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The paper contains the discussion of the criteria of applicability of statistical methods in the multiple
production processes. The main attention is devoted to the thermalization phenomena, while the energy
is uniformly distributed over the dynamical degrees of freedom and the energy correlators are relaxed. It is
argued that this condition must be satisfied in the deep asymptotics over multiplicity and the “very high
multiplicity” (VHM) domain is defined as the region where this thermalization condition is satisfied but
for moderate multiplicities. The model independent classification of the multiplicity asymptotics and their
physical content is offered. It is shown explicitly that existing multiple production models are not able to

predict the range of the VHM domain.

1. INTRODUCTION

It is accepted now that the main road of the
particle physics development is the Standard Model.
However, it is obvious to expect the existence of other
ways, less important at first sight but permitting to
observe new interesting phenomena. The multiple
production phenomenon can be one of them.

But the multiple production phenomena seem to
be “uninteresting” because of a very large number
of involved degrees of freedom. This is definitely so
and it must be mentioned also that to all appearances
a gap between the strict theory based on the non-
Abelian gauge symmetry and the obvious hadron
multiple production phenomenology never would be
surmounted for this reason. We will return to this
question in Section 3.

Then the attempts to find the kinematical con-
dition(s), where the multiple production process be-
comes “describable,” seem crucial. The most popular
condition is based on the asymptotic freedom. It
assumes hardness of the interaction. This allows to
investigate only the “local” properties of the hadron.

We are discussing another possibility. In this con-
nection let us remember that the statistical physics
deals very well with the enormous number of degrees
of freedom (particles). It is natural to engage this
rich experience to describe the multiple production
phenomenon.

The main attention will be concentrated on the
equilibrium, since, presumably, only it can be de-
scribed completely. The appearance of such a state
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in the hadron inelastic collisions will be considered as
a phenomenon which can be examined experimentally
and may be predicted theoretically.

The multiple production may be considered as the
process of colliding particles kinetic energy dissi-
pation into the mass of produced particles. To use
this interpretation, one must consider the final-state
particles as the “probes”, through which the mea-
surement of interacting fields state is performed [1].
Then, one can consider the multiplicity as a measure
of entropy S. One may expect, therefore, that in the
very high multiplicity (VHM) domain the entropy
exceeds its maximum. For this reason we will define
here the VHM final state through the equilibrium
condition.

Using the thermodynamical terminology, we in-
vestigate in this case the production and properties
of the comparatively “cold” final state of interacting
fields. One may expect that in this condition the
system becomes “calm.” This is one more argument
why we expect the equilibrium in the VHM domain.

In the conclusion, we consider the VHM pro-
cesses as the only ones, the complete theory of which
can be constructed. Discussing the thermalization
phenomenon, we actually try for the condition, in the
frame of which this theory would work.

The phenomenology and an idea of a rough
(statistical) description of the VHM processes were
formulated in our first publications [2]. Later we
accumulated our main ideas on the VHM theory in
the review paper [3]. The definite connection with the
idea of N.N. Bogolyubov concerning transition to the
equilibrium was described in [4].

The preferable processes at n ~ 1 are saturated by
excitation of the nonperturbative degrees of freedom.
These soft processes are described by the creation
of quarks and gluons from the vacuum: the kinetic



24

motion of partons leads to increasing, because of
confinement phenomenon, polarization of the vacuum
and in result to its instability concerning quarks
creation [5]. In other words, there is a long-range
correlation among hadrons constituents at n ~ 7.

The most popular field-theoretical description -of
statistical systems at a finite temperature is based
on the formal analogy between imaginary time and
inverse temperature 3 (8 = 1/T') [6]. This approach
is fruitful, if we did not want to clear up the dynamical
aspects [7, 8]. The further attempts led to the real-
time finite-temperature field theory [9—13].

2. CLASSIFICATION OF ASYMPTOTICS
OVER MULTIPLICITY

We will use the following quantitative definition
of discussed high energy VHM hadron reactions.
Let emax be the energy of the fastest particle in the
given frame and let E be the total incident energy
in the same frame. Then the difference (E — gmax) is
the energy spent on the production of less energetic
particles. It is useful to consider the inelasticity
coefficient

' €max

K=1-—- 5

It defines the portion of spent energy. Therefore, we
wish to consider processes with

1-kx1,

<1. (2.1)

(2.2)

and the produced particles would have the compara-
tively small energies. Using the energy conservation
law, the produced hadrons multiplicity n is defined by
inequality:

n(l—k) > 1. (2.3)
So, (2.2) means roughly the VHM region.

