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The law of large numbers is used for estimation of the longitudinal phase-space integral for big value of
particle numbers. A fully completed analytical expression of the phase-space integral is received.

We propose a new method of estimation of the
phase-space integral at n — nmax = /8/m:

Zn—/{il;llz,/k3+m2}x W
x 64 (P—Zki) falky, ..., kn),

where f,, is the amplitude module squire, P =
= (E,0,0,0) is the total momentum. We work in the
center-of-mass (CM) system. The integrals of such
a type arise when the topological cross sections are
calculated. We will examine the simplest case when
fn looks as follows:

falkyseoo kn) = [Jexp (—rBK), (@

=1

where k;; is a transverse momentum of ith par-
ticle and rp is a phenomenological transverse ra-
dius. This choice means the assumption that the
secondaries are produced independently from each
other. The transverse momentum cutoff is compatible
with the present experimental data. The attempts
of calculations of the integrals (1) have a long his-
tory [1-10]. Having the factorized amplitude (2),
the dominant problem descended from the energy—
momentum conservation ¢ function in (1). In order
to avoid this difficulty Kajantie and Karimaki [1]
introduce Fourier transformation for § function and

Dinstitute of Physics, Georgian Academy of Sciences, Thilisi,
and Joint Institute for Nuclear Research, Dubna, Russia.
2)Joint Institute for Nuclear Research, Dubna, Russia; E-mail:
sisakian@jinr.ru
*E-mail: joseph@nusun. jinr.ru
*E-mail: shubi@nusun. jinr.ru

use a saddle point method for the calculating of the
Fourier transform. Lurcat and Mazur [2] use Laplace
transformation for integrand, normalizes it and then
interprets it as a frequency function. The latter was
approximated by the Edgeworth series leaving only
the first few terms. The analogous technique with
small modifications for a special case of f,, was used
by Krzywicki as well as Bilash [3—5]. A number of
attempts use the method of Monte Carlo (MC) [8—
10]. It is necessary to underline that all noted above
approaches present the algorithm of numerical calcu-
lations.

The basis of our method consists of the expan-
sion of (1) in terms of the universally independent
functions. Then we will use the law of large numbers
for their estimation. In this way we find for (1) the
completely analytical expression. It is important to
build the fast generator of events if n — npax > 1.

The produced particles have small momenta at
n — Nmax. One can neglect the motion of CM frame
in this limit. For this reason we neglect the momenta
conservation law 4 function:

&4 (P—ik,-) -4 (E—zn:,/k,? +m2> . (3)
i=1 =1

Periorming integration over spherical angles, we
come to the expression

Zn(E) = (m/2)" x (4)
d(k2,)dk, e-r%k?,,-} )

X/{Eﬁﬁkg,ﬁmz
x & (E—zn:\/k§i+k3,i+m2) :
i=1
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Fig. 1, Examples of statistical distribution of T, (n) functions.

where k,; is the longitudinal and k;; is the particle energy as the independent variable. As a
transverse momentum. Then we introduce the result:

Zn(E) = (m/ro)"[m(nmax — n)]* " x (5)
n 1
X H / dyiF (TOm\/(nmax - n)yi((nmax - n)yi + 2)) } 4 (1 - Zyz) s
=1y
where F(z) is the Dawson integral:
Fz)=e [ dt. (6)
/

The Dawson integral can be presented by the following form:

F (rom\/ (Nmax — n)Y((Nmax — )y + 2)) = Vyexplao + a1y +azy® +...}, (7)
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Fig. 2. Graphics of (1/n) In[Z, (E)] for various values of parameter t.

where the coefficients

as = 27!' d¢¢*~ In {F ("'Om\/(nmax —n)¢((nmax — n)¢ + 2)) /\/_} (8)

C

After the substitution (7) into (5) we receive:

Zn(E) = (r/r0)"[m(nmax —n)]" ™1 x (9)
{H/dyz yz} 1’"2%)
=17

x exp{nlag + a1T1(n) + agTo(n) + ...]},

where T,(n) is:

Ty(n) (10)

1 n
—_— S
= E;%

Since we plan to calculate the integral (9) by
the MC method it is reasonable to investigate the
statistical distributions of functions (10) with the
constrain }  y; = 1. The calculations were realized for
the different values of s and n. As it can be seen from
Fig. 1 for relatively small values of s the distribution
tends to the normal type but for relatively big values
of s the distribution tends to the Poissonian one.

