CONFORMAL BLOCKS WITH HEAVY BACKGROUND OPERATORS

(large-c, AdS/CFT, geodesic networks)

Konstantin Alkalaev
Lebedev Physical Institute and
Institute for Theoretical and Mathematical Physics

K. Alkalaev, M. Pavlov, arXiv:1905.03195

Motivation

- The large central charge approximation in $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ can be viewed as the block/length correspondence with two background operators

Outline

- CFT: conformal blocks and large central charge
- AdS: how to build the dual geometry
- AdS/CFT: 4-point block with three background operators as geodesic length
- More than three background operators

Heavy and light operators

n-point correlation functions of $V_{\Delta_{i}, \bar{\Delta}_{i}}\left(z_{i}, \bar{z}_{i}\right), i=1, \ldots, n$ are given by

$$
\left\langle V_{\Delta_{1}, \bar{\Delta}_{1}}\left(z_{1}, \bar{z}_{1}\right) \ldots V_{\Delta_{n}, \bar{\Delta}_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle \sim \sum_{\{\tilde{\Delta}\}} C \ldots C \mathcal{F} \overline{\mathcal{F}}
$$

Conformal blocks

$$
\mathcal{F}\left(z_{1}, \ldots, z_{n}\left|\Delta_{1}, \ldots, \Delta_{n} ; \tilde{\Delta}_{1}, \ldots, \tilde{\Delta}_{n-3}\right| c\right)
$$

are conveniently depicted as (in a particular OPE channel)

Different large-c limits of the conformal blocks depend on the behavior of Δ_{i} and $\tilde{\Delta}_{i}$: \# $\Delta, \tilde{\Delta}=\mathcal{O}\left(c^{1}\right)$: heavy operators
\# $\Delta, \tilde{\Delta}=\mathcal{O}\left(c^{0}\right)$: light operators
Three types of blocks:
\# Global conformal block - all operators are light
\# Classical conformal block - all operators are heavy
\# Heavy-light blocks interpolate between these two extreme regimes

Classical conformal block

Let all conformal dimensions grow linearly with the central charge

$$
\Delta_{i}=\mathcal{O}\left(c^{1}\right) \quad \text { and } \quad \tilde{\Delta}_{j}=\mathcal{O}\left(c^{1}\right)
$$

The Laurent series around $c=\infty$ reads

$$
\mathcal{F}(\Delta, \tilde{\Delta}, z \mid c)=\sum_{n \in \mathbb{N}} \frac{f_{n}(\epsilon, \tilde{\epsilon} \mid z)}{c^{n}} \quad \text { where finite parameters } \quad \epsilon_{i}=\frac{\Delta_{i}}{c} \quad \text { and } \quad \tilde{\epsilon}_{j}=\frac{\tilde{\Delta}_{j}}{c}
$$

are classical conformal dimensions, and $f_{n}(\epsilon, \tilde{\epsilon} \mid z)$ are formal power series in the complex coordinates z with expansion coefficients being rational functions in ϵ and $\tilde{\epsilon}$.

Exponentiation hypothesis. At large c the principle part goes to zero. Less obvious is the fact that the regular part exponentiates (Zamolodchikov 1986). It follows that the large-c Virasoro block is asymptotically equivalent to

$$
\mathcal{F}(\Delta, \tilde{\Delta}, z \mid c) \sim \exp [c f(\epsilon, \tilde{\epsilon} \mid z)] \quad \text { at } \quad c \gg 1
$$

Function $f(\epsilon, \tilde{\epsilon} \mid q)$ is the classical conformal block.
Comments:

- Exponentiation is relevant for AdS/CFT within the GKP-W prescription
- The classical block is still hard to find

The problem: three heavy background operators

We consider the s-channel conformal block of the 4-point correlation function with three background operators and one perturbative operator,

$$
\text { HHHL type : } \quad\left\langle\mathcal{O}_{L}(z, \bar{z}) \mathcal{O}_{H}(0) \mathcal{O}_{H}(1) \mathcal{O}_{H}(\infty)\right\rangle,
$$

where $(z, \bar{z}) \in \mathbb{C}$, and the conformal dimensions are such that

$$
\frac{\Delta_{L, H}}{c}=\text { fixed at } c \gg 1 \text { and } \frac{\Delta_{L}}{\Delta_{H}} \ll 1
$$

- The large-c (i.e. classical) 4-point conformal block in the first order in Δ_{L} / Δ_{H}.
- The zeroth order: the 3-point function of the background operators \mathcal{O}_{H} creates the AdS_{3} space with three conical defects (3-conical space).
- $\mathcal{O}_{L}(z, \bar{z})$ is the geodesic line stretched from the conformal boundary to a distinguished point in the bulk. The geodesic length calculates the large-c conformal block of HHHL correlation function in the first order of the perturbative expansion.

