
CONFORMAL BLOCKS WITH HEAVY
BACKGROUND OPERATORS

(large-c , AdS/CFT, geodesic networks)

Konstantin Alkalaev

Lebedev Physical Institute

and

Institute for Theoretical and Mathematical Physics

K. Alkalaev, M. Pavlov, arXiv:1905.03195

Yerevan 2019



Motivation

• The large central charge approximation in AdS3/CFT2 can be viewed as the block/length
correspondence with two background operators

Outline

• CFT: conformal blocks and large central charge

• AdS: how to build the dual geometry

• AdS/CFT: 4-point block with three background operators as geodesic length

• More than three background operators



Heavy and light operators
n-point correlation functions of V∆i ,∆̄i

(zi , z̄i ), i = 1, ..., n are given by

〈V∆1,∆̄1
(z1, z̄1) . . .V∆n,∆̄n

(zn, z̄n)〉 ∼
∑
{∆̃}

C ...C F F̄

Conformal blocks
F(z1, ..., zn|∆1, ...,∆n; ∆̃1, ..., ∆̃n−3|c)

are conveniently depicted as (in a particular OPE channel)

Remarkably, the OPE ties monodromy of solutions around particular contours to dimen-

sions of the exchanged operators in a particularly simple way. For the degenerate primary

inserted as on Fig. 1 we find that the conformal block is dominated by (zm�y)�̃m+1��(1,2)��̃m .

By the OPE argument, moving y around zm is equivalent to moving around insertion points

of those operators which have been fused into the exchanged operator. Thus, computing the

monodromy of the above power-law function we easily find the monodromy along the contour

�k (2.1).

Indeed, using the Liouville parameterization2 we find that �(1,2) = �1/2 � 3b2/4, while

conformal dimensions of exchanged operators are related by the fusion rule as �̃m+1 � �̃m =

�b2/4 ± ibPm [21]. Then, the monodromy matrix associated with �k is given by

eM(�k) =

 
e2⇡iM+k 0

0 e2⇡iM�k

!
, M±k =

1

2
+

b2

2
± ibPk�1 . (2.2)

The classical conformal blocks arise in the limit when the central charge and conformal

dimensions simultaneously tend to infinity. Both external and exchanged dimensions �m and

�̃n grow linearly with the charge c in such a way that ratios ✏m = 6�m/c and ✏̃n = 6�̃n/c

called classical dimensions remain fixed in c ! 1. Then, the quantum conformal block is

represented as an exponential of the classical conformal block [17]. Operators with fixed

classical dimensions are heavy, while those with vanishing classical dimensions are light.

z1,�1

z2,�2 zn�2,�n�2· · · · · ·

zn,�n

zn�1,�n�1

�̃1 �̃n�3�̃n�2· · · · · ·

Figure 2. The n-point conformal block. Two bold black lines are background heavy operators,

thin blue lines represent primary and exchanged perturbative heavy operators which are discussed in

Section 3.

In our case of the (n + 1)-point conformal block all operators are supposed to be heavy

while the degenerate operator is light, limb!0 �(1,2) = 1/2. Thus, in the semiclassical

limit it decouples from the other operators, while adjacent exchanged dimensions get equal

limb!0(�̃m � �̃m+1) = 0, see Fig. 1. The limiting (n+1)-point conformal block factorizes as

F(y, z|�m, �̃n)
���
c!1

!  (y|z) exp
⇥
� c

6
f(z|✏i, ✏̃j)

⇤
, (2.3)

where we denoted z = {z1, ... , zn}, function  (y|z) describes the semiclassical contribution

of the degenerate operator, while the exponential factor f(z|✏i, ✏̃j) is the n-point classical

2We change (�, c) ! (P, b) according to �(P ) = c�1
24

+ P 2 and c = 1 + 6(b + b�1)2 [21]. The limit c ! 1
can equivalently be described as b ! 0.
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Different large-c limits of the conformal blocks depend on the behavior of ∆i and ∆̃i :

# ∆, ∆̃ = O(c1): heavy operators

# ∆, ∆̃ = O(c0): light operators

Three types of blocks:

# Global conformal block — all operators are light

# Classical conformal block — all operators are heavy

# Heavy-light blocks interpolate between these two extreme regimes



Classical conformal block
Let all conformal dimensions grow linearly with the central charge

∆i = O(c1) and ∆̃j = O(c1)

The Laurent series around c =∞ reads

F(∆, ∆̃, z|c) =
∑
n∈N

fn(ε, ε̃|z)

cn
where finite parameters εi =

∆i

c
and ε̃j =

∆̃j

c

are classical conformal dimensions, and fn(ε, ε̃|z) are formal power series in the complex
coordinates z with expansion coefficients being rational functions in ε and ε̃.

