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Abstract. The law of large numbers is used for estimation of the longitudinal
phase space integral for big value of particle numbers. A fully completed analytical
expression of the phase space integral is received.

1 Introductions

In my talk I report on statistical method of estimation of the phase space
integral in the case when number of particles n— > numaz. This work is small
part of the big program that realize in Sissakian - Manjavidze group at JINR
and devoted to the statistical description of inelastic processes at high energy,
including processes with very high multiplicity.

Thermodynamical approach give as the possibility of full d%cnptlon of com-
plicated system by the limited number of parameters. We use conception of
thermodynamical equilibrium that means assumption of uniform distribution
of energy over all degrees of freedom and fluctuations are the Gauss type.

Pioneering works of the use thermodynamical description of hadron processes
belong to Fermi and Landau. Its main assumption consist in treatment the
inelastic hadron collisions as dissipation of kinetic energies of colliding particles.

Interest in the events with very high multiplicity catenate with following.
Fermi-Landau model badly described processes with medium multiplicity from
the limitations of Non-Abelian gauge symmetries. The role of the last will
be weaken when the number of particles tends to the.. imaz. Therefore, it is
important to investigate the phenomenological indications of thermalization.

So, it is actually the program of building fast events generator for correctly
describing processes with very high multiplicity.

2 Asymptotic of Phase Space Integral

We propose a new method of estimation of the phase space integral at n —

Nmax = \/E/m
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where f, is the amplitude module square, P = (E,0,0,0) is the momentum
4-vector, i.e. we work in the center of mass (CM) system. Such a type inte-
grals arise when the topological cross-sections are calculated. We will examine
the simplest case of separable amplitude f,:

fﬂ(kl)"'akﬂ) =HexP (—7‘3 ktz,a) » (2)

=1

where k;; is a transverse momentum and ro is a phenomenological cutting
parameter. This choice means assumption that the secondaries are produced
independently from each other. Limitations to small values of transverse mo-
mentum imposed by the dynamics on the collision amplitude are compatible
with the present experimental evidence.

The theory of calculations of integrals (1) have a long history [1-10].

The dominant problem descended from the presence of Dirac delta function
in the integrand. In order to avoid this difficulty Kajantie and Karimaki [6]
introduce Fourier transformation for é-function and use a saddle point method
for the calculating of the Fourier transform. Lurcat and Mazur [1] use Laplace
transformation for integrand, normalize: it and then interpret. it as a frequency
function. The last approximated by the Edgeworth series keeps the first
few terms only. The analogous technique with small modifications for a special
case of f, was used by Krzywicki and Bilash [2-4]. There are series
of works, where in calculations used the method of Monte Carlo (MC) [8-10].
There is a need to note that the preceding theories represent themselves an
algorithm of numerical calculations.

A base of our method consists of the expansion of (1) by terms of the univer-
sally independent functions T,(n). Then we will use the law of large numbers
for T,(n). On this way we receive for Z, completely analytical expression.

Our interest focused on the asymptotic behavior of Z, when n — nmes,
This case corresponds to the situation when produced particles have the small
momenta. We may neglect the momentum conservation law at n — 7,4, and
leave only energy conservation law:

64(P—Zn:k,~> -—»J(E—i\/k?-i-mz) . (3)

Performing integration over spherical angles, we get to the expression de-
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pending from the longitudinal k. ; and transverse k;; momentum :

i d(k2,)dk
Za(B) = (r/2" [ { ] el o=t 4«
i=1 ktz', + kz’,' + m2

n
x 6 (E - E K2+ KD+ mz) 4)
i=1 N

Then we introduce the particle energy as the independent variable. We
receiving result:

Zn(E) = (m/r0)"[m(nmaz — n)]* "

n 1
x { I1 /0 dysF(rom/(nmaz ~ 0)s((maz — n)ys + 2))} i1-Xw) ®
i=1

where F(x) is the Dawson integral:

Fz)=e= /0 et (6)

Let us represent integral (6) in the following form:

F(romv/ (maz — n)Y((Nmez — n)y + 2)) = Vyexp{ao + a1y + a2y’ +...} (7)

where the coefficients

R R e X LV e () VI O

After the substitution (7) into eq. (5) we find:

Zn(E) = (/7o) [{rmas — )" {H / dyf\/a:} 51~ Y ws) x
x exp{nlao + arTi(n) + asTa(n) +.. ]} (9)

where T,(n) is an universal function:

JORESS (10)

Since we wish to calculate our integral (9) by the method of MC it is rea-
sonable to investigate the statistical distributions of functions (10) with the
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Figure 1: Examples of statistical distributions of T,(n) functions

constraint 3% = 1. The calculations were realized for the different values of s
and n. As can be seen from Fig.1 for relatively small values of s the distribu-
tion tends to the normal type but for relatively big values of s the distribution
tends to the Poisson’s one.

We cannot receive the exact expression for statistical distribution of func-
tions T,(n). But we find the good approximation for their extremum:

L (2) w

We find also the limits of the area where is grouped more significant values of

Ty(n) : 8 8
CL(%) Sil(zné)) (12)

Let us imagine that we calculate our integral (9) by the MC method. On ev-
ery step we must randomly select the group of nonnegative numbers ¥, y2, .. ., ¥n
with the constraint: ¥, y; = 1 and substitute their to eq. (9). As a re-
sult, the maximal number of items must contain as a functions T,(n) values
(2/n)®/(s+1). Consequently, if we neglect a small contributions terms we may
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change in (9) functions T,(n) by the corresponding values (2/n)%/(s+ 1) and
carry out exponent from integrand expression (9).
After this procedure the remainder integral has a form:

{I.:Il/ol dy“/a} ’ (1 - iy") : (13)

=1

" Tt is easily calculable if we pass to the hyperspherical coordinates:

y1 = pcos*(pn-1)...cos’(¢2) cos’(ip1)
ya = pcosi(pn—1)...cos?(pz)sin’(p1)
(14)
Y1 = pcos*(pn_1) sin®(¢n—2)
yn = psin®(pn-1).

The result looks as follows:
o e '(3/2))"?!
(I oo To) - Sl 0

The final expression has a form:

2GD/2 [ (nimeg — n) n—1 o
— ma 2)
Zn(E) = £ F@n/D) [ 2ro ] ¢ (16)

where

w =2 [ in[2F (o o e TED) | L

Fig.2 demonstrates' three graphics of In(Z,(E))/n for various values of pa-
rameter ¢ in (17) - 1.7, 2.0, 2.3. As is shown in the graphic observable differ-
ences take place for small n (< 5000). Thus, we find an area of validity of
our equation (16).

Qeneralization for another form of f, (2) is not a complicated procedure.

It is interesting to calculate the limit ro — 0 :

Qn(E) = lim Z.(E). (18)
ro—0
For it we use eq.(5) and because lim;_,o F(z)/z =1 receive:

Qn(E) = gm2n1 (nmaz _ n)%n—l x

n .1
X {HA dyi /1 ((Rmaz — n)Ys + 2)} §(1=Y w). (19)
i=0
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Figure 2: Behavior of In(Z,,(E))/n for various values of parameter ¢

Then we expand the square root in (19) into the series:

Vil(hmas — n)pi + 2) = exp{D _ a;35} (20)
7=0
where: 1 1
a0 = 3 In(@);a; = (-1 (5. Cy

Using the analogous method we receive the following expressions for the
"normalized” phase space integral Z,(FE) :

Zn(B) = Zn(E)/Qn(E) = { expw(z)_U(z)} (22)

1
rom\/é(nma, —n)

where
U(e) = 52~ t)r/(26) + (1 +1/m) (1 +7) ~ 1] (23

and
;e t(Nmaz — 1) ]
2n
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Figure 3: Behavior of In(Z,(E))/n for various values of parameter ¢

In Fig.3 you can see the behavior of Z, (E) for various values of the parameter
tin (17) - 1.7, 2.0, 2.3.

3 Conclusion

Method of estimation phase space integral by use the law of large numbers
allows to receive an analytical expression. The last is very significant when we
build the fast event generator.

As would be expected, the dependence on the cutting parameter ro vanishes
at the asymptotic on multiplicity n — n,,,, but it is essential in case when n
have a finite value.
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