Monodromy method

Let us consider ($n+1$)-point correlation functions with one degenerate operator. We have

$$
\mathrm{BPZ}: \quad\left[c \frac{\partial^{2}}{\partial y^{2}}+\sum_{i=1}^{n}\left(\frac{\Delta_{i}}{\left(y-z_{i}\right)^{2}}+\frac{1}{y-z_{i}} \frac{\partial}{\partial z_{i}}\right)\right]\left\langle\Psi(y) V_{1}\left(z_{1}\right) \cdots V_{n}\left(z_{n}\right)\right\rangle=0
$$

- In the classical limit $c \rightarrow \infty$ the ($n+1$)-point auxiliary correlation function behaves as

$$
\left.\mathcal{F}\left(y, z \mid \Delta_{m}, \tilde{\Delta}_{k}\right)\right|_{c \rightarrow \infty} \rightarrow \psi(y \mid z) \exp \left[-\frac{c}{6} f\left(z \mid \epsilon_{i}, \tilde{\epsilon}_{j}\right)\right]
$$

where $f\left(z_{i} \mid \epsilon_{i}, \tilde{\epsilon}_{j}\right)$ is the classical block and $\psi(y \mid z)$ is governed by the Fuchsian equation

$$
\frac{d^{2} \psi(y \mid z)}{d y^{2}}+T(y \mid z) \psi(y \mid z)=0 \quad \text { where } \quad T(y \mid z)=\sum_{i=1}^{n}\left(\frac{\epsilon_{i}}{\left(y-z_{i}\right)^{2}}+\frac{c_{i}}{y-z_{i}}\right)
$$

- Here $T(z)$ is the stress-energy tensor and c_{i} are the accessory parameters

$$
c_{i}(z)=\frac{\partial f(z)}{\partial z_{i}} \quad i=1, \ldots, n
$$

The monodromy properties of the correlation functions: n algebraic relations for n accessory parameters.

- NP hard
- Low n points are solvable (using approximations)

Heavy-light perturbation expansion

Consider the HHHL type function. The conformal dimensions are organized as follows

$$
\Delta_{2} / \Delta_{1,3,4} \ll 1 \quad \text { and } \quad \Delta_{1} \sim \Delta_{3} \sim \Delta_{4}
$$

The Fuchsian equation can be explicitly solved by expanding all functions in Δ_{2} as

$$
\begin{aligned}
\psi(y, z)=\psi^{(0)}(y, z)+\psi^{(1)}(y, z)+\ldots, & T(y, z)=T^{(0)}(y, z)+T^{(1)}(y, z)+\ldots, \\
f(z \mid \epsilon, \tilde{\epsilon})=f^{(0)}(z \mid \epsilon, \tilde{\epsilon})+f^{(1)}(z \mid \epsilon, \tilde{\epsilon})+\ldots, & c_{2}(z \mid \epsilon, \tilde{\epsilon})=c_{2}^{(0)}(z \mid \epsilon, \tilde{\epsilon})+c_{2}^{(1)}(z \mid \epsilon, \tilde{\epsilon})+\ldots
\end{aligned}
$$

A few comments are in order.

- The term $f^{(0)}=0$ because the conformal block for the 3 -point HHH function equals 1 .
- The zeroth order accessory parameter is also zero, $c_{2}^{(0)}=0$.

The Fuchsian equation in the lowest orders takes the form

$$
\left[\frac{d^{2}}{d y^{2}}+T^{(0)}(y)\right] \psi^{(0)}(y, z)=0, \quad\left[\frac{d^{2}}{d y^{2}}+T^{(0)}(y)\right] \psi^{(1)}(y, z)=-T^{(1)}(y, z) \psi^{(0)}(y, z)
$$

where
$T^{(0)}(y)=\frac{\epsilon_{1}}{y^{2}}+\frac{\epsilon_{3}}{(1-y)^{2}}+\frac{\epsilon_{1}+\epsilon_{3}-\epsilon_{4}}{y(1-y)}, \quad T^{(1)}(y, z)=c_{2} \frac{(1-z) z}{y(1-y)(y-z)}+\frac{\epsilon_{2}}{(y-z)^{2}}+\frac{\epsilon_{2}}{y(1-y)}$
Note that $T^{(1)}(y, z)$ is indeed the first order correction because $c_{2}=\mathcal{O}\left(\epsilon_{2}\right)$.

