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TIMELIKE AND SPACELIKE CHARACTERISTICS OF
INCLUSIVE PROCESSES

A.N. Sissakian®, I.L. Solovtsov® and O.P. Solovtsova®

* Bogoliubov Laboratory of Theoretical Physics, JINR
b International Center for Advanced Studies at Gomel State Technical
University

We apply the nonperturbative a-expansion method to analyze
spacelike and timelike characteristics of some inclusive processes.
In particular, we show that the “experimental” D-functions corre-
sponding to the ete~ annihilation into hadrons and the inclusive
7 decay data are both in good agreement with results obtained in
the framework of the method.

1 Introduction

Perturbation theory combined with the renormalization procedure is now
a basic method for computations in quantum field theory. Perturbative
series for many interesting models including realistic models are not con-
vergent. In spite of that at small values of the coupling constant these
series may be considered as asymptotic series and could provide a useful
information. However, a specific feature of quantum field theory is that
a sufficiently complete study of the structure of a quantum field model
within the framework of perturbative approach is not enough, even in
theories with a small coupling constant.

We use the method of constructing the so-called floating or variational
series in quantum chromodynamics (see reviews [1,2]). This approach is
based on the idea of variational perturbation theory (VPT) [3], which in
the case of QCD leads to a new small expansion parameter [4,5]. Within
this method, a quantity under consideration can be represented in the
form of a series, which is different from the conventional perturbative
expansion and can be used to go beyond the weak-coupling regime [6].
This allows one to deal with considerably lower energies than in the case
of perturbation theory [7-9).

In the VPT a certain variational procedure is combined with the possi-
bility of calculating corrections to the principal contribution which allows
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the possibility of probing the validity of the leading contribution and the
region of applicability of the results obtained. At present, this idea finds
many applications in the development of various approaches, which should
enable us to go beyond perturbation theory. The a-expansion method,
which we will use here, is the nonperturbative expansion technique sug-
gested in [4, 5].

2 Variational perturbation theory in QCD

In the usual version of perturbation theory, the total action correspond-
ing to a physical system is split into a free part and a part describing
the interaction. The latter is treated as a perturbation, and the coupling
constant entering into it is viewed as the small expansion parameter. As a
rule, this treatment leads to asymptotic series which, albeit not “well be-
haved,” nevertheless widely used in physics and allow useful information
about the system in question to be extracted for weak coupling. As the
interaction constant grows, the perturbation theory becomes worse and
worse. The reason for this is understood: now the treatment of the in-
teraction term as a perturbation of the free system is no longer adequate,
since the physical system in question has properties far from those of a free
system. In order to have a method of performing calculations in this case,
it is necessary to split the total action in different way, such that the new
“interaction term” can be treated as a perturbation not only when the
coupling constant is small, but for a wider range of its value. Of course,
here one must worry about whether this procedure, which is similar to
ordinary perturbation theory, allows the possibility of calculating a main
contribution and corrections.

How is it possible to seek a functional which can be used as a per-
turbation with more justification than the usual interaction term? One
possibility, realized in variational perturbation theory (VPT) [3,10-18].
is to probe the system by using a variational type functional to study
a system’s response to a change of the trial parameters. In the VPT,
a given quantity can be approximated by constructing series, different
from those of ordinary perturbation theory, which allow quantum systems
to be studied not only in the weak-coupling region, but also far beyond
it. The VPT method allows ab initio the determination of an algorithm
for calculating corrections, therefore the effect of corrections on the main
contribution can be studied. Moreover, the VPT series is not a strict con-
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struction specified once and for all. Special parameters characterizing the
variational probe allow the convergent properties of the VPT expansion
to be controlled. Series of this type whose convergence properties can be
influenced by varying special parameters are referred to as variational or
floating series.

In the case of QCD the VPT ideology leads to a new expansion pa-
rameter a, which according to [4, 5] is connected with the initial coupling
constant g in the Lagrangian by the relation :

g? a; 1 a2

R Y

where a positive constant C plays a role of a variational parameter. As
follows from (2.1}, for any value of the coupling constant g, the expansion
parameter a obeys the inequality

0<a<l. (2.2)

While remaining within the range of applicability of the a-expansion, one
can deal with low-energy processes where g is no longer small.