Following the natural at finite CM energies, /s,
condition:

we will assume that -
1-&>my/E. (2.5)

Therefore, the kinetic energy of produced particles in
our processes would not be arbitrarily small.

It seems useful from the very beginning to elab-

orate a general point of view on the processes in the
VHM domain. This would allow without going into
details to estimate the possibility of observation of
new phenomena.
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2.1. The “Thermodynamical” Limit
We will introduce the generating function:

Mmax

T(s,2) = Z 2"on(s),
n=1

8=(p: +p2)2 >>‘m2a Tmax = \/g/m

This step is natural, since the number of particles is
not conserved in our problem. Thus, the total cross
section and the averaged multiplicity will be:

otot(s) = T'(s, 1) = Zan(s),

(2.6)

(2.7)

(s) = 30 n(0n(s)/o10(s)) = - ]nT(s, 2

n

z=1

At the same time, the inverse Mellin transform
gives

Oy = = (2.8)
" nldan 2=0
1 dz
2w [ ol T(s,2) =
1

dz
i P exp(—nlinz +InT(s, 2)).

The essential values of z in this integral are defined by
the equation (of state):

n= z(% InT(z,s).

Taking into account the definition of the mean mul-

(2.9)

tiplicity a(s), given in (2.7), we can conclude that .
the solution of (2.9) z. is equal to one at n = a(s).

Therefore, z > 1 is essential in the VHM domain.

The asymptotics over n (n < nmpay is assumed) are
governed with exponential accuracy by the smallest
solution z, of (2.9) because of the asymptotic estima-
tion of the integral (2.8):

on(8) ox e MInze(n.s) (2.10)

Let us assume that in the VHM region and at

high energies, /s — oo, there exists such a value of °

ze(n, s) that we can neglect in (2.6) the dependence
on the upper boundary np,y. This formal trick with
the thermodynamical limit allows to consider T(z,s)
as the nontrivial function of z for the finite s.

Then, it follows from (2.9) that

z(n,s) > zg atn € VHM, (2.11)

where 24(s) is the leftmost singularity of T(z,s) in
the right half plane of complex 2. One can say that
the singularity of T'(z, 5) attracts z.(n, s)ifn € VHM.
We will put this observation in the basis of VHM
processes phenomenology.
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ON THERMALIZATION OF INELASTIC PROCESSES

It must be underlined once more that actually
T(z,s) is regular for the arbitrary finite z if s is finite.
But z.(n, s) behaves in the VHM domain as if it is
attracted by the (imaginary) singularity z,. And just
this z;(n, s) defines o, in the VHM domain. We want
to note that actually the energy /s should be high
enough to use such an estimation. .

2.2. Classes and Their Physical Content

One can notice from the estimation (2.10) that o,
weakly depends on the character of the singularity.
Therefore it is enough to classify only the possible
positions of z;. We may distinguish the following
possibilities:

A z=1: o,>0(™), (2.12)
(B) 2s=00: 0,<O0(e™),
(C) 1<zs<o00: o0,=0(""),

i.e., following this classification, the cross section may
decrease slower (A), faster (B), or as (C) an arbitrary
power of e~™. It is evident, if all these possibilities
may be realized in nature, then we should expect the
asymptotics (A).

The cross section oy, has a meaning of the n par-
ticle partition function in the energy representation.
Then T(z, s) should be the “big partition function.”
Taking this interpretation into account, as follows
from Lee—Yang theorem, T'(z, s) cannot be singular
at|z] < 1.

At the same time, the direct calculations based on
the physically acceptable interaction potentials give
the following restriction from above: ' :

(D) o, <O(1/n). (2.13)

This means that ,, should decrease faster than any
power of 1/n. It should be noted that our classification
predicts rough (asymptotic) behavior only.

One may notice (2.10) that

_1, on(s)

) = In z¢(n, s) + O(1/n).

(2.14)

- Using thermodynamical terminology, the asymp-
 totics of oy, is governed by the physical value of the
- activity z,(n, s). One can introduce also the chemical

potential pc(n, s). It defines the work needed for one

 particle creation, In z.(n, s) = B.(n, 8)uc(n, s), where
- &(n,s) =1/B(n,s) is the produced particles mean

energy. So, one may introduce the chemical potential
if and only if B(n, s) and 2.(n, s) may be used as the
“rough” variables.

Then the above formulated classification has a
natural explanation. So, the class (A ) may be realized
if and only if the system is unstable. In this case
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zc(n, s) is the decreasing function of n. (B) means
that the system is stable against particles production
and the activity z.(n, s) is the increasing function of n.
The asymptotics (C) cannot be realized in equilibrium
thermodynamics.

