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Abstract

The arguments that the hadrons very high-multiplicity interactions at high en-
ergies presents source of could, dense quark-gluon plasma (QGP) are offered. The
argument based on classification of asymptotics over multiplicity and the reason of
QCD jets dominance is shown. The calorimetric measurements of high multiplicity
processes are considered. The corresponding Wigner function formalism is adopted
for field-theoretical description of such measurements. The influence of conservation
laws on the nonequilibrium flows is discussed.

1 Introduction

It is well known, e.g. [1}, that
— investigation of the transfer energy distribution;
— strange particles creation;
— interference effects among identical particles;
— creation of low and high mass vector mesons;
— creation of direct lepton pares;
— creation of direct photons;
— observation of QCD jets
helps find indication of QGP formation. The aim of my talk is to note that
— asymptotically high-multiplicity processes
are the source of dense, practically pure, cold quark-gluon plasma (CQGP) formation. I
have found only one indication in the scientific literature [2] concerning this possibility.
That is why I will start from the very beginning.

This problem hides few questions. First of them:
— why the process with n >> 7(s), where the mean multiplicity 7i(s) introduces the nat-
ural scale for n, is the source of CQGP.
This conclusion is not evident since there are also nonperturbative channels of hadrons
creation [3] dominated at n ~ 7(s). Last ones describe creation of hadrons constituents
from vacuum: the kinetic motion of partons leads to increasing, because of confinement
phenomena, polarization of the vacuum and to its instability concerning real quarks cre-
ation [3]. At the very high multiplicities this effect is negligible and can not shadow the
collective phenomena in the cold QGP.

I shall start from phenomenological arguments in favor of jet mechanism of hadrons
creation at high multiplicities [4]. For this purpose the model independent classification
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of topological cross sections asymptotics over n will be introduced and the general phys-
ical interpretation of classes will be given. I should underline that this conclusion has
dynamical reason and is not simple consequence of kinematics.

So, the high-multiplicity processes allows to investigate the structure of fundamental
Lagrangian (‘unshadowed’ by kinetic motions, i.e. we would realize experimentally decay
of very hot (at high energies) initial state in the ‘inflational’ regime, with ‘freezed’ kinetic
degrees of freedom).

The second question:

— as this processes can be measured.

I must to note that this question is not simple. At n >> 7i(s) the cross sections o,(s)
falls down rapidly and are too small (< nb). There is also a problem to trigger such rear
final state. '

The high multiplicity experiments imply that at energies of modern accelerators there
is hundreds thousand of particles in a final state. It is a hard problem even to count
such big numbers. So, the number of particles n can not be considered as a trigger.
Moreover, one can think that it is not important have we hundred thousand of particles
or hundred thousand plus one. To do first step toward CQGP it is enough to be sure that
on experiment the transition of ‘hot’ initial state into ‘cold’ final one is examined. For
this purpose the ordinary calorimeters can be used [5]. It is the main idea.

The preparation of such experiment is not hopeless task and it may be sufficiently
informative. This formulation of experiment we will put in basis of the theory. Theoreti-
cally we should shrink the 4-dimension of calorimeter cells up to zero since we do not know
ad hoc the cells dimension. Then the index of cells i is transformed into the position of
particle . So we come to contradiction with quantum uncertainty principle. This forces
to use the Wigner functions formalism [6] and the first question which must be solved is
to find a way as this formalism can be adopted for description of our experiment.

Third question:

—as this processes can be described theoretically.

In considered processes we examine (practically total) dissipation of initial-state kinetic
energy into particles masses. The theory of dissipative processes have general significance
from thermodynamical point of view and I would concentrate the attention on this impor-
tant problem. I want to note also that the experimental investigation of high-multiplicity
processes in deep asymptotic seems unreal. But considering moderate n > 7 we can not
be sure that the final-state QGP is equilibrium. This leads to necessity to have the the-
ory of dissipation processes with nonequilibrium final state. Nevertheless we will use the
language of thermodynamics as the mostly economic formalism, i.e. the way which uses
minimal number of parameters (temperature, chemical potential, etc), for description of
the large system.

It will be offered the local temperatures field-theoretical description based on Wigner
functions formalism as the mostly close to available experimental layout approach. The
aim is to show the interconnection between Wigner functions theory and calorimetric
experiment (see also [7]).