The parameter C is an auxiliary parameter of a variational type, which
is associated with the use of a floating series. The original quantity, which
is approximated by this expansion, does not depend on the parameter
C. However, any finite approximation depends on it due to an inevitable
truncation of the series. Here we will fix this parameter using some further
information, coming from the potential approach to meson spectroscopy.
An important feature of the a-expansion method is the fact that its use
can ensure the reflecting the general principles of local quantum field the-
ory correct analytic properties of the running expansion parameter. An
analytic approach in QCD which combines the Q?-analyticity and renor-
malization group resummation has been proposed in [19,20]. In [21,22] it
has been argued that a requirement of the Kallén-Lehmann type analytic-
ity allows one to define a variational parameter the value of which is agreed
well with nonperturbative data coming from the meson spectroscopy.

Consider the following approximations to the renormalization group
B-function, the functions S and B), which are obtained if one takes
into consideration the terms O(a®) and O(a®) in the corresponding renor-
malization constant Zy. As has been shown in [5], C is determined by
requiring that —3®())/X tends to 1 for sufficiently large A, which gives
Cs = 4.1 and Cs = 21.5. The increase of Ci with the order of the ex-
pansion is explained by the necessity to compensate for the higher or-
der contributions. A similar phenomenon takes place also in zero- and
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one-dimensional models. The behavior of the functions — 8%)(A)/X gives
evidence for the convergence of the results, in accordance with the phe-
nomenon of induced convergence.! The behavior of the B-function at
large value of the coupling constant, —3*)())/A ~ 1, corresponds to the
infrared singularity of the running coupling: a;(Q?) ~ @~ at small Q2.
In the potential quark model this Q? behavior is associated with the linear
growth of the quark-antiquark potential.

The renormalization group 3-function of the expansion parameter a is

_ da _ 2,30 1
Ba(a) = l‘z 9 u? - C F'(a) ’

where By = 11 — 2f/3 is the one-loop coefficient of the B-function in the
usual perturbative expansion, and f is the number of active quarks, has
a zero at @ = 1 that demonstrates the existence of the infrared fixed
point of the expansion parameter and its freezing-like behavior in the
infrared region. By finding the renormalization constants in the massless
renormalization scheme with an accuracy O(a®), we find for the function

F(a)

(2.3)

2 6 18 1 624
(3) -2 _ 2 _ _ = ol —
F¥)(a) pr Rl 48 In a 111—a+ 191 In(l1 —a)+
5184 9

By solving the renormalization group equation (2.3) one finds the mo-
mentum dependence of the running expansion parameter a(Q?) as a solu-
tion of the following transcendental equation

0 = @ p{-i%— [F(a) - F(aon} . (25)

For any values of Q2, this equation has a unique solution a = a(Q?) in the
interval between 0 and 1.
By working at O(a®) one obtains a more complicated result
(%) 1 3
F = — ; J(a,b; 2.6

i=1

11t has been observed empirically [23,24] that the results seem to converge if the
variational parameter is chosen, in each order, according to some variational principle.
This induced-convergence phenomenon is also discussed in [25].
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with B = ,/(2C o), where the two-loop coefficient 8; = 102 — 3f/3, and

2 4 12 9 4 +12b + 215°
Jla,b) = T W @b (I—ai-b 5 Ina
30 — 21b (2 + b)?
with
1
r; = (28)

(bi — b;)(bi — i) |

Here indices {ijk} are {123} and cyclic permutations. The values of ¥;
are the roots of the equation v(b;) = 0, where the function ¥(a) is related
to the B-function and is

bla)=1+ ga +2(6 + a)a® + 5(5 + 3 B)a®. (2.9)

It should be stressed, in contrast to many nonperturbative approaches,
in the VPT the quantity under consideration from the very beginning is
written in the form of a series which makes it possible to calculate the
needed corrections. The VPT method thereby allows for the possibility
of determining the degree to which the principal contribution found vari-
ationally using some variational principle adequately reflects the problem
in question and determining the region of applicability of the results ob-
tained.