We will show that the asymptotics (B) reflects
the multiperipheral processes kinematics: created
particles form the jet moving in the CM frame with
different velocities along the incoming particles di-
rections, i.e., with restricted transverse momentum.
The asymptotics (A) assumes the condensation-
like phenomena. The third-type asymptotics (C)is
predicted by stationary Markovian processes with the
pQCD jets kinematics.

This interpretation of classes (2.12) allows to
conclude that we should expect reorganization of
production dynamics in the VHM region: the soft
channel (B) of particle production should yield to the
hard dynamics (C), if the ground state of the inves-
tigated system is stable against particle production.
Otherwise, we will have asymptotics (A).

Let us consider now in detail the physical content
of this classification.

(A) 25 = 1. It is known that the singularity z, = 1
reflects the first-order phase transition [14}. To find o,
for this case, we would adopt Langer’s analysis [15].
Introducing the temperature 1/8 instead of total
energy /s we can use the isomorphism with Ising
model. For this purpose we divide the space volume
into the cells and if there is a particle in the cell we will
write (—1). In the opposite case it will be (+1). It is the
model of “lattice gas” well described by Ising model.
We can regulate the number of down-looking spins,
i.e., the number of created particles, by the external
magnetic field H. Therefore, 2 = exp{—GH} and H
is the chemical potential.

One can find the energy representation using the
Fourier transformation: '

o) = [ 2R, (@215)
r

where the contour I is chosen along the complex axis.

The corresponding partition function in the con-
tinuous limit [15] (see also [16]) has the form:

R(ﬂ,z)=/Duexp(—/dzx
x {%(?ﬂ)? —eu® + op - /\u}>,

where e~ (1 — 3./8) and A ~ H, with critical tem-

(2.16)

" perature 1/4,. -

If 8. > (3, there is no phase tr;'«msition and the
potential has one minimum at u = 0. But if 3, <B,
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there are two degenerate minima at g4+ = +1/€¢/20
if A=20. Switching on H < 0 the left minimum at

p— ~ —+/€/2a becomes absolute and the system will
tunnel into this minimum (see also [17]). This process
describes particles creations as a process of spins
overturnings.

The Eq. (2.9) givesat n — oo
In 2. ~n~13 > 0. |
As aresult,
on ~ e > 0(e™),

i.e., decreases slower than e~™. The semiclassical
calculation shows that the functional determinant
is singular at H=0. It must be underlined that
in the used Ising model description the chemical
potential deforms the ground state. Consequently,
the semiclassical approximation is applicable since
In z, <« 1, i.e., since the processes of spin overturnings
are rear at high multiplicity region. It is easy to
show in this approximation [15] that the functional
determinant is singularat H = 0, i.e.,at z = 1.

Note that z. decreases to one with n. This unusual
phenomenon must be explained. The mechanism of
particles creation considered above describes “the
fate of false vacuum” [17]. In the process of decay of
the unstable state the clusters of the new phase of size
X are created. If the cluster has dimension X > X,
its size increases since the volume energy (~X3) of
the cluster becomes better than the surface tension
energy (~X?). This condition defines the value of
X.. The “critical” clusters wall will accelerate, i.e.,
the work needed to add one particle into the cluster
decreases with X > X,. This explains the reason why
2. decreases with n. Notice here that, at a given
temperature, In z. is proportional to Gibbs free energy
per one particle.

The described mechanism of particles creation as-
sumes that we have prepared the equilibrium system

in the unstable phase at p ~ +4/€/2a, and going

to another state at 4 ~ —y/€/2a the system creates
the particles. The initial state may be the QGP and
final state may be the hadrons system. Therefore, we
must describe the way how the quarks system was
prepared.

Following the Lee—Yang’s picture of the first-
order phase transition [14, 16}, there is no transition
in a finite system (the partition function can not
be singular for finite nyax). This means that the
multiplicity (and the energy) must be high enough to
see the described phenomena.

(B) 2, = 00. Let us return to the integral (2.16)

to investigate the case §. > B. In this case the
potential has one minimum at p = 0. The external

a >0,
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field H, creates the mean field gz = z(H), and the
integral (2.16) should be calculated expanding it near
p = fi. As aresult, in the semiclassical approximation
(2 increase with increasing n),

In R(3, z) ~ (In 2)*/3.

4 e, op <

This gives InZ~n3 and lno, ~—-n
< O(e™).

There is also another possibility to interpret the
considered case (B). For this case we can put

InT(z,5) /010 = 7(s)(z = 1) + O((z — 1)?) (2.17)

at |z—1/ < 1. The experimental distribution of
InT(z,8) for various energies shows that the
contributions of O((z —1)?) terms increase with

energy [1]. It is assumed in the Born approximation
that

Int(z,s) = n(s)(z — 1).

