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Two Exactly-Solvable Problems in One-Dimensional
Quantum Mechanics on Circle

L. G. Mardoyan, G.'S. POGOSYAN, and A. N. Sissakian

ABSTRACT. In this note we establish a relation between two exactly-solvable
problems on a circle, namely singular Coulomb and singular oscillator systems.

1. A series of complex mappings Sac — Sz, Sic — S3 and Szc — S5 was
constructed in a recent paper [5]. They extend to spherical geometry the Levi-
Civita, Kustaanheimo—Stiefel and Hurwitz transformations, well known for Eu-
clidean space. It was shown that these transformations establish a correspondence
between Coulomb and oscillator problems in classical and quantum mechanics for
dimensions (2, 2), (3,4) and (5, 8) on spheres. A detailed analysis of the real map-
ping on the curved space has been done in [7]. It was remarked that in the stereo-
graphic projection the relation between Coulomb and oscillator problems function-
ally coincide with the flat space Levi-Civita and Kustaanheimo-Stiefel transfor-
mations. The relation between the quasiradial Schrédinger equations for Coulomb
and oscillator problems on the n-dimensional spheres and one- and two-sheeted
hyperboloids for n > 2 was found in the article [6].

The present note is devoted to two singular one-dimensional exactly-solvable
potentials on circle Sy: s3 + s3 = R?

veE) = £ 20 1 ?_Li

2R2 s1 1 k% 1
(0'1) (_) R 'S l S% ’

272 &2
(we consider that k;, p > 0) where sg, s, are Cartesian coordinates in the ambient
Euclidean space E;.
The potentials in (0.1) are the well-known analogs of superintegrable [4] and
exact-solvable [8] potentials restricted to one spatial dimension. Below we will
prove that these two systems are connected to each other by a one-dimensional
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complex duality transformation [5], which is related to the more general class of
“gauge transformations” introduced in the paper [3].

2. The Schridinger equation describing the nonrelativistic quantum motion
on the circle S) in the polar coordinate ¢ € [—m, 7]

sp = Rcosp, 83 = Rsing
has the following form (h=m = 1)
(0.2) &y +2R%*[E -V (p)]¥ =0
. d? p)|¥ =0.

Substituting the singular oscillator potential V*°(¢y) in (0.2), we obtain a Pdschl-
Teller-type equation

(0.3) i [e—kg'%'—k%—%

dp? cos?p  sin®g
where € = 2R2E + w?R* and k§ = w?R* + }. The regular (at points ¢ = 0 and
m/2) solution of the above equation maybe chosen in following form [2]

]W=O

_ [2(2n+ kot ki +1)(n+ko+ k1 +1)(ntk +1)
04) ¥nlp) = \/ ' : R[I‘1(1 + kl)]2F(n0+ k01+ 1)(n)! :

x (sin <,a)1/2*k1 (cos <p)1/2+'°°2F1(—n, n+ ko £ ky + 1;1 £ ky;sin? @),

with
(0.5) e=2ntki+ko+1)2 n=0,12,....

The energy spectrum of the one-dimensional singular oscillator is given by
1 .
(0.6) En(R) = oz [(2n £ by + 12+ (2ko +1)(2n £ ky + 1))

Let us remark that the wave-functions have been normalized in the domain [0, 7/2].
The positive sign in front of k; has to taken whenever k; > %, i.e., the additional
term to the oscillator potential is repulsive at the origin and the motion takes place
only in the domain ¢ € [0,7/2]. If 0 < k; < 1, i.e., the additional term is attractive
at the origin, both the positive and negative signs must be taken into account in the
solution. The motion in this case takes place in ¢ € [~n/2,7/2]. This is indicated
by the notation +k,, in the formulas.

3. Let us write the Schrédinger equation (0.2) for the singular Coulomb po-
tential V°(3) '
&2y
dp?
First we will consider the region ¢ € [0, 7]. We make now a transformation to the
new variable 6 € [0,7/2)

(0.8) e = cos¥,

which is possible if we continue the {rariable @ into the complex domain: Rep = 0,
0 < Img < oo (see Figure 1). We also complexify the coupling constant u by
putting k = i so that

0.9) pcotp = k(1 — 2sin™24).

2

_1
+(2R2E+2,uRcot|<p|—p‘, . 4)‘1/:0.
sin“ ¢

(0.7)
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FIGURE 1. Domain G = {0 < Rep < 7;0 < Im¢y < oo} on the
complex ¢ plane.

As a result we obtain the equation

W =0,

2_1 p2_1
(0.10) W [_ko i _ K 4]

do? tle cos2@  sin?d
where W (0) = (cot 8)/2¥(8) and
(0.11) € = 2R’E + 2kR, k3 = 2R’E — 2kR, k2 = 4p®.

From the above equation we see that, up to the substitution (0.11) the equation
(0.10) for the one-dimensional singular Coulomb problem coincides with the one-
dimensional singular oscillator equation (0.3).