The possibility of performing calculations is based on the fact that the
VPT, like standard perturbation theory, uses only Gaussian functional
quadratures. Here, of course, the VPT series possesses a different struc-
ture and, in addition, some of the Feynman rules are modified at the
level of the propagators and vertices. The form of diagrams themselves
does not change, which is very important technically. The diagrams con-
tributing to the Nth order of the VPT expansion are of the same form as
those contributing to the Nth order of ordinary perturbation theory. The
variational parameters arising in the VPT method allow the convergence
properties of the VPT series to be controlled.

3 Threshold singularities

In the threshold region one cannot truncate the perturbative series. Thresh-
old singularities of the Feynman diagrams of the form (a/v)" have to be
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summarized. This resummation, performed on the basis of the nonrela-
tivistic Schrodinger equation with the Coulomb potential V(r) = —a/r,
leads to the Sommerfeld-Sakharov factor [26,27] which is related to the
wave function of the continuous spectrum at the origin. An expansion of
this factor in a power series in the coupling constant a reproduces the
threshold singularities of the Feynman diagrams in the form (a/v)*.

A description of quark-antiquark systems near threshold also requires
such type of resummation. The S-factor appears in the parametrization
of the imaginary part of the quark current correlator, the Drell ratio R(s),
‘which can be approximated in terms of the Bethe-Salpeter (BS) ampli-
tude of two charged particles xps(z) at ¢ = 0 [28]. The nonrelativis-
tic replacement of this amplitude by the wave function which obeys the
Schrodinger equation with the Coulomb potential, leads to the S-factor
with a — 4a,/3, for QCD.

In the relativistic theory the nonrelativistic approximation needs to be
modified. To use the S-factor within such a relativistic regime one usually
uses the simple substitution vy, — v with v = /1 —4m?/s. However,
the corresponding relativistic generalization of the S-factor is obviously
not unique, for there are numerous ways of expressing the nonrelativistic
velocity in terms of the relativistic energy 1/s. For a systematic relativistic
analysis of quark-antiquark systems, it is essential from the very beginning
to have a relativistic generalization of the S-factor. Here we will use a new
form for this relativistic factor proposed in [29].

The starting point of the consideration performed in [29] is the qua-
sipotential (QP) approach proposed by Logunov and Tavkhelidze [30], in
the form suggested by Kadyshevsky [31]. To find an explicit form for
the relativistic S-factor one uses a transformation of the QP equation
from momentum space into relativistic configuration space [32]. The local
Coulomb potential defined in this representation, as it has been demon-
strated by Savrin and Skachkov [33], has a QCD-like behavior in momen-
tum space. Solutions of the QP equation with the Coulomb potential have
been investigated in [34].

The possibility of using the QP approach to define the relativistic S-
factor is based on the fact that the BS amplitude, which parameterizes
the physical quantity R(s), is taken at z = 0, therefore, in particular, at
relative time 7 = 0. The QP wave function is defined as the BS amplitude
at 7 = 0, and the R-ratio can be expressed through the QP wave function
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Yqp(p) by using the relation

xes(e = 0) = [ % var(p), (3.0)

where dQ, = (dp)/[(27)3 E,)] is the relativistic three-dimensional volume

element in the Lobachevsky space realized on the hyperboloid Ez —-p=
2

m?.
The relativistic S-factor obtained in [29] has the form

S0 T txmy AW =gy O

where x is the rapidity which related to s by 2m cosh x = 1/s.

4 Smeared quantities and D-functions

It is important to determine in QCD “simplest” objects which allow one
to check direct consequences of the theory without using model assump-
tions in an essential manner. Comparison of theoretical results for these
objects with experimental data allows us to justify transparently the va-
lidity of basic statements of the theory, and make some conclusions about
completeness and efficiency of the theoretical methods used. Some single-
argument functions which have a straightforward connection with exper-
imentally measured quantities can play the role of these objects. A the-
oretical description of inclusive processes can be expressed in terms of
functions of this sort. Let us mention among them moments M, (Q?)
of the structure functions in inelastic lepton-hadron scattering and the
hadronic correlator II(s) (or the corresponding Adler D-function), which
appear in the processes of e*e~ annihilation into hadrons or the inclusive
decay of the T lepton.