There are various interpretations of this series, e.g.,
the multiperipheral model, the Regge pole model, the
heavy color strings model, the QCD multiperipheral
models, etc. In all these models 7i(s) = b; + bz lns,
be > 0. The second ingredient of hadrons “Standard
Model” is the assumption that the mean value of cre-
ated particles transfers momentum (k) = const, i.e.,
is the energy (and multiplicity) independent quantity.
[t can be shown that under these assumptions:

InT(z,8)/01t = Z cn(8)(z — 1)7,

c1 =n,

(2.18)

is regular at finite values of z [1] and is able to
give predictions confirmed by experiments. Insert-
ing (2.18) into (2.9), we find, taking into account
regularity of T'(z,s) that Z(n,s) is the increasing
function of n. Consequently,

on <0(e™)
for hadrons in the “Standard Model.”

(2.19)

Notice also that the “Standard Model” has a finite

range of validity: beyond n ~ 72 the model must be
changed since it is impossible to conserve (k) =
= const at higher multiplicities [18].

(C)1 < z, < 00. Let us assume now thatat z > 1

z—1\7"
T(z,8)~|1- , v>0. (2.20)
Ze—1
Then, using the normalization condition,

(0T (2,8)/0z)|,=1 = 71;(s) we can find that z.(s) =
=1+ v/n;(s). The singular structure (2.20) is
impossible in the “Standard Model” because of
the condition (k) = const. But if |z — 1<« 1 we
have estimation (2.17). The difference between the
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“Standard Model” and (C) is seen only at 1 — (2 —
-1)/(z. — 1) < 1, i.e., either in the asymptotics over
n or in the asymptotics over energy. The singular
structure is familiar for “logistic” equations of QCD
jets, e.g., [19].

In the considered case 2z, = z. + O(#;/n) and at
high energies (71;(s) > 1)

On~e T = O(e™). (2.21)

Therefore, comparing (2.19) and (2.21) we can
conclude that at sufficiently high energies, i.e., if
fi; > @i and fij K Nmay, where 0 is the “Standard
Model” mean multiplicity, the mechanism (C)
must dominate in the asymptotics over n.

It is the general, practically model independent,
prediction. From the experimental point of view it
has important consequence that at high energies
there is a wide range of multiplicities where the
“Standard Model” mechanism of hadrons production
is negligible. In other words, the cold colored final
state of high multiplicity processes is the dynamical
consequence of jets and “Standard Model” mech-
anisms. At transition region between the “soft” of
“Standard Model” and “hard” of jets one can expect
the “semi-hard” processes of minijets dominance.

The multiplicity distribution in jets has an inter-
esting property noted many decades ago by Volterra
in his mathematical theory of populations [20]. In
our terms, if the one-jet partition function has the

singularity at zél)(s) =1+ v/n;(s) then the two-jet
partition function must be singular at

@ (g) = i 1
and so on. Therefore, at high energies and n > 7;(s)
the jets number must be minimal (with exponential
accuracy). This means that at n — oo the processes
of hadrons creation have a tendency to be Markovian
(with increase of mean transverse momentum (k))
and only in the last stage the (first order) phase
transition (colored plasma) — (hadrons) may be seen.
One can say that in the asymptotics over n we
consider the process of thermalization which is so fast
that the usual confinement forces are “frozen” and
do not play important role in the final colored state
creation.

3. THERMALIZATION CONDITIONS

The following sign of the “equilibrium” would be
considered. First of all, it is intuitively evident that the
thermal equilibrium means the uniform distribution
of the energy over all degrees of freedom. Then the
system is in a macroscopic thermal equilibrium if the
energy flows in it are relaxed [1]. On the other hand,
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the condition of vanishing of the energy correlators
and the condition of relaxation of the macroscopic
energy flows seem equivalent since the distant points
of the macroscopic energy flow should be correlated.
Then the relaxation of the flow would lead to the
smallness of the “mean” value of the correspond-
ing correlator. This conclusion reminds of the Bo-
golyubov’s principle of vanishing of correlations.

Our idea may be illustrated by the following model.
At the very beginning of XX century the couple
P. Ehrenfest and T. Ehrenfest offered a model to
visualize Boltzmann’s interpretation of irreversibility
phenomena in statistics. The model is extremely sim-
ple and fruitful [21]. It considers two boxes with 2N
numerated balls. Choosing number ! =1,2,...,2N
randomly one must take the ball with the label !
from one box and put it to the other. Starting from
the highly “nonequilibrium” state with all balls in one
box there is tendency to the equalization of the balls
number in the boxes, see [21]. So, irreversible flow
toward the preferable (equilibrium) state is seen. One
can hope [21] that this model reflects a physical reality
of nonequilibrium processes with the initial state very
far from equilibrium. A theory of such processes
with the (nonequilibrium) flow towards a state with
maximal entropy should be sufficiently simple to give
definite theoretical predictions.