Exponentiation hypothesis. At large c the principle part goes to zero. Less obvious is the fact
that the regular part exponentiates (Zamolodchikov 1986). It follows that the large-c Virasoro block is
asymptotically equivalent to

F(∆, ∆̃, z|c) ∼ exp
[
c f (ε, ε̃|z)

]
at c � 1

Function f (ε, ε̃|q) is the classical conformal block.

Comments:

• Exponentiation is relevant for AdS/CFT within the GKP-W prescription

• The classical block is still hard to find



The problem: three heavy background operators
We consider the s-channel conformal block of the 4-point correlation function with three
background operators and one perturbative operator,

HHHL type : 〈OL(z, z̄)OH(0)OH(1)OH(∞)〉 ,
where (z, z̄) ∈ C, and the conformal dimensions are such that

∆L,H

c
= fixed at c � 1 and

∆L

∆H
� 1

• The large-c (i.e. classical) 4-point conformal block in the first order in ∆L/∆H .

• The zeroth order: the 3-point function of the background operators OH creates the AdS3

space with three conical defects (3-conical space).

• OL(z, z̄) is the geodesic line stretched from the conformal boundary to a distinguished
point in the bulk. The geodesic length calculates the large-c conformal block of HHHL
correlation function in the first order of the perturbative expansion.
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Monodromy method
Let us consider (n + 1)-point correlation functions with one degenerate operator. We have

BPZ :
[
c
∂2

∂y2
+

n∑
i=1

( ∆i

(y − zi )2
+

1

y − zi

∂

∂zi

)]
〈Ψ(y)V1(z1) · · ·Vn(zn)〉 = 0

• In the classical limit c →∞ the (n + 1)-point auxiliary correlation function behaves as

F(y , z|∆m, ∆̃k )
∣∣∣
c→∞

→ ψ(y |z) exp
[
− c

6
f (z|εi , ε̃j )

]
where f (zi |εi , ε̃j ) is the classical block and ψ(y |z) is governed by the Fuchsian equation

d2ψ(y |z)

dy2
+ T (y |z)ψ(y |z) = 0 where T (y |z) =

n∑
i=1

(
εi

(y − zi )2
+

ci

y − zi

)
• Here T (z) is the stress-energy tensor and ci are the accessory parameters

ci (z) =
∂f (z)

∂zi
i = 1, ..., n

The monodromy properties of the correlation functions:

n algebraic relations for n accessory parameters.

− NP hard
− Low n points are solvable (using approximations)



Heavy-light perturbation expansion
Consider the HHHL type function. The conformal dimensions are organized as follows

∆2/∆1,3,4 � 1 and ∆1 ∼ ∆3 ∼ ∆4 ,

The Fuchsian equation can be explicitly solved by expanding all functions in ∆2 as

ψ(y , z) = ψ(0)(y , z) + ψ(1)(y , z) + ... , T (y , z) = T (0)(y , z) + T (1)(y , z) + ... ,

f (z|ε, ε̃) = f (0)(z|ε, ε̃) + f (1)(z|ε, ε̃) + ... , c2(z|ε, ε̃) = c
(0)
2 (z|ε, ε̃) + c

(1)
2 (z|ε, ε̃) + ... .

A few comments are in order.

• The term f (0) = 0 because the conformal block for the 3-point HHH function equals 1.

• The zeroth order accessory parameter is also zero, c
(0)
2 = 0.

The Fuchsian equation in the lowest orders takes the form[
d2

dy2
+ T (0)(y)

]
ψ(0)(y , z) = 0 ,

[
d2

dy2
+ T (0)(y)

]
ψ(1)(y , z) = −T (1)(y , z)ψ(0)(y , z)

where

T (0)(y) =
ε1

y2
+

ε3

(1− y)2
+
ε1 + ε3 − ε4

y(1− y)
, T (1)(y , z) = c2

(1− z)z

y(1− y)(y − z)
+

ε2

(y − z)2
+

ε2

y(1− y)

Note that T (1)(y , z) is indeed the first order correction because c2 = O(ε2).