The cross-section for ete™ annihilation into hadrons or its ratio to the
leptonic cross-section, R(s), have a resonance structure that is difficult to
describe, at the present stage of a theory, without model considerations.
Moreover, the basic method of calculations in quantum field theory, per-
turbation theory, becomes ill-defined due to the so-called threshold singu-
larities. These problems can, in principle, be avoided if one considers a
“smeared” quantity [35]

Ra(s) = % /0 - ds'(s—_f,(;'—)JrA—z. (4.12)
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However, a straightforward usage of conventional perturbation theory to
calculate Ra is not possible. Indeed, if the QCD contribution to the
function R(s) in Eq. (4.12) is, as usual, parametrized by the perturbative
running coupling that has unphysical singularities, it is difficult to define
the integral on the right-hand side. Moreover, the standard method of the
renormalization group gives a Q?-evolution law of the running coupling
in the Buclidean region, and there is the question of how to parame-
trize a quantity, for example, R(s), defined for timelike momentum trans-
fers [36,37]. To perform this procedure self-consistently, it is important to
maintain correct analytic properties of the hadronic correlator which are
violated in perturbation theory. Within the nonperturbative a-expansion
1t is possible to maintain such analytic properties and to self-consistently
determine the effective coupling in the Minkowskian region [9]. Note,
that the analytic approach to QCD [19, 20, 38] also leads to a well-defined
procedure of analytic continuation [39, 40].

Another function, which characterizes the process of ete~ annihilation
into hadrons and can be extracted from experimental data, is the Adler
function

2 2 2 R(S)
D(@Y) = -@ 5 =@ [ ds o
The D-function defined in the Euclidean region for a positive momentum
@? is a smooth function, and thus it is not necessary to apply any “smear-
ing” procedure in order to be able to compare theoretical results with
experimental data. An “experimental” curve for this function which is re-
lated to the process of ete~ annihilation into hadrons has been obtained
in [41]. We will also consider the “light” D-function corresponding to the
T decay data.

For massless quarks, one can write down the timelike (Minkowskian)
quantity R(s) in the form

Rs) =334 [1+roX"(9)] (419)

(4.13)

where the sum runs over quark flavors, ¢; are quark charges and rg is the
first perturbative coefficients that is renormalization-scheme independent.
This expression includes the effective coupling defined in the Minkowskian
region or, as we will say, in the s-channel, which is reflected in the subscript
s. It should be stressed that, as it has been argued from general principles,
the behavior of the effective couplings in the spacelike and the timelike
domains cannot be symmetric [42].
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Within the a-expansion method the s-channel running coupling can be
written as

1

M(s) = 5= -27 [#9(as) = ¢9(a) ], (415)
where ay obey the equation
F(az) = F(ao) + 260 (1 = + 17r) : (4.16)
c\ &
At the level O(a®), the function ¢(a) has the form
¢ (a) = —4lna — %1 ia + ?—g—ln(l —a)+ %ln (1 + ga) . (4.17)

Similarly, a more complicated expression for the O(a®) level, we will use,
can be derived.

The convenient way to incorporate quark mass effects is to use an
approximate expression [35]

R(s) = 3Zf: g; O(s — 4m}) Ry(s), Ry(s) = T(vy) [1 + g(v)rs(s)](4.18)

where
3—? dr [r 34v/m 3
T(v)=v—s3 ’g(”)_?[%_ 4 (5'_4_«)]
4 2
vy =11 - ’zf (4.19)

The quantity r4(s) is defined by the s-channel effective coupling Ag(s).
The smeared quantity (4.12) and the D-function (4.13) can be calculated
by using (4.18) in the corresponding integrands. For MS-like renormaliza-
tion schemes, one has to consider some matching procedure. To perform
this matching procedure, we can require the s-channel running coupling
and its derivative to be continuous functions in the vicinity of the thresh-
old [9,43].

To take into account the threshold resummation factor, we, follow-
ing [44], modify the expression (4.18) by using the ansatz

R(s) = T() [S00 - X0 +9@)r@)] . (@20
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Fig. 1: The plot of the “light” D-function. The experimental curve corre-
sponding to ALEPH data is taken from [47].

As the mass m — 0, this expression leads to Eq. (4.14). We will use
Eq. (4.20) in our analysis.