There is following important observation in nonequilibrium thermodynamics. At the
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very beginning of this century couple P. and T.Euhrenfest had offered the model to vi-
sualize Boltzmann’s interpretation of irreversibility phenomena in statistics. The model
is extremely simple and fruitful [8]. It considers two boxes with 2N numerated balls.
Choosing number ! = 1,2, ..., 2N randomly one must take the ball with label [ from one
box and put it to another one. Starting from the ‘nonequilibrium’ state with all balls
in one box it is seen tendency to equalization of balls number in the boxes. So, there is
seen irreversible (with insignificant fluctuations!) flow toward preferable, i.e. equilibrium
state. This picture shows practical absence! of fluctuations in the (nonequilibrium) flow
toward a state with maximal entropy.

One can hope that this ‘experimental’ result reflects a physical reality of nonequilib-
rium processes with initial state far from equilibrium. I would like in my talk to discuss
particles creation processes at high energies from this point of view considering multiplic-
ity n as the characteristics of final state entropy. Under the condition n >> 7 initial state
is very far from equilibrium and basing on above described property of nonequilibrium
flows one can hope that the theory of such processes is simple enough to give definite
theoretical predictions.

If there is not fluctuations in the nonequilibrium flow to high-multiplicity final state
one can think that the process is simple Markovian. It is true if there is not long range
correlation. Under this special correlations the conservation laws was implied. They are
important in dynamics since each conservation law decrease number of degrees of freedom
at least on one unite, i.e. it has nonperturbative effect. Moreover, in so-called integrable
systems each independent integral of motion (in involution) reduce number of degrees of
freedom on two units. In result there is not stochastization in such systems [9], i.e. the
nonequilibrium flow is equal to zero. This leads to the last question:

— as the constraints can be included into formalism).

The discussed problem is located at the cross of number of today hard problems. They
are the highly nonequilibrium (quantum) thermodynamics, from one hand, and the quan-
tization with conservation laws constraints , from another one. In the talk I would like to
show some quantitative ideas for this problems solution.

2 Phenomenology

To build the phenomenology let us introduce the classification of asymptotics over n. It is
useful to consider the ‘big partition function’:

T(z,8) =Y _z"oa(s), T(1,8) = oua(s)-

If we know T(z, s) then o,(s) is defined by inverse Mellin transformation. This gives
(usual in thermodynamics) equation of state:

0
n= z—a——z—lnT(z, s) (2.1)

1¢What never? No never! What never? Well, hardly ever.” M.G.Mayer, J. Mayer. Statistical Mechanics
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Solving this equation we can estimate the asymptotics of o,
O'n(S) ~ e—nlni(n,s)’ (22)

where 1 < 2(n, 8) << Zmas 18 smallest solution of eq.(2.1).

It follows from (2.2) that at n — oo the solution of (2.1) must tend to singularity z,
of T(z,s) and the character of singularity is not tmportant. So, we must consider three
possibility:

a). zs=2,=1, b).2z3=2 =00, ¢).25=2, 1<z <oo.

Following to Lee and Yang [10] there is not singularities at 0 < z < 1. Let us consider
now the physical content of this classification.
a). z; =1. It is evident that

Op ~ e ™" > 0(e™), a>0, (2.3)

i.e. decrease slower then e™. It is known that the singularity z, = 1 reflects the first
order phase transition [10].

To find o, for this case we can adopt Langer’s analyses [11]. Introducing the temper-
ature 1/ instead of total energy \/s (see Sec.3) we would use the isomorphism with Ising
model. For this purpose we divide the volume on cells and if there is particle in the cell we
will write (-1). In opposite case (+1). It is the model of lattice gas well described by Ising
model. We can regulate the number of down-looking spins, i.e. number of created parti-
cles, by the external magnetic field H. Therefore, 2 = exp{—pH} and H is the chemical
potential.

The described mechanism of particles creation assumes that we had prepared a system
in the unstable phase and going to another state the system creates particles (this reminds
‘fate of false vacuum’ described by Coleman [12]). In hadron physics the initial state may
be the QGP and final state may be the hadrons system. Therefore, we must describe the
way as the quark-gluon system was prepared.

