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Abstract

The paper contains a description of a "rst attempt to understand the extremely inelastic high-energy
hadron collisions, when the multiplicity of produced hadrons considerably exceeds its mean value. Problems
with existing model predictions are discussed. The real-time "nite-temperature S-matrix theory is built to
have a possibility to "nd model-free predictions. This allows to take the statistical e!ects into consideration
and build the phenomenology. The questions to experiment are formulated at the very end of the
paper. � 2001 Published by Elsevier Science B.V.

PACS: 13.85.!t; 12.38.!t; 05.70.Ln; 05.30.!d
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1. Introduction

The intuitive feeling that hadron matter should be maximally perturbed in the high-energy
extremely inelastic collisions was the main reason of our e!ort to consider such processes. We had
hoped to observe new dynamical phenomena, or new degrees of freedom, unattainable in other
ordinary hadron reactions. This paper presents a "rst attempt to describe the particularity of
considered processes, to give a review of existing models prediction and, at the end, we will o!er the
"eld-theoretical formalism for hadron inelastic processes.

Thus, considering hadrons mean multiplicity n� (s) as a natural scale of the produced hadrons
multiplicity n at given CM energy �s, we would assume that

n<n� (s) . (1.1)

At the same time we wish to have

n;n
���

"�s/m , (1.2)

where mK0.1Gev is the characteristic hadron mass. The last restriction is introduced to weaken
the unphysical constraints from the "nite, for given s, phase space volume. We should assume
therefore that s is high enough.

The multiple production is the process of colliding particles where kinetic energy is dissipated
into the mass of produced particles [1]. Then one may validate that the entropy S accedes its
maximum in the domain (1.1) since the multiplicity n characterizes the rate of stochastization, i.e.
the level of incident energy dissipation over existing (free) degrees of freedom.

There is also another quantitative de"nition of our reactions. Let �
���

be the energy of the fastest
particle in the given frame and let E be the total incident energy in the same frame. Then the
di!erence (E!�

���
) is the energy spent on production of the less energetic particles. It is useful to

consider the inelasticity coe$cient

�"

E!�
���

E
"1!

�
���
E

41 . (1.3)

It de"nes the portion of spent energy. Therefore, we wish to consider processes with

1!�;1 . (1.4)

So, the produced particles have comparatively small energies.
This property may be used for experimental triggering of our processes. Indeed, using the energy

conservation law,

n(1!�)'1 . (1.5)

Following (1.2) we will assume that

1!�<

m
E

. (1.6)

Therefore, the kinetic energy of the particles produced in our processes cannot be arbitrarily small.
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Using thermodynamical terminology, we wish to investigate the production and properties of
comparatively &cold'multi-hadron (mostly of �-mesons) state. We would like to note from the very
beginning that we have only a qualitative scenario of such states which may be produced and the
review of the corresponding why's may be considered as the main purpose of this paper. At the end
of this paper (Appendix K) we will describe principal features of possible "eld-theoretical solution
of our problem.

The absence of any authentic experimental information concerning discussed processes should
be noted. Moreover, actually the hadron inelastic interactions with a set peculiar to them of
unsolved theoretical problems will be considered. Nevertheless, we suggest to work in this "eld in
spite of these di$culties because the system with extremal properties may be more transparent
since the asymptotics always simplify a picture. We would demonstrate this idea and will try to put
it in the basis of developed theoretical methods.

The absence of experimental information about such high inelastic hadron processes is the
consequence of the smallness of corresponding cross sections. Besides this, it was unclear for what
purpose the experimental e!orts should be done. We would like to convince the reader that the
discussed problem is interesting and important. For instance, we will discuss a possibility that
asymptotics over n may replace in a de"nite sense the asymptotics over �s. A short address to
experimentalists will be given in Section 4.1.2.

We hope that the paper would be useful both for theorists and experimentalists. For this reason
the main text of this paper will contain only the qualitative discussion of the problems and results.
The quantitative proof, formulation of pure theoretical methods, etc. are added in the appendixes.
Considered extremal problem is a good theoretical laboratory and is described in the appendixes
and theoretical methods may be applied for other physical problems.

We would like to point out that a special technique was built for the problem discussed, see
Section 2.

� Having the very high multiplicity (VHM) state it is natural to use the thermodynamical methods. We
will o!er for this purpose the real-time S-matrix interpretation of thermodynamics. It can be
shown in what quantitative conditions it will coincide with simpler canonical imaginary-time
Matsubara formalism. We will give also the generalization of the real-time "nite-temperature
perturbation theory in the case of local temperature ¹"1/� distribution, when �"�(x, t). This
will allow to use the thermodynamical description if the system is far from equilibrium.

� The particle spectrum in the VHM region is soft. It is just a situation when the collective phenomena
should be important. To describe these phenomena, the decomposition on correlators will be
adopted. The origin of this decomposition lies in Mayer's &group decomposition'. In multiple
production physics this decomposition is known also as the &multi-component description' [2].
It is based on the idea that the multiple production process may include various mechanisms.

In Section 3 we will investigate model predictions for VHM region. We would like to note two
main conclusions:

� Existing multiperipheral-type models are unable to describe the VHM region.
� The infrared region of the pQCD becomes important even if constraint (1.2) is taken into

account.
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2. Qualitative inside of the problem

In Section 2.1 we will try to formulate the phenomenology of our problem, i.e. the way the VHM
processes may be described and what type of phenomena one may expect. The importance of
thermodynamical methods will become evident and we will o!er in Section 2.2 a general descrip-
tion of the corresponding formalism.

It is important to note that we may classify the possible asymptotics over n. We will "nd that
there exist only three classes of asymptotics. This will simplify consideration de"nitely restricting
the possibilities.

In Section 2.3 we will use the thermodynamical language to give a physical interpretation of
these classes of asymptotics. We will see in result that in our choice of the VHM "nal state this
should lead to reorganization of multiple production dynamics: we will get out of the habitual
multiperipheral picture in the VHM domain.

Moreover, one may assume that the semiclassical approximation becomes exact in the VHM
domain. This naturally leads to the idea to search for such a scheme of calculation which depends
on the choice of "nal state. Quantitative description of this idea may be realized as is described in
Appendix K.

2.1. Phenomenology of VHM processes

The VHM production phenomena include two sub-problems. First of all, it is the dynamical
problem of incident energy degradation into the secondary particle energies and the second one is
the description of the "nal state.

We will start discussion in Section 2.1.1 from the second part of the problem to explain that the
statistical methods are essential for us.

In Section 2.1.2 we will try to outline at least qualitatively the main mechanisms of hadron
production. The peculiarity of hadron production phenomena consists in the presence of hidden
constraints, the consequence of local nonAbelian gauge symmetry. The constraints may prevent
thermalization and the incident energy dissipation is confusing in this case. Just the &confusing'
e!ect is dominant in the hadron multiple production processes if n&n� (s).

The expected change of dominant mechanism of hadron production is discussed in Section 2.1.3.
It is important that, in spite of hidden constraints, the system may freely evolve to de"ne the VHM
state. Such a VHM state should be in equilibrium. A formal de"nition of the &equilibrium' notion
will be given in Section 2.2.2.

The problem described contains small parameters (n� (s)/n);1 and (1!�);1. To have the
possibility of estimation of contributions in accordance with these parameters one should
include them into the formalism. This becomes possible if and only if the integral quantities
are calculated. So, the multiplicity n is an index only if the multiple production ampli-
tudes a

�
(p

�
,2, p

�
) are considered. But the cross section �

�
(s) is a nontrivial function of n.

We will calculate by this logic mostly integrals of �a
�
��, excluding from consideration the

amplitudes, see also Section 2.2, where the "rst realization of this idea is o!ered (a naive attempt
to realize this idea one may "nd in [3]). This is a general methodological feature of our
consideration.
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2.1.1. Formulation of the problem
The multiple production cross section �

�
(s) falls down rapidly in the discussed very high

multiplicity (VHM) domain (1.1) and for this reason the multiplicities n&n
���

are not accessible
experimentally. At the LHC energy n� (s)K100 is valid and we will assume that n&n� (s)�K10 000 is
just the discussed VHM region (n

���
K100000 at the LHC energy). We will explain later why

n&n� (s)� (2.1)

is chosen for the de"nition of the VHM region.
Generally speaking, having the state of a large number of particles, it is reasonable to depart

from an exact de"nition of the number n of created particles, their individual energies �
�
, momenta

q
�
, etc. since they cannot be de"ned exactly by experiment. Indeed, for instance, full reconstruction

of kinematics is a practically impossible task because of neutral particles, neutrinos, the more so as
n&10 000 is considered. We suppose that nothing will happen if n is measured with �nO0
accuracy since (�n/n);1 is easily attainable in the VHM region. Besides, it is practically
impossible to deal with theory which operates by the N"3n!4 (&30 000!) variables.

