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ON THE NUMERICAL CALCULATION OF PHASE SPACE
INTEGRAL OF VERY HIGH MULTIPLICITY PROCESSES

J.MANJAVIDZE, A.SISSAKIAN, N.SHUBITIDZE
Joint Institute for Nuclear Research

ABSTRACT. Two methods of numerical calculation phase space integral of very high
multiplicity processes are compared.

1. INTRODUCTION

It is well known that the existing generators of event badly describes the very high
multiplicity hadron processes. In the framework of creation more efficient generator
there are very important the knowledge of phase space integral. Note, that the program
of numerical calculation should be the fast enough.

The problem is reduced to the calculation of following type of integral:

(1.1) Zn=/{ﬁ§—-—;:;%—7§} 54 (P—Zk,.) Flkn, o k)

where, for instance:
(1.2) f(kyoo k) = [T exp (-5 K2,)
i=1

and P = (E,0,0,0); k.;=4/k?,+kZ, is the transverse momentum;

ro is the phenomenological constant (rp=0.2GeV/c)

The theory of calculation of integrals of this type have a long history. Some methods
[1-5] used statistical interpretation of transformed integrals which can be expressed in
terms of the central limit theorem of probability theory. In [6] calculation consist in
taking the Laplace transform of (1.1), inverting it and evaluating the inverted form
approximately by saddle point. In [7] recursive equation for numerical calculation are
obtained. Some methods [8-10] used different modification of Monte Carlo simulation.

Considering the very high multiplicity, it is important to have an universal method of
calculation of the phase space integrals. It can be useful in a wide range of multiplicity.
In our work we compare two numerical methods of integration. First is the ordinary
Monte Carlo method, but we connect accounting the energy-momentum conservation
laws. Second uses the Fourie transformation of the energy-momentum conservation

low 4 function.

2. MoNTE CARLO METHOD

From the energy conservation low:

2.1) 5(E—\/m—...-\/m)

we have the condition for the maximum value of the momentum

(2.2) E—- k2, +m?—(n—1m=0

mazxr
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Solving this equation we find it:

(2.3) kmaz = Ev/Umaz (Umaz + 2/Mmaz)
where
(2.4) Umaz = 1 — N/ Nmaz;  Nmaz = E/m

Then we introduce variables u;, defined in the interval u;, € [-1/g,1/g]:
(25) v ki,u = kmaz g Uiy
As a result :

Ezn-—4 [umaa:(umaz + 2/n )](3n—3)/2 gsn—a 92=" x

n . k2 2
N TR
Sy e Y v

where 6% is :

& = (1—2\/umaz umaz+2/nmaz)g Uy +1/nmaa: ) X

i=1
(2.7) X 8ty + -+ Ung) O(ury +% ..+ tng) (urz + ..+ Un)

Our calculating scheme have following form. In the interval [—1 / g,1/g] we randomly
select u;, t=1+n—1.
Then we determinate u,, from equations:

Upg = —Ulg — -~ Un-12
(2.8) Upy = —Upy — -+ — Un_1y
Up = —Ujz — ... — Upn-1,z

After this we solving the equation:

(2.9) \/7ma:c uma:z + 2/nmaz:) 92 u2 + 1/ Moz = 0

z-—l

for g. Thus we satisfy all conditions for momenta. In such a way, we may calculate
”one” point in Monte Carlo method f(j) and consequently:

1 N
(2.10) | Zﬁﬁ;f(j)

where
f(g) = Ezn_4 [umaz(umax + 2/nmax)](3n—3)/2 90—3 2,2n X
11 ) H xp(—r} ks 68 3)
\/umaz(umaz + 2/nmaa:) go (.7) + 1/n3na.:c

Calculation realized on the Alpha-Workstation in Dubna. N = 1().5 is chosen. The
time of calculation for n = 10 = 600 and step equal to 10 use 4 minutes.
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FIGURE 1. Results of calculation by Monte Carlo method

3. FOURIE TRANSFORMATION METHOD

For Dirac Delta Function we use the integral representation:

1) (P~ k) = [ e [-ia (P= )

where a = (ag, @).
After simple transformation we get the representation:

d4
Zy = /(2 )4 exp[—iapE] x

(3.2) X {/ 2\/:2&_ exp|—r2 k? + iagVk2 + m? — ] }n =

/((214 7 exp[—iao E]¥ ()

Our basic assumption is hypothesis of factorization of ¥(a):

(3.3) ¥(a) = &(ao)x(@)
Consequently:
da
—_— = i tant
(27r)3X(ﬁ) C is a constan
and we may choose &@ = 0. We must to note that many authors uses this hypothesis
[11].

Then we go to the spherical coordinates and after integration on the angle variables
receive:

. T ki ks ~ [

where F' is the Dawson’s integral:

(3.5) F(z) = exp(—z?) /oz exp(—t°)dt
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Now we can use the variables u; from the equation:

(3.6) VK +m? = E(u; + 1/nmaz)

and after substitution we come to:

3.7) Z,=E"" / { f[ i—: du F(ro E v/u(u + 2/Mmas) ) } 5 (um - )

i=1

Then we use integral representation of Dirac Delta Function:

+o00
(3.8) Zy = E"‘l/_ g exp(—i B tmaz) [ @c(B) + i 0s(B) |
where
o [Hmes
(3.9) 0cl8) = = [ cos(u) FlruBv/ulu s 2 ) du
0 Jo

_27r

(3.10) vs(B) /Oumu sin(Bu) F(roEv/u(u + 2/nmeg) ) du

And finally we come to the following equation:

To

+00 d
(3-11) Z, = E*1 / '2176r COS[—IBumaz + na'rCta'n(‘PS/‘PC) ] [ ‘P(Z: + ‘pi ]n/2
0

Numerical calculation of this integral is very complicated procedure because inte-
grand is a rapidly oscillating function. After testing some different program, we select
the following algorithm. We find all roots of integrand and represent integral as a sum

of integrals between neighboring roots.
Calculations realized on the Pentium ITI 800Mgh. The time of calculation for n =

500 + 69500 with step 500 is about 2 hours.
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FIGURE 2. Results of calculation by Fourie transformation method

In our selection of parameters (E = 1400GeV, m = 0.2GeV) npq, = 70000.

4. CONCLUSION

We can conclude that the Monte Carlo method is powerful comparable small values
of the n and the Fourie method is convenient just for high values of n.
Last one is understandable since for small value of n integrand in the representation

is fast oscillating function.
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~ And finally we to give an example behavior of 2 In(Z,) in the intermediate region:
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FIGURE 3. 1In(Z,) in the intermediate region
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