First-order solution $\left(\Delta_{3}=\Delta_{4}\right)$

0 -th order. The Fuchsian equation can be reduced to the hypergeometric equation solved by

$$
\psi_{ \pm}^{(0)}(y)=(1-y)^{\frac{1+\alpha}{2}} y^{\frac{1 \pm \beta}{2}} F_{ \pm}(\alpha, \beta \mid y)
$$

where the hypergeometric functions are given by

$$
F_{ \pm}(\alpha, \beta \mid y)={ }_{2} F_{1}\left(\frac{1 \pm \beta}{2}, \frac{1 \pm \beta}{2}+\alpha, 1 \pm \beta, y\right)
$$

and $\alpha=\sqrt{1-24 \Delta_{4} / c}, \beta=\sqrt{1-24 \Delta_{1} / c}$, and $0<\alpha, \beta<1$
1 -st order. Using the method of variation of parameters we find the first order correction,

$$
\psi_{ \pm}^{(1)}(y, z)=\psi_{+}^{(0)}(y) \int d y \frac{\psi_{-}^{(0)} T^{(1)}(y, z) \psi_{ \pm}^{(0)}}{W}-\psi_{-}^{(0)}(y) \int d y \frac{\psi_{+}^{(0)} T^{(1)}(y, z) \psi_{ \pm}^{(0)}}{W}
$$

where the Wronskian is given by $W=\frac{\sin \pi \beta}{\pi}$. Thus, the first-order solution reads as

$$
\psi_{ \pm}(y, z)=\psi_{ \pm}^{(0)}(y, z)+\psi_{ \pm}^{(1)}(y, z)
$$

It is parameterized by the background dimensions (α, β) and depends on the indeterminate accessory parameter c_{2}.

CFT result

- The accessory parameter

$$
c_{2}=\epsilon_{2}\left[\frac{1+\alpha}{1-z}-\frac{1}{z}-\frac{d \log \left(F_{+} F_{-}\right)}{d z}\right]
$$

- The 4-point HHHL classical block

$$
f\left(z \mid \alpha, \beta, \epsilon_{2}\right)=-\epsilon_{2}\left(\log (1-z)^{1+\alpha}+\log z+\log F_{+}(\alpha, \beta \mid z)+\log F_{-}(\alpha, \beta \mid z)\right)
$$

AdS dual : Bañados metric

In the $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ correspondence, the locally AdS_{3} geometry created by heavy insertions of the boundary CFT can be described in the Bañados form (Bañados, 1998)

$$
d s^{2}=R^{2}\left(-H d z^{2}-\bar{H} d \bar{z}^{2}+\frac{u^{2}}{4} H \bar{H} d z d \bar{z}+\frac{d u^{2}+d z d \bar{z}}{u^{2}}\right),
$$

with $u \in[0, \infty)$ and $z, \bar{z} \in \mathbb{C}$ being local coordinates, the radius is R. Arbitrary (anti)holomorphic functions $H=H(z)$ and $\bar{H}=\bar{H}(\bar{z})$ can be interpreted as components of the holographic CFT_{2} energy-momentum tensor

$$
T(z)=\frac{c}{6} H(z),
$$

where the central charge is $c=3 R / 2 G_{N}$. Under $z \rightarrow w(z)$ it transforms in the standard fashion as

$$
T(z)=\left(w^{\prime}\right)^{2} T(w)+\frac{c}{12}\{w, z\}, \quad \text { where } \quad\{w, z\}=\frac{w^{\prime \prime \prime}}{w^{\prime}}-\frac{3}{2}\left(\frac{w^{\prime \prime}}{w^{\prime}}\right)^{2}
$$

where the prime denotes differentiation with respect to z.