Arti"cial reduction of the set of the necessary variables may lead to a temporary success only.
Indeed, the last 30 years of multiple production physics development was based on the inclusive
approach [4], when the measured quantities (cross sections) depend on a few dynamical para-
meters only. But later on the experiment and its fractal analyses show that the situation is not so
simple, also as, for instance, for the classical turbulence. So, the event-by-event experimental data
show that the particle density #uctuation is unexpectedly large [5] and the fractal dimension D

�
is

not equal to zero [6].
We know that if the fractal dimension is non-trivial, then the system is extremely &non-regular'

[7]. So, D
�
K0.3 for the perimeter of Great Britain and D

�
K0.5 for Norway. The discrepancy

marks the fact that the shore of Norway is much more broken than that of Great Britain [8]. It is
noticeable that the fractal dimension D

�
crucially depends on the type of reaction, incident energy

and so on.
It is evident that one may choose from N"3n!4 an arbitrary "nite set of variables to

characterize the multiple production process. But the fractal analyses show that such an approach
would lead to the same e!ect as if one may hear, for example, only the "rst violin of Mahler's music.

So, it is important to understand when the restricted set of dynamical variables will allow to
describe the process (state) completely. The same problem was solved in statistical physics, where
the &rough' description by a restricted number of (thermodynamical) parameters is a basis of its
success, see the discussion of rough variables description, e.g. in the review of Uhlenbeck [9]. We
will search for the same solution desiring to build a complete theory of the VHM hadron reactions.

We want to note that just VHM process may be in this sense &simple': from all evidence, the
system becomes &quiet' in the VHM region and for this reason its &rough' thermodynamical
description is available. It seems natural, therefore, to start investigation of multiple production
phenomena from the (extremely rare) VHM processes.

2.1.2. Soft channel of hadron production
The dominant inelastic hadron processes at n&n� (s) are saturated by production of low

transverse momentum hadrons [10]. One of the approaches explains this phenomenon by the
nonperturbative e!ect of quarks created from vacuum.
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The corresponding dynamics appears as follows. At the expense of transverse kinetic motion
color charges may separate at large distances. Nevertheless, the transverse motion is suppressed
since separation leads to increasing polarization of vacuum, because of con"nement phenomenon.
Then, as in QED [11], the vacuum becomes unstable in regard to the tunneling creation of real
fermions. Just on their creation, the transverse kinetic energy is spent and, as a result, particles
cannot have, with exponential accuracy, high transverse energies. This picture is attractive being
simple and transparent, but despite numerous e!orts [12], there is no quantitative description of
this phenomenon till now. Brie#y, the problem is connected with the unknown mechanism of
strong colored electric "elds formation among distant colored charges, see also [13].

One may use other terms. The soft channel of multiple production means the long-range
correlation among hadron colored constituents. Under this special correlation the nonAbelian
gauge "eld theory conservation laws constraints were implied. They are important in dynamics
since each conservation law decreases the number of independent degrees of freedom at least on
one unity (this may explain why hadrons n� (s);n

���
(s)), i.e. it has a nonperturbative e!ect.

Moreover, in the so-called integrable systems each independent integral of motion (in involution)
reduces the number of degrees of freedom on two units. As a result there is no thermalization in
such systems [14] and the corresponding mean multiplicity n� (s) should be equal to zero, see
Appendix K.

The existence of multiple production, n� (s)<1, testi"es to the statement that the thermalization
phenomena exist in hadron processes, i.e. the system of Yang}Mills "elds is not completely
integrable. But the most probable process with n&n� (s) did not lead to the "nal state with maximal
entropy since n� (s);n

���
, i.e. the de"nite restrictions on the dissipation dynamics should be taken

into account. Such problems, being intermediate, are mostly complicated ones.
The quantitative theory of these phenomena may lead to deep revision of the main notions of the

existing quantum "eld theory [15,16], see Appendix K. So, the dynamical display of hidden
conservation laws of the hadron system are probably unstable since we expect that the system is
not completely integrable, solitary "eld con"gurations u

�
(x, t) [17]. Then the quantum theory

should be able to describe quantum excitations of these "elds, i.e. to count the #uctuations of
&curved' manifolds. The canonical perturbation theory methods, formulated in terms of creation
and annihilation of particles in the external "eld u

�
(x, t), are too complicated, see [18] and

references cited therein. For this reason, existing calculations usually do not exceed the semiclassi-
cal approximation. We hope that, as described in Appendix K, the quantization scheme would be
able to solve this problem (see also the example described there).

Another approach assumes that the special &t-channel' ladder-type Feynman diagrams are able
to describe the n&n� (s) region [19]. This approach did not take into account the con"nement
nonperturbative e!ects introducing the hardly controllable supposition that the free quarks and
gluons may form a complete set of states. Formally this is right, but from all evidence, the
decomposition on this Fock basis is realized in the nonAbelian gauge "eld theories on zero
measure [16,20] (see Appendix K). Nevertheless, one may reject this argument assuming that the
process is happening at a su$ciently small distance.

Corresponding contribution came from the so-called &hard Pomeron' [21]. But the intrinsic
problems of the accuracy of chosen logarithmic approximations [22], the understanding of the
so-called nonlogarithmic corrections [23], of the fate of the infrared divergences remain unsolved
till now.
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Fig. 1. Predictions of the Ehrenfest model. Four simulations are displayed.

2.1.3. Multiple production as a process of dissipation
So, the multiple production of soft hadron phenomena seems unsolvable on the day-to-day level

of understanding and we may with a clear conscience move it away. This is why the hadron
inelastic reactions lost some popularity, migrating the last two decades to the class of &noninterest-
ing' problems. Yet, in a number of modern fundamental experiments, multiple production plays,
at least, the role of background to the investigated phenomena and for this reason we should be
ready for the quantitative estimation of it.

Our hope to describe such a complicated problem as the multiple production phenomenon in the
VHM conditions is based on the following idea. At the very beginning of this century, a couple P.
and T. Ehrenfest, had o!ered a model to visualize Boltzmann's interpretation of the irreversibility
phenomena in statistics. The model is extremely simple and fruitful [24]. It considers the two boxes
with 2N

�
numerated balls. Choosing the label of the balls randomly one must take the ball with the

corresponding label from one box and put it into another one. One may repeat this action an
arbitrary number of times t.

Starting from the highly &nonequilibrium' state with all balls in one box, N
�
<1, it is seen to be

stationary with t tendency to equalization of the number of balls in the boxes (Fig. 1). The
stationarity means that the number of balls in the other box rises &t at least on an early stage of
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�One can say that the opposite #ow is never seen. &What never? No never! What never? Well, hardly ever'. This dialog
was taken from [25].

� In other terms, one may have the possibility to apply the ergodic hypothesis.

the process. This signi"es the presence of an irreversible� #ow (of balls) toward the preferable
(equilibrium) state. One can hope [24] that this model re#ects a physical reality of nonequilibrium
processes with the initial state very far from equilibrium. A theory of such processes with
(irreversible) #ow toward a state with maximal entropy should be su$ciently simple being close to
the stationary Markovian.

The VHM production process may be, at least in an early stage, stationary Markovian. If this is
so then one may neglect long-range e!ects, nonperturbative as well, since they are not Markovian
as follows from the experience described in Section 2.1.2.

This is possible if the VHM process is happening so fast (being the short-range phenomenon)
that the con"nement forces became &frozen'. It can be shown that the quantitative reason for these
phenomena is a fast (exponential) reduction with n of the soft channel contribution into the hadron
production process. So, we expect a change of the multiple production dynamics in the VHM
region.

Thus, the main input idea consists of two general propositions. The "rst of them is the following:
(I). The hadron VHM production processes should be close to the stationary Markovian.
&Freezing' the con"nement constraints, the entropy S may exceed for given energy �s its

available maximum in the VHM domain. Then one can assume that the VHM "nal state is in
&equilibrium', or is close to it. So,

(II). The VHM xnal state should be close to equilibrium is our second basic proposition.
We would select and appreciate particle physics models in accordance with these propositions.

2.2. S-matrix interpretation of thermodynamics

The "eld-theoretical description of statistical systems at a "nite temperature is based usually on
the formal analogy between imaginary time and inverse temperature �"1/¹ [26]. This analogy is
formulated by Schwinger [11] as the &euclidean postulate' and it assumes that (i) the system is in
equilibrium, i.e. it should allow the arbitrary rearrangement of states of temporal sequence in the
described process,� and (ii) there are no special space-time long-range correlations among states of
the process, i.e., for instance, the symmetry constraints should not play a crucial role. We do not
know ad hoc whether or not to apply the &euclidean postulate' for given n and s, even if (1.1) is
satis"ed. For this reason we are forced to formulate the theory in natural real-time terms.