The early models were based on the assumption
that the final state of inelastic hadron processes has
maximal entropy 7i(s) ~ nmax [22). But actually the
hidden constraints stop the process of thermalization
at the comparably early stages. The result of this is a
small value of the hadron mean multiplicity 7(s), i.e.,
fi(8) < Nmax.

3.1. Quantitative Definition of the Equilibrium

Let us define the conditions when the fluctuations
in the vicinity of 3, are Gaussian. Firstly, to estimate
the integral (2.15) at z = z. in the vicinity of the
extremum, 8., we should expand In p,(8 + (3.) over 3:

lnpn(ﬂ + ,Bc) = lnpn(/Bc) - \/EIB + (3.1)
+ _:[i2_62 In p,(8:) _ 5_383111 Pn(Be) +

oA op2 3 03
L B0 npn(B)
4 B8

and, secondly, let us expand the exponent in the
integral (2.15) over Ith derivatives, | = 3,4,..., of
In p,(B.). As a result, if only the third derivative is
taken into account then kth term of the perturbation
series looks as follows:

0 In pn(Bc) /052

Prk ™ {<a2 In pn(B:)/052)% }kr (%; 1) '
(3.2)
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Therefore, because of Euler’s I'((3k + 1)/2) function,
the perturbation theory near j. leads to the asymp-
totic series. Considering them as the asymptotic one,
we may estimate it by the first term if and only if

8% n pn(B:) /882 < (0% 1n pn(B:) /0822, (3.3)
One may write this condition as the approximate
equality:

8 In pn(ﬂc)/aﬁg =~ 0. (3.4)

If this condition is satisfied, then the fluctuations are
Gaussian with dispersion

~ |6 In pu(B2)/08%|""?,
see(3.1).

Let us consider now (3.4) in detail. We will find
that this condition means the following approximate
equality:

®) @) (1) (13
pn P’ pn (pn’)
m o3 +2 ~0, 3.5
Pn ] I3 (3:9)

where p$l°> means the kth derivative over 8. For
identical particles, .

P (Be) = n*(=1)* x

k
) ENCR SR S) | COO
i=1

(3.6)

The Lh.s. of (3.5) is the 3-point correlator Kj
since dT'n(Bc, Q1,42 - - - ,gn) is a density of states for
given 3:

dF‘n(;Bca q1,492,--- 1q‘n) =

= dQn(g)lan(g1, 42, - -- ,qn)|2 H e“ﬁe(m),
i=1

dQ, = fI _ Pu (3.7)
"= L ny 2¢()’ '
e(q) = (¢* + m)'/?,
and ay, is the n-particle amplitude. Then,
(3.8)

1 3
o = 080 ﬂ/ arn [T ela) -
3 2
- s [3/ ar, [[ e(a) ,,/ dTre(gs) +

=1

D) 3
tam B/ Anela)

where the index 8, means that averaging is performed
with the Boltzmann factor exp{—fc€(q)}-

As a result, to have all fluctuations in the vicinity
of 8. Gaussian, we should have K, ~0, m >3.
Notice that, as follows from (3.3), the set of minimal
conditions actually looks as follows:

|K)| < |Kq|2, 1>3. (3.9)

If the experiment confirms this conditions then, in-
dependently from the number of produced particles,
the final-states energy spectrum is defined with high
enough accuracy by one parameter 3. and the energy
spectrum of particles is Gaussian. In these conditions
one may return to the statistical and hydrodynamical
models.

But if the inequality is not held then one must take
into account the third correlator K3, forth correlator
K, etc. The corresponding series is asymptotic, with
zero convergence radii. This means that if (3.9) is
not held then S, looses its physical meaning in this
case. Therefore if 3. exists, then one may omit the
K;, 1 =3,4,..., dependence. Otherwise one must
take them into account and the problem becomes
“nonintegrable.” From all evidence, just this situation
is realized at n ~ fi(s), see the subsequent section.

3.2. Deep Asymptotics over Multiplicity: “Dilute
Gas” Approximation
Let us consider the deep asymptotics over multi-
plicity, when produced particles momentum

|@l €« mp. (3.10)

In this case one may ignore the momentum depen-
dence in the amplitudes. This reminds the “dilute
gas” approximation considered in statistics.