The regular, for 6 € [0,7/2] and ko > %, solution of this equation according to
(0.4) is

(0.12) .
w(o . .
¥(0) = ——(ﬁ-)o- = Cp(sin8)1** (cos 0)k°2F1(—n,Zl +hot ki +11Ek; sin? 9),

where C,, is a normalization constant. To compute the constant C,, we require that
the wave function (0.12) satisfy the condition

4 1
(0.13) R/ VY dp =,
0

where the symbol “¢” means the complex conjugate together with the inversion
© — —p, ie., U(p) = U*(—yp). [We choose the scalar product involving ¥°
because for ¢ € G and real p, and ¢, the function ¥°(yp) also belongs to the
solution space of (0.7)).] By analogy with Refs. [5,6], we consider the integral over
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the contour G in the complex plane of the variable ¢ (see Figure 1)
I T+3i00
014) $ (B do= [ Ao+ [ Tal¥al)d

100 (1]
+ / ¥, ()W) dip + / U ()T () dop.

+io0 100

Using the facts that the integrand vanishes as e2i%0¥ and that ¥, (y) is regular in
the domain G (see Figure 1), according to the Cauchy theorem we have

™ 100
1) [ wa)do= 0 - [ u v de.
0
Making the substitution (0.8) in the right integral of (0.15), we find
™ ‘ . n/2"
(0.16) / ¥, ()02 () dp = i(1 — eko) / [¥,] tan 6 df.
0 0

and after integration over the angle 8 we finally get [1} .. .

017)  Co= /)@ thoth + DI(nt 1 ki)D(n + ko £ ky + 1)
‘ "~V TR -e¥rRo](2nt by + ndT (12 k)PT(n+ ko +1)

Let us now consider the two most interesting cases.

3.1. The case when p? = 1. Then the duality transformation (0.8) establishes
the connection between the pure Coulomb problem and the singular oscillator with
k? = 1. Comparing egs. (0.5) and (0.11) and putting k = iy, we get

. uR
( ) 0 (n+1) + o, a o
and for the energy spectrum ,
. 1 2 2
(0.19) B, (R) = "D a n=01,2,....

2R 2(n+1)%
Returning to the variable o, we obtain that wave function for 0 < ¢ < 7 has the
form

(0.20) o (9) = Cn(0) sin e~ #(n=i0), B (—n, 1 +i0; 2; 1 — %%),

where the normalization constant Cr(0) is

N AT

nR )

The wave function in the region -7 < ¢ < 0 (s; < 0) may be determined from

(0.20) by the reflection ¢ — —¢. Therefore the general solution of the Schrodinger
equation for ¢ € [—m, 7] can be presented in the form of even and odd functions

¥ (p) = Cn(o) sin lple~tr=i NP P (n 1 4+ i0;2;1 — e2ilel),
U)(p) = Cn(0) sinpe™ =N F(—n, 1 +i0;2;1 — €¥1¥]).

Thus by using the relation between the Coulomb and singular oscillator systems we
have constructed the wave functions and energy spectrum for a Coulomb system
on the one-dimensional sphere.

(0.21) Cl0) = 201 gﬁia)|

gt By
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3.2. Let us now choose k3 = } or equivalently p? —1 = —3/16. In this case the
centrifugal potential term is attractive at the origin for singular Coulomb systems
and the motion take place in the domains ¢ € (—o0,0). For oscillator system this
term equal zero and therefore the duality transformation (0.8) connect singular
Coulomb and pure oscillator systems.

Let us introduce the quantity v which takes two values v = $and v =3
Making all calculations by analogy to previous case, it is easy to obtain the energy

spectrum
(n+v)? u?
2R? 2(n+v)?’

(0.22) EX(R) = n=0,1,2,....

and wave functions

v (o) = gom/2gv L +i0)| [[(n+v)? +02l(n + 2v)
Vro(p) =e/%2 r'2v) 4rR(n + v)n!

X (sin )Ve™ ("), Fy (—n, v + io; 20; 1 — €%49),

where 0 = uR/(n + v).
In the contraction limit R — oo, ¢ — 0 and Ry ~ z - fixed, we see that

, 2
= | VIR = — - H =
(0.23) en—Rh_x)nwEn(R)— TCEWIER n=0,1,...,
and
(0.24)

v -1 v — \/p—' 1 /I‘(n+2x/) v, —|yl/2 IS, T
Q'n(y) - é%n%o \I’na(‘P) - 1-\(21/) (’n+l/) o0l ye 'IFI( n; 2’/,3/)’

where y = 2uz/(n + v). Formulas (0.23) and (0.24) coincides with the formulas
for energy levels €, and up to the factor v/2 for wave functions ¥ (y) for two type
one-dimensional Coulomb anyons with v = 1 and v = 2 respectively [9].
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