The "rst important quantitative attempt to build the real-time "nite-temperature "eld theory
[27] discovered the formal problem of the so-called &pinch-singularities'. Further investigation
of the theory has allowed to demonstrate the cancellation mechanism of these unphysical singular-
ities [28]. This is attained by doubling the degrees of freedom [29}31]: the Green functions of
the theory represent 2�2 matrix [32]. It surely makes the theory more complicated, but the
operator formalism of the thermo-"eld dynamics [32] shows the unavoidable character of this
complication.
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�The statistical methods for particles physics are discussed also in [37].

Notice that the canonical real-time "nite temperature "eld-theoretical description [29,30] of the
statistical systems based on the Kubo}Martin}Schwinger (KMS) [29,33,34] boundary condition
for a "eld is

�(t)"�(t!i�) . (2.2)

It, without fail, leads to the equilibrium #uctuation}dissipation conditions [35] (see also [36]). Due
to this it cannot be applied in our case, where the dissipation problem is solved. The origin of this
boundary condition is shown in Appendix A.

We will use a more natural microcanonical formalism for particle physics.� The thermodyn-
amical &rough' variables are introduced in this approach as the Lagrange multipliers of correspond-
ing conservation laws. The physical meaning of these &rough' variables is de"ned by the
corresponding equations of state.

We shall use the S-matrix approach which is natural for the description of the time evolution.
(The S-matrix description is used also in [38,39].) For this purpose the amplitudes

�p
�
, p

�
,2, p

�
�q

�
, q

�
,2, q

�
	"a

��
(p, q) (2.3)

of the m- into n-particles transition will be introduced. The in- and out-states must be composed
from mass-shell particles [40]. Using these amplitudes we will calculate

R
��

(p, q)"�a
��

(p, q)��"�p
�
, p

�
,2, p

�
�q

�
, q

�
,2, q

�
	�q

�
, q

�
,2, q

�
�p

�
, p

�
,2, p

�
	 . (2.4)

This will lead to the doubling of the degrees of freedom.
The temperature description will be introduced (see also [41]) noting that, for instance,

d�
�
"�a

��
(p, q)��d�

�
(p) ,

d�
�
(p)"

�


�

d�p
�

(2�)�2�(p
�
)
, �(p)"(p�#m�)��� (2.5)

is the di!erential measure of the "nal state. It is a "rst example where the usefulness of the
probability-like quantity &�a

��
�� is seen.

Measure (2.5) is de"ned on the energy}momentum shell

�
�
���

p
�
"P . (2.6)

It should be underlined that a
��

(p,q) are the translationally invariant amplitudes and four
equalities:

�
�
���

p
�
"

�
�
���

q
�

(2.7)
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are obeyed identically. So, Eqs. (2.6) are the constraints and to take them into account one may
multiply d�

�
on

�


���

e���� ,

where � is the time-like 4-vector. It is evident that integration over � with factor e���� gives the
constraints (2.6).

One may simplify the calculation assuming that all calculations are performed, for example, in
the CM frame P"(E, 0). Then one may ignore the space components considering �"(�

	
, 0). This

is the equivalent of the assumption that only the energy conservation law is important.
The last step is the substitution �

	
"i�, where � is our Lagrange multiplier. To de"ne its

physical meaning one should solve the equation of state

E"!

R
R�ln�d�

�

�


���

e���
�� �,!

R
R�ln�d�

�
(�) . (2.8)

Such a de"nition of temperature as the Lagrange multiplier of the energy conservation law is
obvious for microcanonical description [33].

The initial-state temperature will be introduced in the same way, taking into account (2.7). So, we
will construct the two-temperature theory. It is impossible to use the KMS boundary condition in
such a two-temperature description (the equation of state can be applied at the very end of the
calculations).

It should be noticed that the &density matrix' R
���

(p, q), de"ned in (2.4), describes the &closed-path
motion' in the functional space. So, if

�p
�
, p

�
,2, p

�
�q

�
, q

�
,2, q

�
	"�n, out�e��
�� ��m, in	 (2.9)

and

�p
�
, p

�
,2, p

�
�q

�
, q

�
,2, q

�
	H"�q

�
, q

�
,2, q

�
�p

�
, p

�
,2, p

�
	

"�m, in�e���
����n, out	 (2.10)

then, by de"nition,

�
�

(�
�

)"�
�

(�
�

)"�(�
�

) (2.11)

with some &turning-point' "elds �(�
�

), where �
�

is the remote hypersurface. The value of �(�
�

)
speci"es the environment of the system. We will show that (2.11) coincides with the KMS boundary
condition in some special cases. Here consequences of the vacuum boundary condition:

�(�
�

)"0 (2.12)

are analyzed.
One should admit also that the boundary conditions given below are not unique: one can

consider arbitrary organization of the environment of the considered system. The S-matrix
interpretation is able to show the way as an arbitrary boundary condition may be adopted. This
should extend the potentialities of the real-time "nite-temperature "eld-theoretical methods.
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The generating functionals method was developed in [42].

2.2.1. Example
It seems useful to illustrate the above microcanonical approach by the simplest example, see also

[41]. By de"nition, the n particles production cross section

�
�
(s)"�d�

�
(p)��q�#q

�
!

�
�
���

p
���a�(p, q)�� , (2.13)

where a
�
(p,q),a

��
(p, q) is the ordinary n particle production amplitude in accelerator

experiments.
Considering the Fourier transform of energy}momentum conservation �-function one can

introduce the generating function 

�
, see [41] and references cited therein.
 We may "nd in the

result that �
�

is de"ned by the equality

�
�
(E)"�

���

���

d�
2�

e�	

�
(�), E"�(q

�
)#�(q

�
) , (2.14)

where



�
(�)"��

�


���

d�p
�
e���
�� �

(2�)�2�(p
�
) ��a� ��"�d�

�
(�) . (2.15)

The most probable value of � in (2.14) is de"ned by the equation of state (2.8). Inserting (2.15) into
(2.14) we "nd expression (2.13) if the momentum conservation shell is neglected. The last one is
possible since the cross sections are always measured in the de"nite frame.

Let us consider the simplest example of noninteracting particles [41]:



�
(�)&�2�mK

�
(�m)/��� ,

where K
�

is the Bessel function. Inserting this expression into (2.8) we can "nd that in the
nonrelativistic case (n&n

���
)

�
�
"

3
2

(n!1)

(�s!nm)
,

i.e., we "nd the well-known equality

E
��	

"�
�
¹ , (2.16)

where E
��	

"(�s!nm)/(n!1) is the mean kinetic energy and ¹"1/�
�

is the temperature
(the Boltzmann constant was taken to be equal to one).

It is important to note that Eq. (2.8) has a unique real solution �
�
(s, n) rising with n and

decreasing with s [33].
The expansion of the integral (2.14) near �

�
(s, n) unavoidably gives an asymptotic series with zero

convergence radii since 

�
(�) is the essentially nonlinear function of �, see also Section 2.2.2. This
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�The term &vanishing of correlations' was used by N.N. Bogolyubov for this phenomenon.

means that, generally speaking, #uctuations in the vicinity of �
�
(s, n) may be arbitrarily high and in

this case �
�
(s, n) has no physical sense. But if the #uctuations are Gaussian, then 


�
(�) coincides

with the partition function of the n particle state and �
�
(s, n) may be interpreted as the inverse

temperature. We will put the observation of this important fact in the basis of our thermodyn-
amical description of the VHM region.

2.2.2. Relaxation of correlations
The notion of &equilibrium' over some parameter X in our understanding is a requirement that

the #uctuations in the vicinity of its mean value, XM , have a Gaussian character. Notice, in this case,
that one can use this variable for a &rough' description of the system. We would like to show now
that the corresponding equilibrium condition would have the meaning of the correlations relax-
ation condition of Bogolyubov [42],� see also [43]. Let us de"ne the conditions when the
#uctuations in the vicinity of �

�
are Gaussian [44]. Firstly, to estimate integral (2.14) in the vicinity

of the extremum, �
�
, we should expand ln


�
(�#�

�
) over �:

ln

�
(�#�

�
)"ln


�
(�

�
)!�s�#

1
2!

��
R�
R��

�

ln 

�
(�

�
)!

1
3!

��
R�
R��

�

ln

�
(�

�
)#2 (2.17)

and, secondly, expand the exponent in the integral (2.14) over, for instance,

R�ln

�
(�

�
)/R��

�
,2 ,

etc. In the result, if higher terms in (2.17) are neglected, the kth term of the perturbation series



���

&�
R�ln


�
(�

�
)/R��

�
(R�ln


�
(�

�
)/R��

�
)����

�
��

3k#1
2 � . (2.18)

Therefore, because of Euler's �((3k#1)/2) function, the perturbation theory near �
�

leads to the
asymptotic series. The supposition to de"ne this series formally, for instance, in the Borel sense is
not interesting from the physical point of view. Indeed, such a formal solution assumes that the
#uctuations near �

�
may be arbitrarily high. Then, for this reason, the value of �

�
loses its

signi"cance: arbitrary values of (�!�
�
) are important in this case.