In the dilute gas approximation

AT, ~ |ag|? H dei(€2 —m3)H2e P, (3.11)
i=1
Then
al
KI(E, n) = .6@ »X

n .
oo [ Tlance -miyrecsen).
=1 :

The approximation (3.10) means that 0 < (€;/ms) —
— 1< 1. Then it is easy to find that the “K3 to K2”
ratio is small in the dilute gas approximation. For
example,

(3.12)

R3~1/n. (3.13)

This result proves our general statement that, at
least, in the deep asymptotics over n, the produced
particle system must obey the property of completely
thermalized state.
AJEPHAS ®PU3UKA
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4. RELAXATION OF CORRELATIONS:
MODEL PREDICTIONS

The symmetries may prevent the equilibrium,
since they can lead to the nonvanishing distant
correlations, if the symmetry is local. Following the
terminology of Schwinger [3], there should not be the
special correlations among degrees of freedom of the
system if the phenomenon of equilibrium is searched.

This question is important because of the hidden
constraints of the underlined non-Abelian gauge
symmetry. Nevertheless, existence of the multiple
production means that the colored partons system is
not completely integrable, i.e., that the space—time
focal non-Abelian gauge and attendant conformal
symmetries are unable to produce enough constraints
to depress the thermalization process completely. In
other words, in hadron dynamics the hidden con-
straints are “weak” in the sense that they may be
“switched off” choosing special external kinematical
conditions.

We will illustrate these ideas considering the mul-
tiperipheral and deep inelastic scattering kinematics.
The symmetry in both cases is realized in a different
way but the result is the same: particles are uniformly
distributed (over the rapidity in the multiperipheral
model, or over the transverse momentum in the deep
inelastic scattering kinematics).

4.1. Multiperipheral Kinematics

The leading energy asymptotics Pomeron contri-
bution reflects the kinematics, where the longltudmal
momentum of produced particles is large and is
strictly ordered. So, in terms of rapidities &; ~ In¢; the
multiperipheral kinematics means that

L1<b&b<...<&n <& (4.1)

At the same time, particles transverse momentum is
restricted: g3 < 0.2 GeV2. The energy conservation
law in this kinematics looks as follows:

Hé,’NE: E£'L=€7

where £ is the total rapidity. For this reason it is
natural to consider the rapidity fluctuations instead
of energy. So, we will introduce 3 as the Lagrange
multiplier of the rapidity conservation law (4.2).

It was found that the multiperipheral kinematics
dominates inclusive cross sections f(s,p.). More-

(4.2)

- over, the created particles spectra do not depend on

s at high energies in the multiperipheral region:

do
f(37pc) = 2EC%; =
_ / dt1dtasi 8901 (t1)¢2(t2)
= | st —mP(ts - mP

2004

SOEPHAS ®PU3UKA TomM67 Nel

s182(—p2.) = stito.

Here, s1 = (pa + Pc)?, 52 = (Bb +Pc)?, Pe = @cpa +
+ Bepy + Per, and ¢;(t;) are the impact factors of
hadrons. So the particle ¢ forgets the details of its
creation. It is found experimentally that the ratio

fatpom=+..) _

o(mtp) (43)
_f(Ktp—sm4+...) flop—7m+..)
a(K*+ +p) -

o(pp)

is universal [23].

The total cross section is written in the multipe-
ripheral model in the form:

o (€) = g°P(£)g", (4.4)
where the Pomeron propagator
PR =€ (4.5)
and the LLA gives [24]
A=o(0)—1=2282, <055  (46)
o =0.2.

But the subsequent correction gives A ~0.2. The
one-particle inclusive spectra of the particle c of the
rapidity &; produced in the collision of particles a and
b can be written in the form:

(e, 61) = g°P(€ — E1)YeP(61)g" = g*eg®e S,
(4.7)

where the conservation law (4.2) and the defini-
tion (4.5) were used.

Omitting the indices, the two-particle spectra look
as follows:

f2 = gP(&)WP(&)YP(€3)g,
&L +&+E6=¢, &2>0.

(4.8)

Generally,

k
fr=g {H P(§i)¢} P(&k+1)9, (4.9)
i1

k+1

Z€i=€-

Noting the normalization condltlon

k+1 k+1
/zI_,Ild& ( Z€z> fk z k'(n——

one may use the Mellin transform to write:

T(z,s) = gP(0,&; 2)g, (4.10)



30 MANJAVIDZE, SISSAKIAN

where the “superpropagator”
P(0,¢; 2) = eF1A0), (4.11)

It is evident that (4.11) leads to the Poisson distribu-
tion:

—n(s ﬁ(s)n
Pn(07£)=e ()T,

(s) =

Therefore, we start the description considering the
production of the noncorrelated particles. Indeed,
w(&,z) = InP(0,&; ) can be considered as the gen-
erating function of particle number correlators: C; =
= 0'w(€, 2)/02, where if the inclusive correlators are
considered then one must take z = 1 at the very end
of calculations. Inserting P(0,&; 2) from (4.11), one
may find that C; = O foralll > 1.