AdS dual: Poincare metric

\# Let us find a map

$$
z \rightarrow w(z) \quad \text { such that } \quad H(w(z))=0
$$

Away from singularities it would correspond to pure AdS_{3} in the Poincare coordinates (Asplund et al. 2014). This can be achieved provided that

$$
H(z)=\frac{1}{2}\{w, z\} .
$$

The solution to the above equation can be represented as the ratio of two independent solutions to the auxiliary Fuchsian equation

$$
\psi^{\prime \prime}+H \psi=0
$$

This is the Schwarz map

$$
w(z)=\frac{A \psi_{1}(z)+B \psi_{2}(z)}{C \psi_{1}(z)+D \psi_{2}(z)}, \quad A D-B C \neq 0
$$

where $\psi_{1,2}$ are two independent Fuchsian solutions, and $A, B, C, D \in \mathbb{C}$ parameterize the Möbius transformation of $\psi_{1}(z) / \psi_{2}(z)$.
In the large-c regime the function H can be identified with the classical energy-momentum tensor arising in the zeroth-order Fuchsian equation of the monodromy method, i.e.,

$$
H(z \mid \mathbf{z}) \equiv T^{(0)}(z \mid \mathbf{z}),
$$

where the set of singular points \mathbf{z} is the locations of the background operators.

AdS dual: Roberts solution

The boundary map $z \rightarrow w(z)$ can be extended to the whole three-dimensional space, $w=w(z, \bar{z}, u), \bar{w}=\bar{w}(z, \bar{z}, u)$, and $v=v(z, \bar{z}, u)$, such that the resulting metric describes the Poincare patch

$$
d \tilde{s}^{2}=\frac{d v^{2}+d w d \bar{w}}{v^{2}}
$$

The explicit coordinate transformation reads (Roberts, 2012)

$$
w(z, \bar{z}, u)=w(z)-\frac{2 u^{2} w^{\prime}(z)^{2} \bar{w}^{\prime \prime}(\bar{z})}{4 w^{\prime}(z) \bar{w}^{\prime}(\bar{z})+u^{2} w^{\prime \prime}(z) \bar{w}^{\prime \prime}(\bar{z})} \quad v(z, \bar{z}, u)=u \frac{4\left(w^{\prime}(z) \bar{w}^{\prime}(\bar{z})\right)^{3 / 2}}{4 w^{\prime}(z) \bar{w}^{\prime}(\bar{z})+u^{2} w^{\prime \prime}(z) \bar{w}^{\prime \prime}(\bar{z})}
$$

The length of a geodesic line in the Poincare coordinates:

$$
\mathcal{L}_{A d S}=R \log \frac{\left(w_{1}-w_{2}\right)\left(\bar{w}_{1}-\bar{w}_{2}\right)}{v_{1} v_{2}}
$$

In the Euclidean case the Poincare patch covers the whole global AdS_{3} space

$$
d \hat{s}^{2}=\frac{d \tau^{2}+d \rho^{2}+\sin ^{2} \rho d \phi^{2}}{\cos ^{2} \rho}
$$

through the coordinate change

$$
w=e^{\theta} \sin \rho, \quad v=e^{\frac{\theta+\bar{\theta}}{2}} \cos \rho
$$

where $\theta=\tau+i \phi$ and ρ are coordinates of the global AdS_{3} (rigid cylinder). The conformal boundary is at $\rho=\pi / 2$. There is a conformal map $\theta=\log w$ from the boundary (w, \bar{w})-plane to the boundary $(\theta, \bar{\theta})$-cylinder.

4-point HHHL block as geodesic length

- The classical energy-momentum tensor is given by

$$
T^{(0)}(z)=\frac{\epsilon_{1}}{z^{2}}+\frac{\epsilon_{3}}{(z-1)^{2}}+\frac{\epsilon_{1}}{z(1-z)},
$$

where ϵ_{1} and $\epsilon_{3}=\epsilon_{4}$ are classical dimensions of the heavy background operators at $(0,1, \infty)$.

- The resulting space defined by the Bañados metric will be denoted as $\mathrm{AdS}_{3}[3]$. There are three lines of coordinate singularities: $(z, \bar{z}, u)=(0,0, u),(z, \bar{z}, u)=(1,1, u),(z, \bar{z}, u)=(\infty, \infty, u)$ for any $u \in \mathbb{R}_{+}$.
- Choosing the Fuchsian solutions as $\psi_{1,2}(z)=\psi_{ \pm}^{(0)}(z)$ we find the conformal mapping,

$$
w(z)=z^{\beta} \frac{{ }_{2} F_{1}\left(\frac{1+\beta}{2}, \frac{1+\beta}{2}+\alpha, 1+\beta, z\right)}{{ }_{2} F_{1}\left(\frac{1-\beta}{2}, \frac{1-\beta}{2}+\alpha, 1-\beta, z\right)}
$$

This is the Schwarz triangle function that maps the (z, \bar{z})-plane onto some curvilinear triangle on the (w, \bar{w})-plane.