Nevertheless, it is important to know that our asymptotic series exists in some de"nite sense, i.e.
we can calculate the integral over � by expanding it over (�!�

�
). Therefore, if the considered series

is asymptotic, we may estimate it by "rst term if

R�ln

�
(�

�
)/R��

�
;(R�ln


�
(�

�
)/R��

�
)��� . (2.19)

One of the possible solutions of this condition is

R� ln

�
(�

�
)/R��

�
+0 . (2.20)
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If this condition is satis"ed, then the #uctuations are Gaussian with dispersion

&�R�ln

�
(�

�
)/R��

�
���� ,

see (2.17).
Let us consider now (2.20) carefully. We will "nd by computing derivatives that this condition

means the following approximate equality



��
�


�

!3


��
�



��
�


�
�

#2
(

��
�

)�

�
�

+0 , (2.21)

where 

��
�

means the kth derivative. For identical particles,



��
�

(�
�
)"n�(!1)��d�

�
(�

�
)
�


���

�(q
�
) . (2.22)

Therefore, the left-hand side of (2.21) is the 3-point correlator K
�

since d�
�
(�

�
) is a density of states

for given �

K
�
,�d�

�
(q)��

�


���

�(q
�
)���

!3�
�


���

�(q
�
)���

��(q
�
)	��

#2
�


���

��(q
�
)	��� , (2.23)

where the index �
�

means that averaging is performed with the Boltzmann factor exp�!�
�
�(q)�.

Notice, in distinction with Bogolyubov, K
�

is the energy correlation function. So, in our
interpretation, one can introduce the notion of temperature 1/�

�
if and only if the macroscopic

energy #ows, measured by the corresponding correlation functions, are to die out.
As a result, to have all the #uctuations in the vicinity of �

�
Gaussian, we should have

K
�

+0, m53. Notice, as follows from (2.19), that the set of minimal conditions actually appears
as follows:

�K
�
�;�K

�
����, m53 . (2.24)

If the experiment con"rms these conditions then, independent of the number of produced particles,
the "nal state may be described with high enough accuracy by one parameter �

�
and the energy

spectrum of particles is Gaussian. In these conditions one may return to the statistical [1] and the
hydrodynamical models [45].

Considering �
�

as a physical (measurable) quantity, we are forced to assume that both the total
energy of the system, �s"E, and the conjugate to it, variable �

�
, may be measured simultaneously

with high accuracy.

2.2.3. Connection with Matsubara theory
We would like to show now that the ordinary big partition function of the statistical system

coincides with

�
���
�

�� �
� _�� �
� �

R
��

(p, q)"
(�, z) , (2.25)

J. Manjavidze, A. Sissakian / Physics Reports 346 (2001) 1}88 15



where R
��

(p, q) is de"ned by (2.4). The summation and integration are performed with constraints
that the mean energy of particles in the initial("nal) state is 1/�

�
(1/�

�
). One may interpret 1/� in the

"rst approximation as the temperature and z
�
(z

�
) as the activity for initial("nal) state.

Direct calculation, see Appendix B, gives the following expression for generating functional:


(�, z)"e��N
(H
� (� �R

	
(�) , (2.26)

where the particle number operator (�K (x)"�/��(x))

N(�H
�
�
�
)"!�dx dx�(�K

�
(x)D

��
(x!x�,�

�
, z

�
)�K

�
(x�)!�K

�
(x)D

��
(x!x�,�

�
, z

�
)�K
�

(x�))

(2.27)

and

R
	
(�)"Z(�

�
)ZH(!�

�
) , (2.28)

where Z(�) is de"ned in (B.10):

Z(�)"�D�e��
�����
��(�

and, for the vacuum boundary condition �(�
�

)"0,

D
��

(x!x�,�, z)"!i�d�
�
(q)e�

�����e���

�z(q) , (2.29)

D
��

(x!x�,�, z)"i�d�
�
(q)e��

�����e���

�z(q) , (2.30)

are, respectively, the positive and negative frequency correlation functions at z"1.
It is evident that

R
��

(p, q)"
�


���
�e�� �
�� �

�
�z

�
(p
�
)�

�


���
�e�� �

� �

�
�z

�
(q
�
)�
(�, z)�


��	

. (2.31)

Notice, de"ning R
��

(p, q) through the generating functional we extract the Boltzmann factors
e��� since the energy}momentum conservation �-functions were extracted from amplitudes
a
��

(p, q).
We suppose that Z(�) may be computed perturbatively. As a result, ( jK"�/�j is the variational

derivative)

R(�, z)"e���
���K � ����
���K ��e����
� 
���� 
����� 
����_ �� 
��� 
��� , (2.32)

where D
��
(x!x�) is the matrix Green function. These Green functions are de"ned on the Mills [46]

time contours C
�

in the complex time plane (C
�

"CH
�

), see Fig. 2. This de"nition of the time
contours coincides with the Keldysh' time contour [30].

The generating functional (2.32) has the same structure as the generating functional of Niemi and
Semeno! [28]. The di!erence is only in the de"nition of Green functions D

��
. This choice is
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Fig. 2. Keldysh time contour.

a consequence of the boundary condition (B.6). So, if (B.32) is used, then the Green function is
de"ned by Eq. (B.45). Notice also that if �

�
"�

�
"� then a new Green function obeys the KMS

boundary condition, see (B.48).
Following Niemi and Semeno! [28] one can write (2.32) in the form


(�)"�D��
�e���� 
�� , (2.33)

where the functional measure D
��

� and the action S
��

(�) are de"ned on the closed complex time
contour C

��
, see Fig. 3. The choice of initial time t

�
and t

�
is arbitrary. Then one can perform shifts:

t
�
P!R and t

�
P#R. In result, (i) if �

�
"�

�
"�, (ii) if contributions from imaginary parts

C
��

and C
�� of the contour C

��
have disappeared in this limit, (iii) if the integral (2.33) may be

calculated perturbatively then this integral is a compact form of the representation (2.32).
Notice that the requirements (i)}(iii) are the equivalent of the Euclidean postulate of Schwinger.

In this frame one can consider another limit t
�
Pt

�
. Then the C

��
contour reduces to the

Matsubara imaginary time contour, Fig. 4.
Later on we will use this S-matrix interpretation of thermodynamics. But one should keep in

mind that corresponding results will hide assumptions (i)}(iii).
We would like to mention the ambivalent role of external particles in our S-matrix interpretation

of thermodynamics. In the ordinary Matsubara formalism the temperature is measured assuming
that the system under consideration is in equilibrium with the thermostat, i.e. temperature is the
energy characteristics of interacting particles. In our de"nition the temperature is the mean energy
of produced, i.e. non-interacting, particles. It can be shown that both de"nitions lead to the same
result.

Explanation of this coincidence is the following. Let us consider the point of particle production
as the coordinate of "ctitious &particle'. This &particle' interacts since the connected contributions
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Fig. 3. Niemi}Semeno! time contour.

Fig. 4. Matsubara time contour.

into the amplitudes a
��

only are considered, and has a momentum equal to the produced particles
momentum and so on. The set of these &particles' forms a system. Interaction among these
&particles' may be described by the corresponding correlation functions, see Section 2.3.3.

Let us consider now the limit t
�
Pt

�
. In this limit (2.33) reduces to


(�)"�D�
�e���
�� , (2.34)
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where the imaginary time measure D
�
� and action S

�
(�) are de"ned on the Matsubara time

contour. The periodic boundary condition (2.2) should be used for calculating integral (2.34). The
rules and corresponding problems in the integral (2.34) can be calculated as described in many
textbooks, see also [47].

In the limit considered the time was eliminated in the formalism and the integral in (2.34)
performed over all the states of the &particles' system with the weight e���
��. Notice that the
doubling of degrees of freedom has disappeared and our "ctitious &particles' became real ones.

On the other hand, the produced particles may be considered as the probes through which we
measure the interacting "elds. As was mentioned above, their mean energy de"nes the temperature,
if the energy correlations are relaxed. If even one of the conditions (i)}(iii) is not satis"ed then one
cannot reduce our S-matrix formalism to the imaginary time Matsubara theory. Then one can ask:
is there any possibility, staying in the frame of S-matrix formalism, to conserve the statistics
formalism. This question is discussed in Appendix C, where the Wigner functions approach is
applied. It may be shown that the formalism may be generalized to describe the kinetic phase of the
nonequilibrium process, where the temperature should have the local meaning [49]. The compari-
son with the &local equilibrium hypothesis' is discussed at the end of Appendix C.