Following to Lee-Yang’s picture of first order phase transition [10](see also [13]) there
is not phase transition in a finite system (the partition function can not be singular for
finite nqg). This means that the multiplicity (and the energy) must be high enough to
© see described phenomena.

b). zs = co. For this case we can put

InT(z,s) = no(s) + A(s)(z — 1) + O((z — 1)?) (2.4)

at |z — 1| << 1. By definition ng(s) = Inoi. The ezperimental distribution of InT'(z, )
for various energies shows that the contributions of O((z—1)?) terms increase with energy
[14] (see Fig.1). The hadrons standard model (SM) assumes that

Int(z,s) = no(s) + A(s)(z — 1)
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is the Born term in the perturbation series (2.4). There is various interpretations of this
series, e.g. the multiperipheral model, the Regge pole model, the heavy color strings model,
the QCD multiperipheral models, etc. In all this models ng = a1 +azlns, 0 < az <<'1
and 7i(s) = by + bolns, by > 0. The second ingredient of hadrons SM 1is the assumption
that mean value of created particles transfers momentum < k >= const, i.e. is the energy
(and multiplicity) independent. It can be shown that under this assumptions the hadrons
SM:

InT(z,s) = no(s) + Y_ca(s)(z = 1), a =7 (2.5)

n

is reqular at finite values of z [14].
Inserting (2.5) into (2.1) we find that z(n, s) is the increasing function of n. Therefore,

on < O(e™). (2.6)

But the SM have a finite range of validity: beyond n ~ 72 the model must be changed
since it is impossible to conserve < k >= const. at higher multiplicities [15].
¢). 1 < z3 < 0o. Let us assume now that

~1
z )7, >0 (2.7)

T(z,8) ~ (1 -

Ze —

Then, using normalization condition, (0T (z, 5)/02)|.=1 = 71;(s) we can find that z.(s) =

14v/7;(s). The singular structure (2.7) is impossible in SM because of condition < k >=

const. But if |z — 1] << 1 we have estimation (2.4). The difference between SM and c)

is seen only at 1 — (2 —1)/(2. —1) << 1, t.e. orin asymptotics over n or in asymptotics

over energy. This ezplains why the asymptotics over n 1s equivalent of asymptotics over
E.

In considered case Z = z + 0(R;/n) and at high energies (n;(s) >>1)

o, ~ e ™M =0(e™). (2.8)

—Comparing (2.6) and (2.8) we can conclude that at sufficiently high energies, i.e. if
fi; >> 0, where 7t 1s the SM mean multiplicity, the mechanism ¢) must dominate in
asymptotics over n.
It is the general, practically model independent, prediction. It has important from ezperi-
mental point of view consequence that at high energies there 1s wide range of multiplicities
where the SM mechanism of hadrons creation 1s negligible. In other words, the CQGP
of high multiplicity processes is the dynamical consequence of jets and SM mechanisms.
At transition region between ‘soft’ of SM and ‘hard’ of jets one can expect the ‘semihard’
processes of minijets dominance.

The singular structure (2. 7) is familiar for multiplicity distributions in jets. In our
terms, if one-jet partition function has the singularity at 2 (s) = 14+/7;(s) then two-jet
partition function must be singular at

ZA(s)=1+ T __ 5 0(s),

7j(s/4)
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and so on. Therefore, at high energies and n > 7;(s) the jets number must be minimal
(with ezponential accuracy). This means that at n — oo the processes of hadrons creation
have a tendency to be Markovian (with sharp increase of < k >) and only in the last stage
of transition (colored plasma) — (hadrons) the indication on (first order) phase transition
may be seen.

One can say that in asymptotics over n we consider the “nflational’ chanel of ther-
malization which is so fast? that the usual confinement forces becomes ‘freezed’ and do not
play important role in final colored plasma creation.

Therefore, in asymptotics over n one can erpect the transition from ‘soft’ mechanism
of hadrons creation to ‘hard’ one. The binding forces between colored partons in hard
processes are negligible and we can consider this system as the plasma. But previous
qualitative analyses allows only to say that the transition occurs.