We can not find the exact expression for the
distribution law of functions (10). Nevertheless, we

can find the acceptable approximation for extremum
points of the distribution of functions T(n):

1 2\°
s+»1n'

We find also the limits of the area, where the mostly
significant values of T(n) are grouped:

1 L7\* 1 2.3\°

(=) =+ (3))

Let us imagine that we calculate our integral (9) by
the MC method. At every step we must randomly se-
lect the group of nonnegative numbers y;,¥2,...,¥n
with the constrain ) y; = 1. Then one must substi-
tute these numbers into (9). As a result, the maximal
number of items would have the value of Tj(n)
coinciding with the expression (11). Consequently, if
we neglect small contributions then one may change

functions T(n) in (9) by the corresponding value (11)
and carry out an exponent from the integral (9).

(11)

(12)

‘After this procedure the remainder integral has a
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Fig. 3. Graphics of (1/n) In[Z,(E)] for various values of parameter t.

are introduced. As a result,

form

}6<l—iyi>. (13)
=1y i=1

It is easily calculable if the hyperspherical coordi-
(14)

e

-nates:
Y1 = peos?(pn-1) - .. cos?(ip2) cos’ (1),
yo = pcos®(@n—1) - - - c0s*(p2) sin?(¢p1),

Yn-1= PCOS2(‘Pn—1) sin’ (¢n-2),

Yn=20, sin® (‘Pn—l),

141

1
. - (C(3/2))" "
dyiyi ¢ 0 (1 - yi) = o

{gof } ; I'(3n/2)(15)

The final expression has a form

(3n—1)/2 _ n—1
Zn(E) — s m(nmax n) enW(2),
ro['(3n/2) 2ry (16)
where
] dy. (17)

n

W (t)

t/n
[ 1052 F (romy/Comee = s = 05+ )

Tt
0

Figu
is seen from the graphic the differences have a place
for small n (< 5000). Thus, we find an area of validity

of our Eq. (16).
Generalization for another form of f, (2) is not a

complicated procedure.

It is interesting to calculate the limit ro — 0:
(18)

Qn(E) = rloh—lio Zn(E).
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re 2 demonstrates three distribution of
(1/n) In[Z,(E)] for various values of parameter ¢. As  because of the property, 111% F(z)/x = 1, we receive
r—

Qn(E) = 7rnm2n_1(nmax

For this purpose, the equation (5) was used and

—n)¥-D/2 % (19)

xd(l_-—

n 1
X {H / dyi\/yi((nmax —n)y; + 2)

}x

Yu).
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Then we expand the square root in (19) into the series:

V¥i((Rmax — n)yi +2) = exp {Z ajyj} , (20)
§=0

where

1 R WAV
== = (=1L = (Z
a0=3m2 a=(-1) 2j(2). (21)

Using the analogous method we receive the fol-
lowing expressions for the “normalized” phase-space

integral Z,,(E):
Zn(E) = Zn(E)/Qn(E) =

exp(W(2) -U (2))} ;

(22)

' 1
B {rom\/2(nmax -n)

where
4

+(1+%ﬁ:‘—_7))ln(1+(ﬂ'%:—nﬁ)—1].

In Fig. 3 you can see the behavior of Z,(E) for various
value of the parameter t. -

The method of estimation of the phase-space
integral using the law of large numbers allows to
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receive an analytical expression. It is very significant
when we build the fast event generator.

As would be expected, the dependence on the
catting parameter ro vanishes at the asymptotic on
multiplicity n — nmax but it is essential in case when
n has a finite value.

The authors wish to express their appreciation to
Dr. M. Mania from Thbilisi Institute of Mathematic for
many helpful discussions.
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