The non-strange vector contribution for the inclusive 7-lepton decay
can be described in analogy with the ete~ annihilation into hadrons
process. Using the theoretical expression for R,-ratio [45]

RO /M ds ( A;?) (1+%) R(s), (4.21)

where R© corresponds to the parton level, and measured value RY =
1.775 + 0.017 [46], as an input, we extracted the value of parameter ao in
Eq. (4.16) at the 7 mass scale, Qo = M.

The “light” D-function with three active quarks is shown in Fig. 1,
where we draw the experimental curve, as dashed line, which was ex-
tracted in [47] from the ALEPH data, and our theoretical result (solid
line) obtained by using the following effective masses of light quarks m, =
mq = 260 MeV and m, = 400 MeV. Virtually, the same values were used
in [38,48-50] to describe the region of low lying mesons. These values are
close to the constituent quark masses and incorporate some nonperturba-
tive effects. The shape of the infrared tail of the D-function is sensitive
to the value of these masses.

In Fig. 2, we have presented the smeared function Ra(s) for A =
3 GeV?. We use the same masses for the light quarks as before and
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Fig. 2: The smeared quantity Ra(s) for A = 3 GeV®. The solid curve is
our result. The smeared experimental curve is taken from [51,52].
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Fig. 3: The D-function for the process of ete™ annihilation into hadrons.
The solid curve is our result for five active quarks. The experimental curve
is taken from [41].
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the following masses for heavy quarks m, = 1.3 GeV and m; = 4.7 GeV.
The smeared Ra(s) function for A ~ 1-3 GeV? is less sensitive to the
value of light quark masses as compared with the infrared tail of the D-
function. The result for the D-function of the ete~-annihilation process
which includes both the light and heavy quarks is plotted in Fig. 3.

5 Conclusions

The method we used here is the non-perturbative approach based on an
idea of variational perturbation theory which combines an optimization
procedure of variational type with a regular method of calculating cor-
rections. In the case of QCD the non-perturbative expansion parame-
ter, a, obeys an equation whose solutions are always smaller than unity
for any value of the original coupling constant. An important feature of
this approach is the fact that for sufficiently small value of the running
coupling the a-expansion reproduces the standard perturbative expan-
sion, and, therefore, the perturbative high-energy physics is preserved. In
moving to low energies, where ordinary perturbation theory breaks down
(@, ~ 1), the parameter a remains small and we still stay within the region
of applicability of the a-expansion method.

To summarize the threshold singularities we have used the new rela-
tivistic form of the threshold resummation factor. This relativistic factor
could have a significant impact in interpreting strong-interaction physics.
In many physically interesting cases, R(s) occurs as a factor in an in-
tegrand, as, for example, for the case of inclusive 7 decay, for smearing
quantities, and for the Adler D-function. Here the behavior of S at in-
termediate values of v becomes important. In the nonrelativistic limit,
v < 1, the relativistic S-factor reproduces the nonrelativistic result. In
the ultrarelativistic limit, the bound state spectrum vanishes as m — 0
because the particle mass is the only dimensional parameter. This fea-
ture reflects an esséntial difference between potential models and quantum
field theory, where an additional dimensional parameter appears. One can
conclude that within a potential model, the S-factor which corresponds
to the continuous spectrum should go to unity in the limit m — 0. Thus,
the relativistic resummation factor S obtained here reproduces both the
expected nonrelativistic and ultrarelativistic limits and corresponds to a
QCD-like Coulomb potential.

The Minkowskian and Euclidean physical quantities obtained from the
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ete~ annihilation and 7 decay experimental data that have been consid-
ered here are the smeared “timelike” function Ra(s) and the “spacelike”
D-functions. The experimental D-function turned out to be a smooth
function without traces of the resonance structure of R(s). One can expect
that this object more precisely reflects the quark-hadron duality and is
convenient for comparing theoretical predictions with experimental data.
Note here that any finite order of the operator product expansion fails
to describe the infrared tail of the D-function. Within the framework
of nonperturbative a-expansion technique with the relativistic threshold
factor, we have obtained a good agreement between our results and the
experimental data down to the lowest energy scale both for Minkowskian
and Euclidean quantities.

The authors would like to thank Professor D.V. Shirkov for interest in
the work and valuable discussions.
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