3 Wigner functions

Let us assume that the energies of created particles £; < €9, where € 1s fized by ezperiment.
Then using energy conservation law at given gq the number of created particles is bounded
from below: n > \/S/€g = Nmin. With this constraint the integral cross section

Oeo(8) = Z on(s)

N=Nmin

is measured. Choosing Mmin >> 7, i.e. € << /s/7i(s), we get into high multiplicity
region. There is also a theoretical possibility to restore the quantity ~ o, calculating the
difference 0¢,(8) — Tegrseo(S) [5] (see Fig.2).

It is not necessary to measure energy of each particle to have npin >> 7. Indeed, let
g; is the energy of i-th group of particles, &, + &2+ ... + & = /5 and let 7i; is the number
of particles in the group, iy + fig + ... + M = n3. Then, if & < €9, 1 = 1,2,...,k, we
have inequality: k > Nnin. Therefor, we get into high multiplicities domain since n 2> Kk,
if £0 << +/3/7i(s). We can use the calorimeter demanding that the educed in each cell
energy €; < €p.

We will use the Wigner functions formalism in the Carrusers-Zachariasen formulation
[6]. For sake of generality the m into n particles transition will be considered. This will
allow to include into consideration the heavy ion-ion collisions. If amn(k; q) is the corre-
sponding amplitude then the m particles interaction cross section with total 4{-momentum
P s

1

omn(P) = oroi

[ 49 (k)0 (@)6(P - > k)3 - Saloml’s @)

2The partons life time with virtuality |g| is ~ 1/|g| and the time needed for hadrons of mass m
formation is ~ 1/m. Therefore the parton have a time to decay before hadrons formation if |g| >> m.
But this situation is rear because of thermal motion in the initial stage of process is high.

31t is assumed that the number of calorimeter cells K > k.
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with Lorenz-invariant phase space element dQ0,(k) = [I™, dk:/ (27)32\/kZ + m2. The
amplitudes am, can be computed through the generating functional Z(¢) (the real scalar
fields theory is considered for simplicity):

amn(kla k?a ey kma q1,92, - qn) = H q;(k',) H é*(ql)z((b)’
i=1

i=1

where the annihilation operator is

b(k) = /da:e_ikz(ﬁ(x) = /dxe'ikxw(;—x)—

and &*(q) 15 the creation operator. The generating functional
Z(¢) = / D®eiSo(®)-iV(2+4)

where V(®) describes interactions.

Considering dQm (k)|ama| as the density of states in the element dQn (k) of initial state
and dQ,(q)|amn| of final one the quantity Omn(P) is the density matriz in the energy-
momentum representation. We can introduce also the temperature representation consid-
ering last one as the Lagrange multiplier. This is the well known microcanonical approach
of statistics. In the particles physics this idea was ezplored widely also, see e.g. [16]. In
our case we would introduce two temperatures, for initial state 1 /Bi and for final state
1/B; separately since the dissipation processes (transition of kinetic energy into particles
masses) are described, B; >> ;.

Let us consider the Fourier transform of 8-functions in (8.1). This introduces two
4-vector a; and ay, both conjugate to one 4-vector P. We slightly simplify formalism
introducing consideration in the CM frame, P = (E = /s, 6), and in this case o) =
(=iBi(s), 0).

The density matriz in ‘temperature’ representation has the form [17]:

R(B,z) = e V@59 Ry(g), (3-2)
where the operator N = N; + N ¢ and

Nis(B, 2 ¢) = / drdQ, (k)e P ®)zy 1y (k, 1) / dze™* i p) (1 + 3/2)s0)(r ~ £/2). (3.3)

with ¢ = §/86¢ and e(k) = vk +m2. Calculating (8.2) the local activities zip(k,r), in
analogy with activity z of Sec.2, were introduced. It is not hard to see that variation of
R(B, z) over zyy defines the Wigner functions in Carrusers-Zachariasen [6] representa-
tion. They define the particles distribution in the phase space (k,7) (we distinguish the
initial and final states distributions). The operators Ni( n(B,z; @) act on the generating
functional

Ro(¢) = / D®; D ;€ 50(P)=150(® ) g=iV (®it i) +iV (27 -4)) (3.4)
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If we put zyyy = 1, By = B and calculate Ro(p) perturbatively ezpanding it over V
then such defined R(B) coincides [18] with generating functional of Schwinger-Keldysh’s
real-time finite-temperature field theory [19]. Therefore, the condition PB;sy = B establish
the isomorphysm between our ‘S-matriz’ approach and imaginary-time Matsubara theory
[20]. It is known that last one is the theory of equilibrium states. This isomorphism was
used in case a) of previous section.

