

THE GEOMETRY BEHIND TOPOLOGICAL AMPLITUDES

Carlo Angelantonj (UNITO & INFN)

C.A. and Ignatios Antoniadis to appear ... soon!

THE GEOMETRY BEHIND TOPOLOGICAL AMPLITUDES

OVERVIEW

TOPOLOGICAL AMPLITUDES
FLUX-TUBE (MELVIN) GEOMETRY
HETEROTIC STRING ON FLUX TUBES

The topological amplitudes corresponding to higher derivative F-term of the form F_gW_{2g} can be computed in heterotic string as

in a background which preserves N=2 supersymmetries, i.e. K3x T^2

A suitable choice of space-time momenta drastically simplifies the computation of the amplitude, although one is still left with

$$G_g = \left\langle \prod_{i=1}^g \int d^2 x_i Z^1 \bar{\partial} Z^2(x_i) \prod_{j=1}^g \int d^2 y_j \, \bar{Z}^2 \bar{\partial} \bar{Z}^1(y_j) \right\rangle$$

To this end, one actually computes the generating function

$$G(\lambda) = \sum_{g=1}^{\infty} \frac{1}{(g!)^2} \left(\frac{\lambda}{\tau_2}\right)^{2g} G_g$$

The advantage of having introduced *G* is that it can be expressed as the normalised Gaussian functional integral

$$G(\lambda) = \frac{\int [\mathcal{D}Z\mathcal{D}\bar{Z}] \exp\left(-S_0 + \frac{\lambda}{\tau_2} \int d^2x (Z^1\bar{\partial}Z^2 + \bar{Z}^2\bar{\partial}\bar{Z}^1)\right)}{\int [\mathcal{D}Z\mathcal{D}\bar{Z}] \exp(-S_0)}$$
 Free action for Z^1 and Z^2

It can be straightforwardly computed (using zeta-function regularisation) to yield

$$G(\lambda) = \left(\frac{2\pi i \lambda \bar{\eta}^3}{\bar{\vartheta}_1(\lambda|\bar{\tau})}\right)^2 e^{-\pi \lambda^2/\tau_2}$$

Back to the amplitude, the generating function of topological amplitudes is

$$F(\lambda) = \sum_{g=1}^{\infty} \lambda^{2g} F_g$$

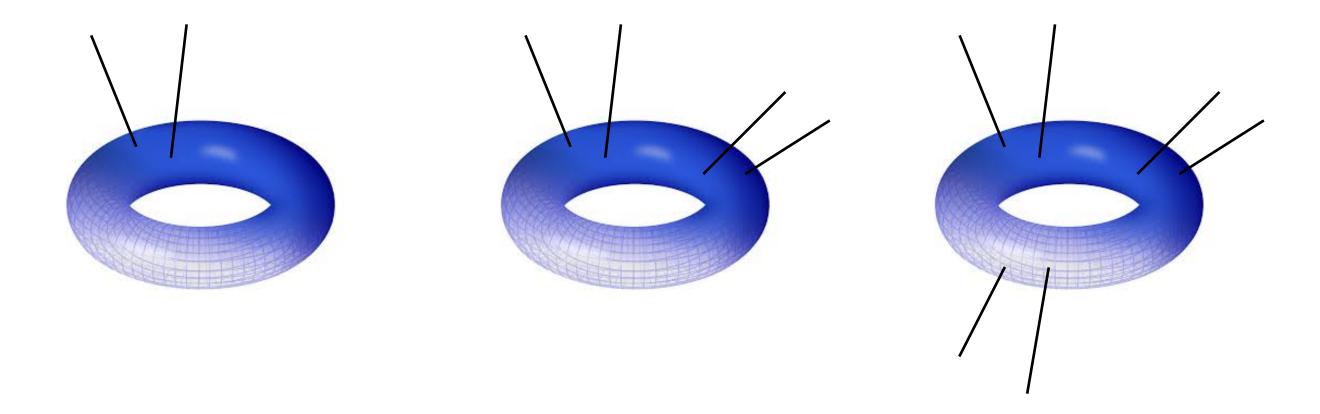
$$= \int_{\mathscr{F}} \frac{d^2\tau}{\tau_2} F(\bar{\tau}) \sum_{m,n} \left(\frac{2\pi i \lambda \bar{\eta}^3}{\bar{\vartheta}_1(\tilde{\lambda}|\bar{\tau})} \right)^2 e^{-\pi \lambda^2 \tau_2} \, q^{\frac{1}{2}|p_L|^2} \, \bar{q}^{\frac{1}{4}|p_R|^2}$$
 encodes the contribution of the internal coordinates

What can/do we "learn" from all this?

$$F(\lambda) = \int [\mathscr{D}Z\mathscr{D}\bar{Z}][\mathscr{D}X_{K3}][\mathscr{D}\lambda_{\text{gauge}}] \exp\left(-S_{K3} - S_{\text{gauge}} - S_0 + \frac{\lambda}{\tau_2} \int d^2x (Z^1\bar{\partial}Z^2 + \bar{Z}^2\bar{\partial}\bar{Z}^1)\right)$$

Are topological amplitudes equivalent to "free energies" of strings on "non-trivial" backgrounds?