2.3. Classixcation of asymptotics over multiplicity

Our further consideration will be based on the model-independent (formal) classi"cation of
asymptotics [50].

2.3.1. &Thermodynamical' limit
We will consider the generating function

¹(s, z)"
����

�
���

z��
�
(s), s"(p

�
#p

�
)�<m�, n

���
"�s/m . (2.35)

This step is natural since the number of particles is not conserved in our problem. So, the total cross
section and the averaged multiplicity will be

�
�
�

(s)"¹(s, 1)"�
�

�
�
(s), n� (s)"�

�

n(�
�
(s)/�

�
�
)"

d
dz

ln ¹(s, z)�

��

. (2.36)

At the same time, the inverse Mellin transform gives

�
�
"

1
n!
R�
Rz�¹(s, z)�


�	

"

1
2�i 	

dz
z���

¹(s, z)"
1

2�i 	
dz
z

e
�� �	 
��	 �
��
�� . (2.37)

The essential values of z in this integral are de"ned by the equation (of state)

n"z
R
Rzln ¹(z, s) . (2.38)

Taking into account the de"nition of the mean multiplicity n� (s), given in (2.36), we can conclude
that the solution of (2.38) z

�
is equal to one at n"n� (s). Therefore, z'1 is essential in the VHM

domain.
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The asymptotics over n (n;n
���

is assumed) are governed by the smallest solution z
�

of (2.38)
because of the asymptotic estimation of the integral (2.37)

�
�
(s)Je�� �	 
� 
���� . (2.39)

Let us assume that in the VHM region and at high energies, �sPR, there exists such a value of
z
�
(n, s) that we can neglect in (2.35) the dependence on the upper boundary n

���
. This formal trick

with the thermodynamical limit allows to consider ¹(z, s) as the nontrivial function of z for "nite s.
Then, it follows from (2.38) that

z
�
(n, s)Pz

�
at n3VHM , (2.40)

where z
�
is the leftmost singularity of ¹(z, s) in the right-half plane of complex z. One can say that

the singularity of ¹(z, s) attracts z
�
(n, s) if n3VHM. We will put this observation in the basis of

VHM processes phenomenology.
We would like to underline once more that actually ¹(z, s) is regular for arbitrary "nite z if s is
"nite. But z

�
(n, s) behaves in the VHM domain as if it is attracted by the (imaginary) singularity z

�
.

And just this z
�
(n, s) de"nes �

�
in the VHM domain. We want to note that actually the energy

�s should be high enough to use such an estimation.

2.3.2. Classes and their physical content
One can notice from estimation (2.39) that �

�
weakly depends on the character of the singularity.

Therefore it is enough to classify only the possible positions of z
�
. We may distinguish the following

possibilities:

(A) z
�
"R: �

�
(O(e��) ,

(B) z
�
"1: �

�
'O(e��) ,

(C) 1(z
�
(R: �

�
"O(e��) , (2.41)

i.e., following this classi"cation, the cross section may decrease faster (A), slower (B), or as (C) an
arbitrary power of e��. It is evident, if all these possibilities may be realized in nature, then we
should expect the asymptotics (B).

As was explained in Section 2.2.1, �
�

has the meaning of the n particle partition function in the
energy representation. Then ¹(z, s) should be the &big partition function'. Taking this interpretation
into account, as follows from the Lee}Yang theorem [15], ¹(z, s) cannot be singular at �z�(1.

At the same time, the direct calculations based on the physically acceptable interaction poten-
tials give the following restriction from above:

(D) �
�
(O(1/n) . (2.42)

This means that �
�

should decrease faster than any power of 1/n.
It should be noted that our classi"cation predicts rough (asymptotic) behavior only and did not

exclude local increase of the cross section �
�
.

One may notice that

!

1
n
ln

�
�
(s)

�
�
�

(s)
"ln z

�
(n, s)#O(1/n) . (2.43)
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�The example considered in [48] illustrates this approach.

Using thermodynamical terminology, the asymptotics of �
�
is governed by the physical value of the

activity z
�
(n, s). One can introduce also the chemical potential �

�
(n, s). It de"nes the work needed for

one particle creation, ln z
�
(n, s)"�

�
(n, s)�

�
(n, s), where �� (n, s)"1/�

�
(n, s) is the produced particles

mean energy. So, one may introduce the chemical potential if and only if �
�
(n, s) and z

�
(n, s) may be

used as the &rough' variables.
Then the above formulated classi"cation has a natural explanation. So, (A) means that the

system is stable with reference to particle production and the activity z
�
(n, s) is the increasing

function of n, the asymptotics (B) may be realized if and only if the system is unstable. In this case
z
�
(n, s) is the decreasing function. The asymptotics (C) is not realized in equilibrium thermo-

dynamics [52].
We will show that the asymptotics (A) re#ects the multiperipheral processes kinematics: created

particles form jets moving in the CM frame with di!erent velocities along the incoming particles
directions, i.e. with restricted transverse momentum, see Section 3.1.1. The asymptotics (B) assumes
condensation-like phenomena, see Section 3.3. The third-type asymptotics (C) is predicted by
stationary Markovian processes with the pQCD jets kinematics, see Section 3.2.2. The DIS
kinematics may be considered as the intermediate, see Section 3.2.1.

This interpretation of classes (2.41) allows to conclude that we should expect reorganization of
production dynamics in the VHM region: the soft channel (A) of particle production should yield
a place to the hard dynamics (C), if the ground state of the investigated system is stable with
reference to the particle production. Otherwise we will have asymptotics (B).

2.3.3. Group decomposition
Let us consider the system with several correlation scales. For example, in statistics one should

distinguish correlation length among particles (molecules) and correlation length among droplets if
the two-phase region is considered. In particle physics, one should distinguish in this sense
correlation among particles produced as a result of resonance decay and correlations among
resonances. In pQCD one may distinguish correlations of particles in jet and correlation
among jets.

There exist many model descriptions of this physical picture. In statistics Mayer's group
decomposition [25] is well known. In particle physics one should note also the many-component
formalism [2].� We will consider the generating functions (functionals) formalism [42] considering
mostly jet correlations. In many respects it overlaps the above-mentioned approaches.

The generating function ¹(z, s) may be written in the form

ln ¹(z, s)"
�
�
���

(z!1)�
k!

C
�
(s)"

�
�
���

z�b
�
, (2.44)

where the coe$cients C
�

are the moments of the multiplicity distribution

P
�
(s)"�

�
(s)/�

�
�
(s) . (2.45)
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� In a private discussion with one of the authors (A.S.) in the summer of 1973, Koba noted that the main reason for
investigation leading to the KNO-scaling was just the generating functional method of Bogolyubov [49].

So,

C
�
(s)"�

�

nP
�
(s)"n� (s),C

�
(s)"�

�

n(n!1)P
�
(s)!n� (s)� (2.46)

and so on. Using the connection with the inclusive distribution functions f
�
(q

�
, q

�
,2, q

�
)

¹(z, s)"
�
�
���

(z!1)�
k! �d�

�
(q)f

�
(q

�
, q

�
,2, q

�
; s) , (2.47)

it is easy to "nd that

C
�
(s)"�d�

�
(q)f

�
(q; s)"fM

�
(s) ,

C
�
(s)"�d�

�
(q)�f

�
(q

�
, q

�
; s)!f

�
(q

�
; s)f

�
(q

�
; s)�"fM

�
(s)!fM

�
�(s) , (2.48)

etc. Generally,

1
k!

C
�
(s)"

�
�
���

(!1)�
l

�
�

�����	

��
�
�
���

k
�
!k�

�


���
�
fM
��
(s)

k
�
! � , (2.49)

where �k�
�
"k

�
, k

�
,2, k

�
and

fM
�
(s)"�d�

�
(q)f

�
(q

�
, q

�
,2, q

�
; s) .

One may invert formulae (2.49):

1
l!

fM
�
(s)"

�
�

�����	

��
�
�
���

kn
�
!l�

�


���

1
n
�
!�

C
�
(s)

k! �
��

. (2.50)

The Mayer group coe$cients b
�
in (2.44) have the following connection with C

�
:

b
�
(s)"

�
�
��	

(!1)�
l!k!

C
���

(s) . (2.51)

It seems useful to illustrate the e!ectiveness of the generating function method by the following
example. We will consider the transformation (multiplicity nP activity z) to show the origin of the
Koba}Nielsen}Olesen scaling (KNO-scaling).�

If C
�

"0, m'1, then �
�

is described by the Poisson formulae:

�
�
(s)"�

�
�
(s)e���

n� (s)�
n!