Let us return now to eq.(3.2). To find the physical meaning b5y we must show the
way as they can be measured. If there is nonequilibrium flow it is hard invent a thermome-
ter (or thermodynamical calorimeter) which measures the temperatures of this dissipative
processes, i.e. the local in space-time ones. But there is another way - to define the tem-
peratures through equations of state. This way is possible in the accelerator experiments
where the total energy E is fized. So, we will define B;s) through equations:

_ 0
0Bis)

i.e. considering 1/P;s) as the mean energy of particles in the initial (final) state. But even
knowing solutions of this equations one can not find R(E, z) correctly if the assumption
that Biyy are ‘good’ quantities is not added, i.e. that the fluctuations near solutions of
egs.(8.5) are small (Gaussian).

This assumption is the main problem toward nonequilibrium thermodynamics. The
problem in our terms is following: the expansion near Bis)(E) gives asymptotic series

[ TId (kdri} < e(k)e(k) -+ > i

where <>() means averaging over fields drown on fized points of phase space (k,r);. In
other words, the fluctuations near By s)(E) are defined by value of inclusive spectra familiar
in particles physics. Therefore, Bis)(E) are ‘good’ quantities if this inclusive spectra are
small. But this is too strong assumption. More careful analysis shows that it is enough to
have the factorization properties [20]:

- E In R(B, z), (3.5)

/H{dQl(ki)dr,-} < e(ki)e(ks) > |rrar) — H/dﬂl(ki)dri <e(ki) > |y ~ 0.

It must be noted that this is the unique solution of problem since the considered ezpansion
" near Bip)(E) unavoidably leads to asymptotic series with zero radii of convergence.

If Bis)(E) is not the ‘good’ parameter all correlations between created particles are
sufficient. And, at the end, discussed factorization property is the well known Bogolyubov’s
condition of nonequilibrium thermodynamical systems ‘shortened’ description.

Considering a problem with nonzero nonequilibrium flaw it is hard to expect that
Bip)(E) is a good parameter, i.e. that the factorization conditions are hold. Nevertheless
there is possibility that in restricted ranges of phase space the mean values of correlators
becomes sufficiently small. It is the so called kinetic phase of the process when the mem-
ory of initial state was disappeared and the ‘fast’ fluctuations was disappeared and we can
consider the long-range fluctuations only. '
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Then in this domains, with coordinates r and size L, Byy)(E,r) are the ‘good’ parame-
ters. This is well known in nonequilibrium thermodynamics the ‘local equilibrium’ hypoth-
esis. I should underline that in our consideration r is the coordinate of measurement,
i.e. the 4-coordinate where the external particle is measured, and we do not need to divide
the interaction region of QGP on domains (cells), i.e. will consider r as the calorimeter
cells coordinates.

This means that L must be smaller then the typical range of fluctuations. But, on
other hand, L can not be arbitrary small since this leads to assumption of local factor-
ization property of correlators, i.e. to absence of correlations and, hence, to absence of
interactions. This is the natural in quantum theories restriction.

The needed generalization of Wigner functions formalism was given in [17]. In this
case we must change in (3.3) B — B(r) assuming that Bip)(r) and zs)(r) are constants
on interval L. This prescription adopts Wigner functions formalism for the case of high
multiplicities. This formalism describes the fluctuations larger then L and averages the
fluctuations smaller then L assuming absence, in average, of ‘non-Gaussian’ fluctuations.
It is the typically ‘calorimetric’ measurement. We will assume that the dimension of
calorimeter cells L < L.., where L., is the dimension of characteristic fluctuations at
given n. In deep asymptotic over n we must have L, — oco. The value of particles
energies in a cell v is 1/B(E,r) with ezponential accuracy. Last one shows that the
offered above experiment with calorimeter as the measuring device for particles energies
is sufficiently informative in the very high multiplicities domain.