But it must be mentioned that, nevertheless, the
restrictions (4.1) introduce the produced particles
energy correlations. We will see as a result that the
energy correlators Kj, | > 3, would be large as com-
pared with |K3|. Therefore, the condition of the uni-
form distribution of particles over the rapidity (4.1)
creates strong correlations over rapidities, i.e., over
the longitudinal momentum.

One may notice that just the Mellin transform is
useful. So,

F(¢, 2)

(4.12)

= gP(0,€ — £1;2)YP(0,&1;2)g = (4.13)
= ¢*YP(0,&; 2)

is the generating function of one-particle exclusive
spectrum. The inverse Mellin transform defines the
one-particle spectrum in the n-particle environment:

Fa(€) = g°9Pn(0,8). (4.14)

Consequently the two-particle spectrum generating
function looks as follows:

FL(E, 2) = gP(0,&3; 2)¢P(0, &a; 2)PP(0, &5 2)g =
(4.15)

= g*¢¥*P(0,¢;2),
In conclusion,

FHE, 2) = g P(0,€; 2),
+1

Y a=¢
=1

is the [-particle exclusive spectrum generating func-
tional. Notice the &; independence of P(0,&; 2).

Let us calculate now

o0 l
e = [ @]
0 i=1

7&+&+&=6

(4.16)

(4.17)

where, as it is follows from (4.16),

+1 I+1
dr%,(¢) = ¥'Pa(0,) [ ] d&i6 (Z & - 5) . (4.18)
i=1

i=1
Therefore,
DO =r00 @19
@y " '
and
pr(Bc) = Pn(0,£). (4.20)

Having (4.19) and (4.20), one can find that, for
example,

p(2) p§,l>2 3 _5¢2§4

S L . =
Ky = o ) y (4.21)
and
(3) (2 (1) (1)2 3¢6
K3 = Pn” 3Pn Pn” 2P - _ 316¢°¢ .
S Pn . Pn Pn P 6!
(4.22)

Therefore, the “K3 to K»” ratio is large:
Ky 316 [4\*?
IK2|3/2 = —6'— (g) >1 (4.23)

and it is the £ and n independent number. One may
find that

R3 =

R>1 (4.24)

for all | > 3. Therefore the multiperipheral models are
not able to show even the tendency to equilibrium.

4.2. Deep Inelastic Scattering Kinematics

The deep inelastic scattering (DIS) structure
function Dgy(x,q?) is described in the LLA by the
contribution of the ladder diagrams. From a qual-
itative point of view this means the approximation
of random walk over the coordinate In(1/z) and
the time is In|g?|. The leading contributions, able :
to compensate the smallness of a,(A) <« 1, give the -
integration over a wide range over the “mass” |k| of |
a real, i.e., time-like gluons. At the same time, the
“masses” are strongly ordered:

Nk« < <-4 (4.25)
where v is a number of steps (time-like gluons) of the
ladder. 4

If the time needed to capture the parton into the
hadron is ~(1/)) then the gluon should decay if k? >
> A2. This leads to the creation of the QCD jets. The
mean multiplicity 72; in the QCD jets is high if the
gluon “mass” |k| is high: In7i; ~ 1/In(k%/A2). ;
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Raising the multiplicity may (i) raise the number
of jets v and/or (ii) rise the mean value mass of
jets |ki|. We will see that the mechanism (ii) would
be favorable. But raising the mean value of gluon
masses, |k;|, decreases the range of integrability
over k;. For this reason the LLA becomes invalid
in the VHM domain and the next-to-leading order
corrections should be taken into account.

Indeed, let Fop(z, g%;w) be the generating func-
tional:

Fap(z,q50) = Z/d(l,,(k) X

X Hwﬁ(k?) |a;‘})’r2~..7‘u (kl’ ka, ... ’kV)|2 ’
i=1

where a3~ is the production amplitude of v
partons (r; = (g, §, g)) with momenta (ky, k2,...,k)
in the process of scattering of the parton a on the
parton b; d€2,,(k) is the phase space element; W' (k?)
is the “probe function,” i.e., the correlation functions

NG (3,83, . K, ¢7) =

14
]
= H——ln.’F »(z, ¢%; w)
(12 al 14
i=1 5(41,' (k”) w=1
The generating functional is normalized on the DIS
structure function Dgy(z, %),

Fab(z, 0w = 1) = Dap(2,4%).
We will consider the approximation when the cutting
line passes only through the steps of the ladder

diagram. In this case Dy (z, ¢?) has a meaning of the
probability to find the parton a in the parton b.

