

i
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Solving equation of motion
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These equations imply that BA�1 = I is an integral of motion and also a = const, b = const. Thus,
equations for A and B are elementary integrated

A(⌧) = e�I⌧A(0) , B(⌧) = Ie�I⌧A(0) . (7.11)

We assume that at the initial moment of time ⌧ = 0 the system is represented by a point on the
reduced phase space M . In particular, at this moment of time coordinates of particles constitute
a diagonal matrix A(0) ⌘ Q and the spin variables ai↵(0) ⌘ ai↵ obey the Frobenius conditionP

ai↵ = 1 for any i. With this assumption, it is easy to see that I = L(0), where L is the Lax
matrix containing the dependence of the initial data. Then, the positions of particles at ⌧ are given
by the solution Q (⌧) of the factorisation problem e�L(0)⌧Q = T (⌧)Q (⌧)T (⌧)�1, where T (⌧) is the
Frobenius matrix satisfying the initial condition T (⌧) = . Equations of motion for invariant spins
ai↵(⌧) are then solved with the help of T (⌧)

ai↵(⌧) =
T (⌧)�1

ij aj↵P
�
T (⌧)�1

ij aj�
.

A similar solution can be given for invariant spins c↵i. While oscillators ai↵ mix under the time
evolution with respect to their “particle” index i, the “spin” index ↵ remains essentially untouched
and the solution above is written for the whole `-dimensional vector. This situation is, of course, a
consequence of the spin symmetry commuting with the evolution flow.

5
In the di↵erence parametrization.

– 13 –

we then convert (7.5) into the Poisson bracket between the currents. In the matrix notation this
bracket reads as

{J1(�), J2(µ)}± =
1

�� µ
[Cs

12, J1(�) + J2(µ)] (7.9)

± {
h
⇢±(�, µ)J1(�)J2(µ) + J1(�)J2(µ)⇢⌥(�, µ)� J2(µ)⇢±J1(�)� J1(�)⇢⌥J2(µ)

i
.

Here we have introduce two spectral dependent r-matrices in the spin space

⇢±(�, µ) = ⇢± 1

2

�+ µ

�� µ
C

s
12 =

�⇢± ⌥ µ⇢⌥
�� µ

, (7.10)

which are the standard solutions of the trigonometric5 Yang-Baxter equation with properties

⇢±(µ,�) = ⇢⌥(�, µ) , P⇢±(�, µ)P = �⇢±(µ,�) ,

where P = Cs is the permutation in the spin space. Note also that ⇢±(�, 0) = ⇢±.

Formula (7.9) is the symmetry algebra of non-abelian integrals of the hyperbolic spin RS model.
In the rational limit { ! 0 the bracket linearises and coincides with the defining relations of the
positive-frequency part of the GL(`)-current algebra [4]. The quadratic piece of (7.9) is the a�ne
version of the Semenov-Tian-Shansky bracket that extends the Poisson algebra of zero modes, while
the whole bracket is the Poisson pencil of the linear and quadratic structures.

Finally, we note that the superintegrable structure of the model is ultimately responsible for
the possibility to solve the equations of motion for invariant spins. Indeed, the equations of motion
on M triggered by H1 are

Ȧ = �B , Ḃ = �BA�1B , ȧ = 0 = ḃ .

These equations imply that BA�1 = I is an integral of motion and also a = const, b = const. Thus,
equations for A and B are elementary integrated

A(⌧) = e�I⌧A(0) , B(⌧) = Ie�I⌧A(0) . (7.11)

We assume that at the initial moment of time ⌧ = 0 the system is represented by a point on the
reduced phase space M . In particular, at this moment of time coordinates of particles constitute
a diagonal matrix A(0) ⌘ Q and the spin variables ai↵(0) ⌘ ai↵ obey the Frobenius conditionP

ai↵ = 1 for any i. With this assumption, it is easy to see that I = L(0), where L is the Lax
matrix containing the dependence of the initial data. Then, the positions of particles at ⌧ are given
by the solution Q (⌧) of the factorisation problem e�L(0)⌧Q = T (⌧)Q (⌧)T (⌧)�1, where T (⌧) is the
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Frobenius,

Formula (7.9) is the symmetry algebra of non-abelian integrals of the hyperbolic spin RS model.
In the rational limit { ! 0 the bracket linearises and coincides with the defining relations of the
positive-frequency part of the GL(`)-current algebra [4]. The quadratic piece of (7.9) is the a�ne
version of the Semenov-Tian-Shansky bracket that extends the Poisson algebra of zero modes, while
the whole bracket is the Poisson pencil of the linear and quadratic structures. The algebra (7.9) has
an abelian subalgebra spanned by TrJ(�)n, n 2 Z+, where the trace is taken over the spin space.

Finally, we note that the superintegrable structure of the model is ultimately responsible for the
possibility to solve the equations of motion for invariant spins. Indeed, the equations of motion on M
triggered by H1 are

Ȧ = �B , Ḃ = �BA�1B , ȧ = 0 = ḃ .

These equations imply that BA�1 = I is an integral of motion and also a = const, b = const. Thus,
equations for A and B are elementary integrated

A(⌧) = e�I⌧A(0) , B(⌧) = Ie�I⌧A(0) . (7.11)

We assume that at the initial moment of time ⌧ = 0 the system is represented by a point on the
reduced phase space M . In particular, at this moment of time coordinates of particles constitute a
diagonal matrix A(0) ⌘ Q and the variables ai↵(0) ⌘ ai↵ obey the Frobenius condition

P
ai↵ = 1 for

any i. With this assumption, it is easy to see that I = L(0), where L is the Lax matrix containing the
dependence on the initial data. Then, the positions of particles at time ⌧ are given by the solution
Q (⌧) of the factorisation problem e�L(0)⌧Q = T (⌧)Q (⌧)T (⌧)�1, where T (⌧) is the Frobenius matrix
satisfying the initial condition T (0) = . Equations of motion for invariant spins ai↵(⌧) are then
solved with the help of T (⌧)

ai↵(⌧) =
T (⌧)�1

ij aj↵P
�
T (⌧)�1

ij aj�
= T (⌧)�1

ij aj↵ .

A similar solution can be given for invariant spins c↵i. While oscillators ai↵ mix under the time
evolution with respect to their “particle” index i, the “spin” index ↵ remains essentially untouched
and the solution above is written for the whole `-dimensional vector. This situation is, of course, a
consequence of the spin symmetry commuting with the evolution flow.
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A Poisson structure of the Heisenberg double

In order to compute the Poisson structure of invariant spins (6.4), one needs to compute the brackets
on the Heisenberg double in terms of the parametrisation (T, U, P,Q ), used for the reduction. Indeed,
recalling the expression of spins (5.11)

a = t�1T�1a , c = bA�1BTt = bTQ �1T�1UP�1t , (A.1)
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                      Conclusions

L = t�1T�1UP�1tQ�1 , a = t�1T�1a , c = bA�1BTt , (1.2)

=)
The L-algebra is the same as in the non-spin case !
�! moment map for the Poisson action of the spin Poisson-Lie group
Initial data
8i
,

The Hamiltonian structure of the hyperbolic spin RS model is found
from the Poisson reduction of D+(G)⇥ ⌃±

N,`
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