4 Wigner functions for essentially nonlinear systems

Now we would consider the theoretical problem of path integrals (3.4) calculation. To
define the functional measure the ortho-normalizability (i.e. the unitarity) condition will
be used. It leads to following representation [21]:

Ro(4) = =K Gie) / DM(‘I))e—U(tb,e)efdz(v’(d>)+j)¢’ (4.1)

where the expansion over operator

. ) )
K(j,€) 2Re/dx5j(z) 5e(@) (42)
generates perturbation series and
U(®,¢) = V(®+e) — V(@ —e) — 2Re / dzev'(®) (4.3)

weights quantum fluctuations. The most important term in (4.1) is the measure

DM(®) = [[ d®(z)5(828 + m?® +v'(®) — j) (4.4)
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where v'(®) = §V(®)/6®(z). So, solving the equation
P +m*d+'(®) =3 (4.5)

we will find all contributions®.

At the very end of calculations one must put e = j = 0. Therefore, eq. (4.4) can be
solved ezpending it over j. This shows that (4.1) restores at j = O the usual stationary
phase method. Indeed, it can be verified that (4.1) gives usual perturbation theory [21].

But the eq.(4.5) gives much more possibilities. Note that Lh.s. of this equation is sum
of classically known forces and the r.h.s. is the quantum force 5. Eq.(4.5) establish the
local equality between this forces. This solves the old standing problem of quantization with
constraints: it can be done by field transformations in path integrals since the eq. (4.5)
shows the way as j must be transformed when the Lh.s. is transformed. Presence of
derivatives in (4.5) shows that the quantum force must be transformed in the tangent
space of fields. (This explains why the ordinary transformation of path integral (7?) is
impossible, gives wrong result.)

We can say that action of operator eV (B:2:9) on Ry(¢) maps interacting fields system
on measurable states. Let us consider what this gives. Result of action has form:

R(p,2) = KG9 [ DM(@)e VDN, (4.6)
where, using eq.(4.5), N = N; + Ny and
Ny (8,7 ®) = / drdQ (k)e B EE) 2y 1y (k, )T (k, @) 2. (4.7)

where r is considered here as the index of calorimeter cell.
So, deriving Ny(s)(B, z; ®) there was used the condition that r is the coordinate of size
L cell. With this condition

T(k, @) = / de*? (02 + m2)® (4.8)

can be considered as the order parameter. Indeed, T'(k, ®) is the element of actions sym-
metry group since it is linear over field ® and the generating functional R(B, z) is trivial
if < |T'(k,®)|> >= 0. In this case there is not creation of particles, i.e. there is not

- measurable asymptotic states (fields).

4This means that the unitarity condition is necessary and sufficient for definition of path integral

measure in (3.4) [22]
5This formulae needs more careful explanation. Instead of (4.7) we must consider

Nis)(8,28) = / d; (k) / drdgd(q, L)e™ P ®) 24y (k, r)T(k + g, )T (k — ¢, 2)-
where L is the scale where B;(s)(r) and z;(s)(k,7) can be considered as the constants. In other words, L
is the dimension of calorimeter cell. If L — oo then d(g, L) can be changed on usual é-function é(g) and,

therefore, in this limit we will have (4.7). We had considered this limit seance the measurement can not
be in contradiction with quantum uncertainty principle.
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Consider now the (1+1)-dimensional sin-Gordon model with Lagrange equation:

2
0o+ sin(%cp) =
At j = 0 this equation has well known soliton solutions ®, [23] with boundary condition
P4(2)|jz1=00 = O(mod 27). It can bee shown [24] that all quantum corrections to solitons
contribution in this model equal to zero®. Then it is easily seen computing integral in (4.8)
by parts that T'(k, ®,) = 0. This result shows that sl(2c) symmetry of sin-Gordon model
can not be broken and corresponding (polynomial) integrals of motion are conserved.

5 Conclusion

At the end I wish to say few words about future steps toward CQGP problem.

— FEzperimental efforts.

They consist in formulation of pure ezperimental requirements to calorimeters. Here two
questions are important: (i) the ‘dead time’ of calorimeter and (i) the soft particles ener-
gies measurement accuracy. We hope that existing in the modern experiments calorimeters
will satisfy our conditions. — Theoretical efforts.

The 6-likeness of functional measure allows to map a quantum interacting fields system
on the principle bundle, where the symmetry constraints are taken into account naturally
and the perturbation theory is extremely simple. There is some technical problems. Theirs
solution is in progress now. We hope that this will allow to calculate the threshold values
of n at given energies where the ‘hard’ processes should dominate.
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