After all ...



the vertex operators effectively modify the geometry of space-time!

What is then the geometry behind the topological amplitudes?

The graviphoton vertex operators correspond to anti-self-dual gauge field configurations (in Euclidean space-time)

The generating function, on the other hand, involves (anti-chiral) rotations on the non-compact directions

How to combine these two aspects?

Consider the four-dimensional geometry

$$\begin{split} ds_4^2 &= d\rho_1^2 + \rho_1^2 \tilde{G}(1+q_2^2\rho_2^2) d\varphi_1^2 + d\rho_2^2 + \rho_2^2 \tilde{G}(1+q_1^2\rho_1^2) d\varphi_2^2 - 2\tilde{G}q_1q_2\rho_1^2\rho_2^2 d\varphi_1 d\varphi_2\,, \\ A &= \tilde{G}(q_1\rho_1^2 d\varphi_1 + q_2\rho_2^2 d\varphi_2)\,, \\ \phi &= \phi_0\,, \\ e^{2\sigma} &= \tilde{G}^{-1} \end{split}$$

$$\tilde{G}^{-1} = 1 + q_1^2 \rho_1^2 + q_2^2 \rho_2^2$$

It includes uniform magnetic fields

$$F^{ab} = 2\tilde{G} egin{pmatrix} 0 & -q_1 & 0 & 0 \ q_1 & 0 & 0 & 0 \ 0 & 0 & 0 & -q_2 \ 0 & 0 & q_2 & 0 \end{pmatrix} \quad \tilde{F}_{ab} = 2\tilde{G} egin{pmatrix} 0 & -q_2 & 0 & 0 \ q_2 & 0 & 0 & 0 \ 0 & 0 & 0 & -q_1 \ 0 & 0 & q_1 & 0 \end{pmatrix}$$

which are (anti)self-dual (at leading order) if $q_1=q_2$

The sigma model associated to this background geometry is

$$\mathcal{L} = \partial \rho_1 \bar{\partial} \rho_1 + \rho_1^2 (\partial \varphi_1 + q_1 \partial y)(\bar{\partial} \varphi_1 + q_1 \bar{\partial} y) + (1 \to 2) + \partial y \bar{\partial} y$$

and corresponds to free fields if

$$\varphi_i \rightarrow \varphi_i = \varphi_i + q_i y$$

$$\mathcal{L} = \sum_{i=1,2} \partial \rho_i \bar{\partial} \rho_i + \rho_i^2 \partial \phi_i \bar{\partial} \phi_i + \partial y \bar{\partial} y = \sum_i \partial Z_i \bar{\partial} \bar{Z}_i + \partial y \bar{\partial} y$$

The new angular coordinate is not a *true angular coordinate*, and therefore Z is not periodic

$$Z_i(\sigma + \pi, \tau) = e^{2\pi i n q_i R} Z_i(\sigma, \tau)$$

Z is rotated by the angle $2\pi nq_iR$

The (anti)self-duality of the magnetic field is equivalent to opposite (equal) rotations of the two planes.

THE GEOMETRY BEHIND TOPOLOGICAL AMPLITUDES



THE HETEROTIC STRING FREE ENERGY

... can be calculated using standard techniques and Riemann identity

$$\mathcal{F}(\lambda) = -\int_{\mathcal{F}} \frac{d^{2}\tau}{\tau_{2}} \sum_{g,h} \frac{\left(\sum_{k,l} \bar{\theta}^{6} \begin{bmatrix} k \\ l \end{bmatrix} \bar{\theta} \begin{bmatrix} k+g/2 \\ l+h/2 \end{bmatrix} \bar{\theta} \begin{bmatrix} k-g/2 \\ l-h/2 \end{bmatrix}\right) \left(\sum_{\rho,\sigma} \bar{\theta}^{8} \begin{bmatrix} \rho \\ \sigma \end{bmatrix}\right)}{\bar{\eta}^{18} \bar{\theta} \begin{bmatrix} 1/2+g/2 \\ 1/2+h/2 \end{bmatrix} \bar{\theta} \begin{bmatrix} 1/2-g/2 \\ 1/2-h/2 \end{bmatrix}} \times \sum_{m_{i},n_{i}} \left(\frac{2\pi i \lambda \bar{\eta}^{3}}{\bar{\vartheta}_{1}(\tilde{\lambda}|\tau)}\right)^{2} e^{-\pi \tilde{\lambda}^{2}/\tau_{2}} q^{\frac{1}{4}|p_{L}|^{2}} \bar{q}^{\frac{1}{4}|p_{R}|^{2}},$$