. (2.52)

It corresponds to the case of absence of correlations.
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Let us consider a more weak assumption:

C
�
(s)"�

�
(C

�
(s))� , (2.53)

where �
�

is the energy-independent constant, see also [53], where a generalization of KNO scaling
on the semi-inclusive processes was o!ered. Then

ln ¹(z, s)" �
���

�
�

m!
�(z!1)n� (s)�� . (2.54)

To "nd the consequences of this assumption, let us "nd the most probable values of z. The equation
of state

n"z
R
Rzln ¹(z, s)

has solution z� (n, s) increasing with n since ¹(z, s) is an increasing function of z, if and only if, ¹(z, s) is
nonsingular at "nite z. As was mentioned above, the last condition has deep physical meaning and
practically assumes the absence of the "rst-order phase transition [51].

Let us introduce a new variable:

�"(z!1)n� (s) . (2.55)

The corresponding equation of state is as follows:

n
n� (s)

"�1#

�
n� (s)�

R
R�ln¹�(�) . (2.56)

So, with O(�/n� (s)) accuracy, one can assume that

�K�
�
(n/n� (s)) . (2.57)

is essential. It follows from this estimation that such a scaling dependence is rightful at least in the
neighborhood of z"1, i.e. in the vicinity of main contributions into �

�
�
. This gives

n� (s)�
�
(s)"�

�
�
(s)�(n/n� (s)) , (2.58)

where

�(n/n� (s))K¹(�
�
(n/n� (s))) exp�n/n� (s)�

�
(n/n� (s))�4O(e��) (2.59)

is the unknown function. The asymptotic estimation follows from the fact that �
�
"�

�
(n/n� (s))

should be a nondecreasing function of n, as follows from the nonsingularity of ¹(z, s).
Estimation (2.57) is right at least at sPR. The range validity of n, where solution of (2.57)

is acceptable, depends on the exact form of ¹(z, s). Indeed, if ln ¹(z)&exp���(z)�, �"const'0,
then (2.57) is right at all values of n and it is enough to have the condition sPR. But if
ln ¹(z, s)&(1#a�(z))�, �"const'0, then (2.57) is acceptable if and only if n;n� �(s).
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Representation (2.58) shows that just n� (s) is the natural scale of multiplicity n [54]. This
representation was o!ered "rst as a reaction on the so-called Feynman scaling for inclusive
cross section

f
�
(q

�
, q

�
,2, q

�
)&

�


���

1
�(q

�
)

. (2.60)

As follows from estimation (2.59), the limiting KNO prediction assumes that �
�
"O(e��). In this

regime ¹(z, s) should be singular at z"z
�
(s)'1. The normalization condition

R¹(z, s)
Rz �


��

"n� (s)

gives: z
�
(s)"1#�/n� (s), where �'0 is the constant. Notice, such behavior of the big partition

function ¹(z, s) is natural for stationary Markovian processes described by logistic equations [55].
In the "eld theory such an equation describes the QCD jets [56].

We wish to generalize expansion (2.44) to take into account the possibility of many-component
structure of the multiple production processes [2]. Let us consider particle production through the
generation, for instance, of jets. In this case decay of a particle of high virtuality �q�<m forms a jet
of lower virtuality particles. It is evident that one should distinguish correlation among particles
in the jet, and correlation among jets.

Let �
��
(m
�
) be the probability that the ith jet of mass m

�
includes n

�
particles, 14n

�
4n, where

��
�
���

n
�
"n . (2.61)

The jets are the result of particles decay. Then let us assume that NM
�
(m
�
, p
�
) de"nes the mean

number of jets of mass m
�
and momentum p

�
:



��
�

(�)"�
��

1
N
�

�
�����

��
��
�
���

n
�
!n��

��


���
�
dm

�
2m

�

d�p
�

(2�)�
e���
�� �NM

�
(m
�
, p
�
)�
��
(m
�
)� , (2.62)

where �n�
��

"(n
�
, n

�
,2, n

��
). Notice that the Boltzmann factor e���, where �(p)"m#p�/2m is

the jets energy, plays the same role as the corresponding factor in (2.15) and is introduced to take
into account the energy conservation law. We consider the VHM domain and for this reason
(p�/2m);1 is assumed.

It is useful to avoid the particles number conservation law (2.61). For this purpose we will
introduce



��(�, z)"�
�



��
�

(�)"exp��
dm
2m

d�p
(2�)�

e���
��NM
�
(m, p)(t(z,m)!1)� , (2.63)

where

t(z,m)"�
�

z��
�
(m) . (2.64)
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Comparing (2.63) with (2.44) we may conclude that t(z,m) plays the role of activity of jets. Then the
generalization is evident:


(�, z)"�
�



��(�, z)

"exp��
�
�

�


���

�dm
�
d�

�
(p
�
)e���
�� �(t(z,m

�
)!1)�NM

�
(m

�
, p

�
,2,m

�
, p
�
)� , (2.65)

where NM
�

has the same meaning as C
�
, i.e. NM

�
is the correlation function of k jets.

2.3.4. Energy-multiplicity asymptotics equivalence
Let us consider the following &bootstrap' regime when 
(�, z) is de"ned by the equation


(�, z)J�
dm
2m

d�p
(2�)�

e���
��NM
�
(m, p)t(z,m) . (2.66)

Inserting here the strict expression (2.65) we "nd a nonlinear equation for t(z,m).
The solution of (2.66) assumes that

�
dm
2m

d�p
(2�)�

e���
��NM
�
t<��

dm
2m

d�p
(2�)�

e���
��NM
�
t�

�
(2.67)

and

�
dm
2m

d�p
(2�)�

e���NM
�
t<��

dm
�

2m
�

d�p
�

(2�)�
e���t��

dm
�

2m
�

d�p
�

(2�)�
e���t�NM � . (2.68)

To solve Eq. (2.66) in the VHM region, where the leftmost singularity over z is important, let us
consider the anzats

t(z,m)"
�(z,m)

(1!(z!1)a(m))�	
, �

	
'0 , (2.69)

where �(z,m) is the polynomial function of z, �(z"1,m)"1. Using the normalization condition

n�
�
"

R
Rzt(z,m)�


��

, (2.70)

we can "nd

a(m)�
	
"n�

�
!��(1,m), ��(1,m),

R
Rz�(z,m)�


��

. (2.71)

The partition function of the jet t(z,m) de"ned by anzats (2.69) is singular at

z
�
(m)"1#

1
a(m)

. (2.72)
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This singularity would be signi"cant in the VHM region if z
�
(m) is a decreasing function of m. This

means an assumption that

��(1,m)
n�
�
(m)

P0 at mPR .

So, in "rst approximation we will choose

a(m)"n�
�
(m) . (2.73)

This choice may be con"rmed by concrete model calculations.
Taking into account the energy conservation law, conditions (2.67) and (2.68) are satis"ed if

exp�!n
n�
�
(s)!n�

�
(s/4)

n�
�
(s)n�

�
(s/4) �;1 (2.74)

at n3VHM. Therefore, (2.69) obey Eq. (2.66) with exponential accuracy in the VHM region, i.e. if

n<

n�
�
(s)n�

�
(s/4)

n�
�
(s)!n�

�
(s/4)

"

�
	

z
�
(s/4)!z

�
(s)

. (2.75)

We assume here that one can "nd so large n and s that with exponential accuracy the factors &NM
�

do not play an important role. But at low energies condition (1.2) is important and the factors
&NM

�
should be taken into account.

Notice now an important consequence of our &bootstrap' solution: it means that we can leave
production of the heavy jets only, if n3VHM. On the other hand, let us choose n"z

	
n�
�
(s), where

z
	
'1 is the function of s, and consider sPR. Then condition (2.75) de"nes z

	
: if

z
	
<

n�
�
(s/4)

n�
�
(s)!n�

�
(s/4)

, (2.76)

then we are able to obey inequalities (2.67) and (2.68).
The jet mean multiplicity, see Section 3.2.2, is

ln n�
�
(s)&�ln s . (2.77)

Then

n�
�
(s/4)

n�
�
(s)!n�

�
(s/4)

"�e����	 �!1���&�ln s;n�
�
(s) (2.78)

at sPR. Therefore, (2.76) may be satis"ed outside the VHM domain.
Let us compare now the solutions of the equation of state. Inserting (2.69) into (2.38) we can "nd

for a jet of mass �s that

z�
�
"z�

�
!

�
	
n

"1#

1
n�
�
(s)

!

�
	
n

. (2.79)

26 J. Manjavidze, A. Sissakian / Physics Reports 346 (2001) 1}88



The two-jet contribution of the masses &�s/2 gives

z�
�
"z�

�
!

�
	
n

"1#

1
n�
�
(s/4)

!