First-order solution (∆3 = ∆4)
0-th order. The Fuchsian equation can be reduced to the hypergeometric equation solved by

ψ
(0)
± (y) = (1− y)

1+α
2 y

1±β
2 F±(α, β|y) ,

where the hypergeometric functions are given by

F±(α, β|y) = 2F1

(
1± β

2
,

1± β
2

+ α, 1± β, y
)
,

and α =
√

1− 24∆4/c, β =
√

1− 24∆1/c, and 0 < α, β < 1
1-st order. Using the method of variation of parameters we find the first order correction,

ψ
(1)
± (y , z) = ψ

(0)
+ (y)

∫
dy
ψ

(0)
− T (1)(y , z)ψ

(0)
±

W
− ψ(0)
− (y)

∫
dy
ψ

(0)
+ T (1)(y , z)ψ

(0)
±

W
,

where the Wronskian is given by W =
sinπβ

π
. Thus, the first-order solution reads as

ψ±(y , z) = ψ
(0)
± (y , z) + ψ

(1)
± (y , z)

It is parameterized by the background dimensions (α, β) and depends on the indeterminate
accessory parameter c2.



CFT result

• The accessory parameter

c2 = ε2

[
1 + α

1− z
− 1

z
− d log(F+F−)

dz

]

• The 4-point HHHL classical block

f (z|α, β, ε2) = −ε2

(
log(1− z)1+α + log z + log F+(α, β|z) + log F−(α, β|z)

)



AdS dual : Bañados metric

In the AdS3/CFT2 correspondence, the locally AdS3 geometry created by heavy insertions of the
boundary CFT can be described in the Bañados form (Bañados, 1998)

ds2 = R2

(
−Hdz2 − H̄dz̄2 +

u2

4
HH̄ dzdz̄ +

du2 + dzdz̄

u2

)
,

with u ∈ [0,∞) and z, z̄ ∈ C being local coordinates, the radius is R. Arbitrary (anti)holomorphic
functions H = H(z) and H̄ = H̄(z̄) can be interpreted as components of the holographic CFT2

energy-momentum tensor

T (z) =
c

6
H(z) ,

where the central charge is c = 3R/2GN . Under z → w(z) it transforms in the standard fashion
as

T (z) =
(
w ′
)2

T (w) +
c

12
{w , z} , where {w , z} =

w ′′′

w ′
− 3

2

(
w ′′

w ′

)2

,

where the prime denotes differentiation with respect to z.



AdS dual: Poincare metric
# Let us find a map

z → w(z) such that H(w(z)) = 0

Away from singularities it would correspond to pure AdS3 in the Poincare coordinates (Asplund et al.

2014). This can be achieved provided that

H(z) =
1

2
{w , z} .

The solution to the above equation can be represented as the ratio of two independent solutions
to the auxiliary Fuchsian equation

ψ
′′

+ Hψ = 0

This is the Schwarz map

w(z) =
Aψ1(z) + B ψ2(z)

C ψ1(z) + D ψ2(z)
, AD − BC 6= 0 ,

where ψ1,2 are two independent Fuchsian solutions, and A,B,C ,D ∈ C parameterize the Möbius
transformation of ψ1(z)/ψ2(z).
In the large-c regime the function H can be identified with the classical energy-momentum tensor
arising in the zeroth-order Fuchsian equation of the monodromy method, i.e.,

H(z|z) ≡ T (0)(z|z) ,

where the set of singular points z is the locations of the background operators.



AdS dual: Roberts solution
The boundary map z → w(z) can be extended to the whole three-dimensional space,
w = w(z, z̄, u), w̄ = w̄(z, z̄, u), and v = v(z, z̄, u), such that the resulting metric describes the
Poincare patch

ds̃2 =
dv2 + dwdw̄

v2

The explicit coordinate transformation reads (Roberts, 2012)

w(z, z̄, u) = w(z)−
2u2w′(z)2w̄′′(z̄)

4w′(z)w̄′(z̄) + u2w′′(z)w̄′′(z̄)
v(z, z̄, u) = u

4
(
w′(z)w̄′(z̄)

)3/2

4w′(z)w̄′(z̄) + u2w′′(z)w̄′′(z̄)

The length of a geodesic line in the Poincare coordinates:

LAdS = R log
(w1 − w2)(w̄1 − w̄2)

v1v2

In the Euclidean case the Poincare patch covers the whole global AdS3 space

dŝ2 =
dτ2 + dρ2 + sin2 ρdφ2

cos2 ρ

through the coordinate change

w = eθ sin ρ, v = e
θ+θ̄

2 cos ρ

where θ = τ + iφ and ρ are coordinates of the global AdS3 (rigid cylinder). The conformal
boundary is at ρ = π/2. There is a conformal map θ = log w from the boundary (w , w̄)-plane to
the boundary (θ, θ̄)-cylinder.