This expression matches the generating function for the topological amplitude

THE HETEROTIC STRING FREE ENERGY

Was it expected?

In his seminal paper, Nekrasov conjectured a relation between the free energy of a N=2 gauge theory and the field-theory limit of the topological amplitude.

$$ds^{2} = A dz d\bar{z} + g_{IJ} \left(dx^{I} + \Omega^{I}_{K} x^{K} dz + \bar{\Omega}^{I}_{K} x^{K} d\bar{z} \right) \left(dx^{J} + \Omega^{J}_{L} x^{L} dz + \bar{\Omega}^{J}_{L} x^{L} d\bar{z} \right)$$

The Omega background with a single parameter is the Flux tube (Melvin) geometry considered previously.

GENERALISATION

What about the refinement of the topological amplitudes?

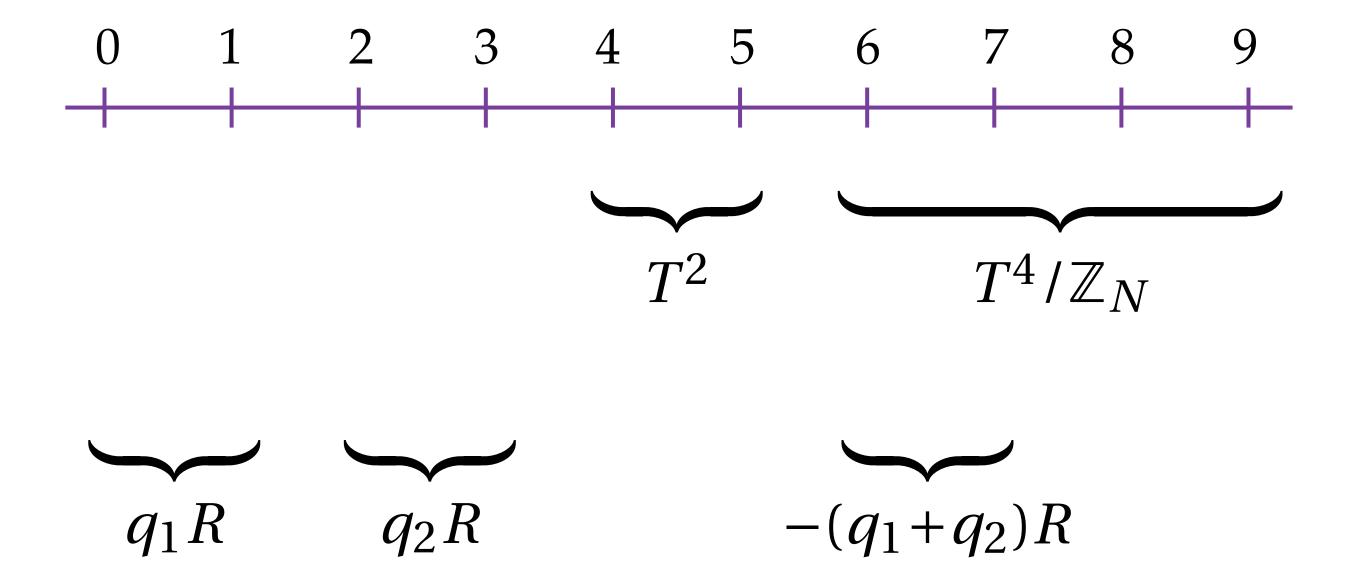
$$ds^{2} = A dz d\bar{z} + g_{IJ} \left(dx^{I} + \Omega^{I}_{K} x^{K} dz + \bar{\Omega}^{I}_{K} x^{K} d\bar{z} \right) \left(dx^{J} + \Omega^{J}_{L} x^{L} dz + \bar{\Omega}^{J}_{L} x^{L} d\bar{z} \right)$$

The two-parameter Omega background needs an action on the SU(2) R-symmetry to preserve supersymmetry

What is the origin of R-symmetry from a Kaluza-Klein perspective?

GENERALISATION

What about the refinement of the topological amplitudes?



THANK YOU