It is useful to consider the Laplace image over
In(1/z):

Faordtio) = [ (LY Fuliitiw). (426
ab(l‘,@,(d)— omi \ Fab(.?aq’w)‘ (4 )

Then, taking into account the above mentioned con-
ditions, one may find the DGLAP evolution equation:

o o .
t&Fab(]a t;w) = Z‘pac(.?)w (t)FCb(J) t; w)3
’ (4.27)
where t = In(|¢?|/A2),
1

i) = 0uci) = [ do o™ PL(z)
0 B
and P(x) are the regular kernels of the Bethe—

Salpeter equation for pQCD [18]. The equation (4.27)
coincides at w”™ =1 with the habitual equation
SOEPHAST ®U3UKA
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for Laplace transform of the structure function
Das(z,¢%). While the Eq. (4.27) was being derived,
only one additional assumption had been used for our
problem w" = w"(k?).

The dominance of gluon contributions for the case
z < 1 must be taken into account and for this reason
we will omit all parton indices. One may find the
solution of (4.27) in terms of the v-gluon correlation

functions N®. Omitting the ¢ dependence in the
renormalized constant ay, let us write:

F(j,t;w) = D(j, 1) x
1 v
X exp { Z o /Hdti(w(ti) -1) x
14 1,:]_

x N(“)(tl,tz,...,t,,;x,t)},

where t; = In(k?/)?). In the VHM domain, where
z <« 1 is important, one must consider (j — 1) < 1.
Then

1
NO(t1;4,t) = ¢(5) ~ 17 L.
The second correlator
N(2)(t1’t2;j7 t) =

o (49 ())

is negligible at (j — 1) < 1, since, see (4.25), t; <
< tg < t. Therefore, in the LLA,

F(j,t;w) = D(jyt) exp {sou) JEAZOR 1)} .

Taking w(t) = const, one may find that F(j, t;w) has
the Poisson distribution with the “mean multiplicity”
~p(j)t.

If the quantity

wlt,z), w(t,1)=1, t=In(k?/)?),

is the generating function of the preconfinement
(close to the mass shell >~ X) partons multiplicity
distribution

143

wn(t) = %w(t’ z)

9.
2=0

then, using pafton—hadron correspondence idea, as
follows from derivation of F(j, t; w), the quantity

F(j,t;w) = D(j, 1) x (4.28)

t
X exp {J——i—l— /dt(w(t,z) - 1)}

< to
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is the generating function for the hadrons multiplicity
distribution in the DIS processes, calculated in the
frame of LLA.
Inserting (4.28) into the integral (4.26), one can
find that if
¢

@(t,z) = /dt w(t, z),
EE J
then ,
j—1={a(t2)/In(1/2)}"/?
are essential. So, the “mobility”
{In(1/z)/®(t,2)} >1 (4.29)

decreases with z or, it is the same, with the multiplic-
ity n. This is the reason why the LLA for considered
DIS kinematics has a restricted range of validity in
the VHM region.

Nevertheless, in the frame of LLA conditions,
as follows from (4.28), the generating functional
Fap(x, t; 2) has the following estimation:

In Fop(z, t; 2) {ln(l/w)w(t,z)}l/2.
Therefore, since the coupling is a constant,
In Fop(z,t;2 = 1) = InDyp(x, t) o (¢ In(1/z))/2.

This is a well-known result. Therefore, one should
take into account the screening effects, see [18].

Nevertheless, described by (4.30) kmematlcs can-
not predict tendency to equilibrium. ’

(4.30)

5. CONCLUSION

Summarizing the results, one may conclude that:

(i) If the hadron amplitudes are regular in the zero
momentum limit, then, at least, in the deep asymp-
totics over multiplicity, i.e., in the nonrelativistic limit,
one must see the complete thermalization.

(ii) Existing multiple production models are not
able to predict even tendency to the thermalization.
But it must be noted that the models have finite range
of application in the VHM domain. The experimental
information in the VHM domain seems crucial for this
reason.

(iii) The description of multiple production pro-
cesses in the finite neighborhood of the mean mul-
tiplicity n(s) demands a large number of correlators.
For this reason the VHM domain, where the correla-
tors vanish, is important.
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