Comments:

\# The conformal mapping is defined up to Möbius transformations. The Möbius group acts triply transitively and conformally.
\# By construction, the Schwarz function has three singular points $z=0,1, \infty$ identified with background operator locations. The angle in the point $w(0)$ is equal to $\pi \beta$, the second angle in $w(1)$ is equal to $-\pi \alpha$, and the third angle in $w(\infty)$ is equal to $\pi \alpha$. We have angle deficit/excess.

- Let us consider now the HHHL conformal block function in three boundary coordinate systems: (z, \bar{z})-plane, (w, \bar{w})-domain, $(\theta, \bar{\theta})$-cylinder

Assuming that we do some coordinate change $x \rightarrow x(y)$ the transformation formula is

$$
f\left(x \mid \alpha, \beta, \epsilon_{2}\right)=f\left(y(x) \mid \alpha, \beta, \epsilon_{2}\right)+\epsilon_{2} \log y^{\prime}(x)
$$

The block function in different coordinate systems is given by

$$
f\left(w \mid \alpha, \beta, \epsilon_{2}\right)=-\epsilon_{2} \log w, \quad f\left(\theta \mid \alpha, \beta, \epsilon_{2}\right)=0
$$

- Let us consider $\mathrm{AdS}_{3}[3]$ in the Poincare coordinates and fix two points: the boundary insertion of the perturbative operator $(w, \bar{w}, \varepsilon)$ and the distinguished point in the bulk $(0,0,1)$, where the cut-off $\varepsilon \rightarrow 0$. The distinguished point belongs to the trivalent graph connecting the background heavy insertions: two at infinities, one in a finite region of the conformal boundary. The geodesic length is

$$
\mathcal{L}_{A d S_{3}[3]}(w, \bar{w})=R(\log w+\log \bar{w})-R \log \varepsilon,
$$

The (holomorphic) block/length relation is given by

$$
f\left(w \mid \alpha, \beta, \epsilon_{2}\right) \sim-\frac{\epsilon_{2}}{R} \mathcal{L}_{\text {AdS }_{3}[3]}(w)
$$

More than three background operators

- We consider $\mathrm{H}^{n-k} \mathrm{~L}^{k}$ type correlation functions.
- Let $\mathrm{AdS}_{3}[n-k]$ be a three-dimensional space with the Bañados metric defined by the classical tensor $T(z \mid \mathbf{z})$ with $n-k$ singular points.
- The boundary Schwarz mappings and the Poincare coordinates are build using the solutions of the associated Fuchsian equation,

$$
\left[\frac{d^{2}}{d z^{2}}+T(z \mid \mathbf{z})\right] \psi(z)=0, \quad \text { where } \quad T(z \mid \mathbf{z})=\sum_{i=k+1}^{n} \frac{\epsilon_{i}}{\left(z-z_{i}\right)^{2}}+\frac{c_{i}}{z-z_{i}}
$$

where $\mathbf{z}=\left(z_{k+1}, \ldots, z_{n}\right)$ are locations of the background operators with classical dimensions ϵ_{i}, the c_{i} are respective accessory parameters.

- The resulting space $\mathrm{AdS}_{3}[n-k]$ will have $n-k$ conical defects parameterized by background conformal dimensions as can be directly seen from the Schwarz map of the (z, \bar{z})-plane to some curvilinear polygon with $n-k$ vertices on the (w, \bar{w})-plane.
- Assuming that $\epsilon_{j} / \epsilon_{i} \ll 1$ for $j=1, \ldots, k$ and $i=k+1, \ldots, n$ we can use the heavy-light expansion and introduce type $H^{n-k} L^{k}$ perturbative conformal blocks $f_{(k, n-k)}(w)$. The energy-momentum tensor arising in the zeroth order is exactly $T(z \mid \mathbf{z})$.
- It is tempting to conjecture that type $H^{n-k} L^{k}$ conformal blocks are equal to the length of dual geodesic trees in $\mathrm{AdS}_{3}[n-k]$,

$$
f_{(k, n-k)}(w \mid \epsilon) \sim-\frac{1}{R} \mathcal{L}_{A d S_{3}[n-k]}(w \mid \epsilon),
$$

where the right-hand side is the weighted length of the dual geodesic tree, and w are locations of perturbative operators in the Poincare coordinates.

Conclusion

- Up to now, the case of HHL^{n-2} type functions is fully understood.
- We considered 4-point HHHL, the next non-trivial check is 5-point HHHLL, and then n-point $H H H L^{n-3}$.
- Towards $\mathrm{H}^{n-k} \mathrm{~L}^{k}$ type functions and their duals.