�
	
n

. (2.80)

At arbitrary "nite energies (z�
�
!z�

�
)'0 and, as follows from (2.78), they decrease &(1/n�

�
(s)�ln s)

with energy.
Noting the normalization condition, ¹(z"1, s)"�

�
�
(s), and assuming that the vacuum is

stable, i.e. �
�
4O(e��), we can conclude that

} if n3VHM then z
�
attracts z

�
, i.e. z

�
Pz

�
, and if z

�
!1;1 then these contributions should be

signi"cant in �
�
�

;
} if sPR, then z

�
!1;1, and if n satis"es inequality (2.75), or if z

	
satis"es inequality (2.76),

then the considered contributions are signi"cant in �
�
�

.
It is the (energy-multiplicity) asymptotics equivalence principle. One of the simplest conse-

quences of this principle is the prediction that the mean transverse momentum of created particles
should increase with multiplicity at su$ciently high energies.

This principle is the consequence of independence of contributions in the VHM domain on the
type of singularity in the complex z plane and of the energy conservation law. Just the last one shifts
the two-jet singularity to the right and z

�
(s)(z

�
(s/4).

We would like to mention also that this e!ect, when the mostly &energetic population' survives
has been described mathematically by Volterra [55]. It is intuitively evident that one may "nd the
&energetic population'when searching for the VHM one, or, it is the same, giving it a rich supply, i.e.
to give the population enough energy. This is our (energy-multiplicity) equivalence ((�!n)-
equivalence) principle.

Notice, if the amount of supply is too high then few populations may grow. This is the case when
the di!erence (z�

�
!z�

�
)'0 tends to zero at high energies.

We would like to note that singular at "nite z partition functions was predicted in the
(���)

�
-theory [57], in QCD jets [56], in the generalized Bose}Einstein distribution model [58]. In

all of these models decay of the essentially nonequilibrium initial state (highly virtual parton, heavy
resonance, etc.) was described.

One may distinguish the phases of the media by a characteristic correlation length. Then the
phase transition may be considered as the process of changing correlation length. Our &bootstrap'
solution predicts just such phenomena: at low multiplicities the long-range correlations among
light jets are dominant. The &bootstrap' solution predicts that for VHM processes just the
short-range correlations among particles of the heavy jet become dominant. The (�!n)-equiva-
lence means that this transition is a pure dynamical e!ect.

3. Model predictions

Multiple production phenomena were "rst observed more than seventy years ago [59]. During
this time vast experimental information was accumulated concerning hadron inelastic interactions,
see the review papers [10].
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Now we know that at high energy �s:

(i) The total cross section �
�
�

(s) of hadron interactions is enhanced almost completely by the
inelastic channels;

(ii) The mean multiplicity of produced hadrons n� (s) slowly (logarithmically) grows with �s;
(iii) The interaction radii of hadrons bM slowly (logarithmically) increase with energy;
(iv) The multiplicity distribution �

�
(s) is wider than the Poisson distribution;

(v) The mean value of transverse momentum k of produced hadrons is restricted and is indepen-
dent of the incident energy �s and produced particle multiplicity n;

(vi) The one-particle energy spectrum d�&d�/�.

First of all, (i) means that the high-energy hadron interaction may be considered as an ordinary
dissipation process. In this process the kinetic energy of incident particles is spent in produced
particle mass formation.

The VHM process takes place in vacuum and then it is assumed in the early stages that the
multiple production phenomena re#ect a natural tendency of the excited hadron system to get to
equilibrium with the environment [1]. In this way one can introduce as a "rst approximation the
model that the excited hadron system evolves without any restrictions. In this model we should
have n� (s)&�s. The dissipation is maximal in this case and the entropy S exceeds its maximum.
This simple model has de"nite popularity up to 70-th. But the experimental data (ii) and (iii)
prohibit this model and it was forgotten.

Choosing the model we would like to hope that the considered model

� takes into account experimental conditions (i)}(vi) in the n&n� (s) domain;
� has natural asymptotics over multiplicity to the VHM region.

It is necessary to remember also that

� New channels of hadron production may arise in the VHM region.

It is impossible to understand all possibilities without those o!ered in Section 2.3.2 in the
classi"cation of asymptotics.

Thus, we will observe predictions of

� Multiperipheral models, distinguishing the soft Pomeron models, see [60].

� The dual-resonance model predictions for the VHM region are described also. It can be shown
that this models predict asymptotics (A) if n<n� (s)�. Just this result explains why VHM domain
is de"ned by condition (2.1).

We are forced since it allows to include pQCD, forbidden by the multiperipheral models, to
consider

� Hard Pomeron model production of mini jets. But we will "nd using Monte Carlo
simulations that the pQCD Pomeron is unable to adopt the hard channels of hadron
production. Then

� The deep inelastic processes for VHM region will be considered to generalize the DGLAP
kinematics in the case of heavy QCD jets production. The analysis shows that transition to the
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VHM leads to the necessity to include low-x sub-processes. As a result we get out of the range of
pQCD validity.

� Multiple reduction of jets. We will see, that at very high energies in the VHM region the heavy jets
creation should be a dominant process if the vacuum is stable with reference to the particle
production.

We will consider also decay of the &false vacuum' to describe the consequence of

� Phase transition in the VHM domain. This channel is hardly seen for n&n� (s) since
the con"nement constraints may prevent cooling of the system up to phase transitions
condition.

3.1. Peripheral interaction

3.1.1. Multiperipheral phenomenology
Later on multiple production physics was developed on the basis of experimental observation

(iv). The Regge pole model naturally explains these experimental data and, at the same time,
absorbs all experimental information, (i)}(vi). At the very beginning, adopting the Regge poles
notion without its microscopical explanation, this description was self-consistent. The e!orts to
extend the Regge pole model to the relativistic hadron reactions was ended by the Reggeon
diagram technique, see [61] and references cited therein, and it was used later to construct the
perturbation theory for �

�
[62]. It was shown that the multiplicity distribution is wider than the

Poissonian one because of the multi-Pomeron exchanges.
The leading energy asymptotics Pomeron contribution re#ects the created particle kinematics

described in Appendix D, where the available kinematical scenario in the frame of pQCD is
described. So, the longitudinal momentum of produced particles is large and is strictly ordered.
At the same time, particles transverse momentum is restricted.

Let us consider the inelasticity coe$cient introduced in (1.3) �"1!�
���

/E(1, where �
���

is
the energy of the fastest particle in the laboratory frame. Then the strict ordering of particles in the
Pomeron kinematics means that � is independent of the index of the particle. So, if the fastest
particle has the energy �

���
K(1!�)�s, then the following particle should have the energy

�
�
K(1!�)�

���
K(1!�)��s, and so on. Following this law, the (n!1)th particle would have

the energy �
�
K(1!�)��s. In the laboratory frame the energy should degrade to �

�
Km.

Inserting here the above-formulated estimation of �
�

we can "nd that if the number of produced
particles is

n� (s)Kn
	
�, n

	
"!ln(1!�)�'0, �"ln(s/m�) , (3.1)

then we may expect the total degradation of energy. This degradation is the necessary condition
noting that the total cross section of slowly moving particles may depend only slightly on energy
and it seems necessary for natural explanation of the weak dependence of the hadron cross sections
on the energy. This consideration would be Lorentz covariant if one can "nd the slowly moving
particle in an arbitrary frame. The resulting estimation of mean multiplicity has good qualitative
experimental con"rmation.

J. Manjavidze, A. Sissakian / Physics Reports 346 (2001) 1}88 29



Notice that it was assumed when deriving (3.1) that the energy degrades step by step. In other
words, if we introduce a time of degradation, then the time &� is needed for complete degradation
of energy. Assuming the random walk in the normal to incident particle plane, we can conclude
that the points of particle production are located on a disk (in the moving frame) of radii bM &����.
This means that the interaction radii should grow with the energy of the colliding particles.

If f (a#bPc#2) is the cross section to observe particle c inclusively in the a and b particles
collision, then it was found experimentally that the ratio

f (��pP��#2)
�
�
�

(��p)
"

f (K�pP��#2)
�
�
�

(K�p)
"

f (ppP��#2)
�
�
�

(pp)
(3.2)

is universal. This may be interpreted as the direct evidence of the fact that the hadron interactions
have a large-distance character, i.e. that the interaction radii should be large.

This picture assumes that the probability to have total degradation of energy is

&e�������� , (3.3)

where �� is some dimensional constant (the slope of Regge trajectory) and b is the two-dimensional
impact parameter. This formula has also the explanation connected to the vacuum instability with
reference to the real particle production in the strong color electric "eld.

The above picture has natural restrictions. We can assume that each of the produced particles
may be the source of above-described t-channel cascade of the energy degradation. This means that
in the frame of the Pomeron phenomenology, we are able to describe the production of

n(n� (s)� (3.4)

particles only. If n'n� (s)� then the density of particles in the di!raction disk becomes large and (a)
one should introduce short-distance interactions, or (b) rise interaction radii. It will be shown that
just (a) is preferable.