4-point HHHL block as geodesic length
• The classical energy-momentum tensor is given by

T (0)(z) =
ε1

z2
+

ε3

(z − 1)2
+

ε1

z(1− z)
,

where ε1 and ε3 = ε4 are classical dimensions of the heavy background operators at (0, 1,∞).

• The resulting space defined by the Bañados metric will be denoted as AdS3[3]. There are three
lines of coordinate singularities: (z, z̄, u) = (0, 0, u), (z, z̄, u) = (1, 1, u), (z, z̄, u) = (∞,∞, u) for
any u ∈ R+.

• Choosing the Fuchsian solutions as ψ1,2(z) = ψ
(0)
± (z) we find the conformal mapping,

w(z) = zβ
2F1

(
1+β

2
, 1+β

2
+ α, 1 + β, z

)
2F1

(
1−β

2
, 1−β

2
+ α, 1− β, z

)
This is the Schwarz triangle function that maps the (z, z̄)-plane onto some curvilinear triangle on
the (w , w̄)-plane.

Comments:

# The conformal mapping is defined up to Möbius transformations. The Möbius group acts
triply transitively and conformally.

# By construction, the Schwarz function has three singular points z = 0, 1,∞ identified with
background operator locations. The angle in the point w(0) is equal to πβ, the second
angle in w(1) is equal to −πα, and the third angle in w(∞) is equal to πα. We have angle
deficit/excess.



• Let us consider now the HHHL conformal block function in three boundary coordinate systems:

(z, z̄)-plane, (w , w̄)-domain, (θ, θ̄)-cylinder

Assuming that we do some coordinate change x → x(y) the transformation formula is

f (x |α, β, ε2) = f (y(x)|α, β, ε2) + ε2 log y ′(x)

The block function in different coordinate systems is given by

f (w |α, β, ε2) = −ε2 log w , f (θ|α, β, ε2) = 0

• Let us consider AdS3[3] in the Poincare coordinates and fix two points: the boundary insertion
of the perturbative operator (w , w̄ , ε) and the distinguished point in the bulk (0, 0, 1), where the
cut-off ε→ 0. The distinguished point belongs to the trivalent graph connecting the background
heavy insertions: two at infinities, one in a finite region of the conformal boundary. The geodesic
length is

L
AdS

3
[3]

(w , w̄) = R (log w + log w̄)− R log ε ,
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The (holomorphic) block/length relation is given by

f (w |α, β, ε2) ∼ − ε2

R
L
AdS

3
[3]

(w)

Comments:
# Here, ∼ means up to constant and divergent contributions.
# The same relation holds in the global coordinates, where the both sides are vanishing.



More than three background operators
• We consider Hn−kLk type correlation functions.

• Let AdS3[n − k] be a three-dimensional space with the Bañados metric defined by the classical
tensor T (z|z) with n − k singular points.
• The boundary Schwarz mappings and the Poincare coordinates are build using the solutions of
the associated Fuchsian equation,[

d2

dz2
+ T (z|z)

]
ψ(z) = 0 , where T (z|z) =

n∑
i=k+1

εi

(z − zi )2
+

ci

z − zi
,

where z = (zk+1, ..., zn) are locations of the background operators with classical dimensions εi ,
the ci are respective accessory parameters.
• The resulting space AdS3[n − k] will have n − k conical defects parameterized by background
conformal dimensions as can be directly seen from the Schwarz map of the (z, z̄)-plane to some
curvilinear polygon with n − k vertices on the (w , w̄)-plane.
• Assuming that εj/εi � 1 for j = 1, ..., k and i = k + 1, ..., n we can use the heavy-light

expansion and introduce type Hn−kLk perturbative conformal blocks f(k,n−k)(w). The
energy-momentum tensor arising in the zeroth order is exactly T (z|z).
• It is tempting to conjecture that type Hn−kLk conformal blocks are equal to the length of dual
geodesic trees in AdS3[n − k],

f(k,n−k)(w |ε) ∼ − 1

R
L
AdS

3
[n−k]

(w |ε) ,

where the right-hand side is the weighted length of the dual geodesic tree, and w are locations of
perturbative operators in the Poincare coordinates.



Conclusion

• Up to now, the case of HHLn−2 type functions is fully understood.

• We considered 4-point HHHL, the next non-trivial check is 5-point HHHLL, and then
n-point HHHLn−3.

• Towards Hn−kLk type functions and their duals.