We will build the perturbation theory in the phenomenological frames (i)}(vi). Considering the
system with variable number of particles the generating function

¹(z, s)"�
�

z��
�
(s) , (3.5)

would be useful. One can use also the decomposition:

¹(z, s)"�
�
�

(s) exp�(z!1)C
�
(s)#�

�
(z!1)�C

�
(s)#2� , (3.6)

where, by de"nition,

C
�
(s)"n� (s)"

R
Rzln ¹(z, s)�


��

(3.7)

is the mean multiplicity,

C
�
(s)"

R�
Rz�ln ¹(z, s)�


��

(3.8)

is the second binomial momentum, and so on.
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Our idea is to assume that all C
�
, m'1 may be calculated perturbatively choosing

P(0, s)"e

����� 
�� (3.9)

as the Born approximation &superpropagator'. It is evident that (3.9) leads to Poisson distribution.
Then, having in mind (ii), (iii) and (v) we will use the following anzats:

P(q, s)"e�
�����
� �	 � e

���� , (3.10)

where the transverse momentum q is conjugate to the impact parameter b. So, the Born term (3.10)
is a Fourier transform of the simple product of (3.9) and (3.3). It contains only one free parameter,
the Pomeron intercept �(0). On the phenomenological level it is not important to know the
dynamical (microscopical) origin of (3.10).

For our purpose the Laplace transform of P would be useful. If n� (s)"n
	

ln s, then

P(�, q�)"�
�

	

d�e�	�P(q�, s)"
1

�#��q�#�
	
(z)

. (3.11)

It is the propagator of two-dimensional "eld theory with mass squared

�
	
(z)"(1!�)#(1!z)n

	
, n

	
'0 .

Knowing Gribov's Reggeon calculus completed by the Abramovski}Gribov}Kancheli (AGK)
cutting rules [63] one can investigate the consequences of this approach.

The LLA approximation of the pQCD [19] gives

�"�(0)!1"

12 ln 2
�

�
�
+0.55, �

�
"0.2 , (3.12)

but radiative corrections give �+0.2 [64]. We will call this solution as the BFKL model.
The quantitative origin of the restriction (3.4) is the following. The contribution of the diagram

with � Pomeron exchange gives, since the di!raction radii increase with s, see (3.7), mean value of
the impact parameter decreasing with �:

bM �K4�� ln (s/m�)/�"a��
n� (s)
�

,

where a"4/n
	
. On the other hand, the number of necessary Pomeron exchanges �&n/n� (s) since

one Pomeron gives maximal contribution (with factorial accuracy) at nKn� (s). As a result,

bM �&a��
n� (s)�
n

. (3.13)

Therefore, if the transverse momentum of created particles is a restricted quantity, i.e. ��
	
bM �&1,

where �
	

is a constant, then the mechanism of particle production is valid up to

n&n� (s)� . (3.14)

Following our general idea, it will be enough for us to "nd the position of singularity over z.
Analysis shows that (3.12) predict the singularity at in"nity.
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�The eikonal approximation in a quantum "eld theory has been developed in [65].

In Appendix E Gribov's Reggeon diagram technique with cut Pomerons is described and (3.14) is
derived. It can be shown using this technique that the model with the critical Pomeron, �"0, is
inconsistent from the physical point of view [62].

As was mentioned above, the model with �"�(0)!1'0 is natural for the pQCD. The
concrete value of � will not be important for us. We will assume only that

0(�;1 . (3.15)

It is evident that the Born approximation (3.10) with �'0 violates the Froissart boundary
condition. But it can be shown that the sum of &eikonal' diagrams� solves this problem, see [66] and
references cited therein.

The interaction radii may increase with increasing number of produced particles if �'0 and
then the restriction (3.14) is not important. In the used eikonal approximation, see Appendix F,

zKz
�
"1#

1
n� (s)

ln
n

n� (s)
(3.16)

is essential. Then the interaction radii bM �&B�K4���(��#ln(n/n� (s))) for these values of z.
Note that

B�&��<� , (3.17)

even for n&n
���

&�s.
Nevertheless, using (3.16) one can "nd that the cross section decreases faster than any power

of e��:

!ln�
�
�
(s)

�
�
�

(s)�"
n

n� (s)
ln

n
n� (s)

(1#O(n� (s)/n)) . (3.18)

Generally speaking, although this estimation is right in the VHM region, there may be large
corrections because of Pomeron self-interactions. But careful analyses show [62] that these
contributions cannot drastically change estimation (3.18).

3.1.2. Dual resonance model
The search of dynamical source of the Regge description shows the di!erent dynamical nature of

the Regge and Pomeron poles. The established resonance-Regge pole duality, e.g. [67] led to the
Veneziano representation of the Regge amplitudes [68]. The Reggeon pole gives the decreasing
&s���� contribution, but careful investigation shows that the mass spectrum of dual to Regge pole
resonances increases exponentially. This prediction was con"rmed by experiment, see the dis-
cussion of this topic in [69].

The "eld theory development is marked by considerable e!orts to avoid the problem of color
charge con"nement. Notice that the classical string has the same excitation spectrum. A remark-
able attempt in this direction is based on the string model, in its various realizations, see, e.g. [70].
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But, in spite of remarkable success (in formalism especially) there is no experimentally measurable
prediction of this approach till now, e.g. [71].

We would like to describe in this section production of &stable' hadrons through decay of
resonances [72,73].

Our consideration will use the following assumptions.
A. The string interpretation of the dual-resonance model indicates that the mass spectrum of

resonances, i.e. the total number 
(m) of mass m resonance excitations, grows exponentially


(m)"(m/m
	
)�e�	�, �

	
"const, m'm

	
. (3.19)

Note also that the same hadron mass spectrum (3.19) was predicted in the &bootstrap' approach
[69,74]. Moreover, it predicts that

�"!

5
2

. (3.20)

B. The mass m resonance creation cross section ��(m) has the Regge pole asymptotics

��(m)"g�
m

	
m

, g�"const . (3.21)

It has been assumed here that the intercept of the Regge pole trajectory ��"�
�
. So, only the meson

resonances would be taken into account.
C. If ��

�
(m) describes the decay of a mass m resonance into the n hadrons, then the mean

multiplicity of hadrons

n� �(m)"
�
�
n��

�
(m)

��(m)
. (3.22)

Following the Regge model,

n� �(m)"n� �
	

ln
m�

m�
	

. (3.23)

D. We will assume that there is a de"nite vicinity of n� �(m) where ��
�
(m) is de"ned by n� �(m) only.

So, in this vicinity

��
�
(m)"��(m)e��� �
��(n� �(m))�/n! . (3.24)

This is the direct consequence of the Regge pole model, if m/m
	

is high enough.
Following our idea, we will distinguish the &short-range' correlations among hadrons and the
&long-range' correlations among resonances. The &connected groups' would be described by
resonances and the interactions among them should be described, introducing for this purpose the
correlation functions among strings. So, we will consider the &two-level'model of hadron creation:
the "rst level describes the short-range correlation among hadrons and the second level is
connected to the correlations among resonances.

The exact calculations are given in Appendix G.
Comparing A and B solutions we can see the change of attraction points with rising n:

at nKn� �(s)"n� �
	
ln(�s/m

	
) the transition from (A) asymptotics to (C) in (2.41) should be seen.
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At the same time one should see the strong KNO scaling violation at the tail of the multiplicity
distribution.

We have neglected the resonance interactions when deriving these results. This assumption
seems natural since at n� (s);n(n� �(s) inequality (G.17) should be satis"ed, see the discussion of
inequalities (2.67) and (2.68) in Section 2.3.4.

3.2. Hard processes

3.2.1. Deep inelastic processes
The role of soft color partons in the high-energy hadron interactions is the most intriguing

modern problem of particle physics. So, the collective phenomena and symmetry breaking in the
nonAbelian gauge theories, con"nement of colored charges and the infrared divergences of the
pQCD are the phenomena just of the soft color particles domain.

It seems natural that the very high multiplicity (VHM) hadron interaction, where the energy of
the created particles is small, should be sensitive to the soft color particle densities. Indeed, the aim
of this section is to show that even in the hard-by-de"nition deep inelastic scattering (DIS), see also
[21], the soft color particles role becomes important in the VHM region [75].

To describe the hadron production in pQCD terms the parton}hadron duality is assumed. This
is natural just for the VHM process kinematics: because of the energy}momentum conservation
law, produced ("nal-state) partons cannot have high relative momentum and, if they were created
at small distances, production of qq� pairs from the vacuum will be negligible (or did not play an
important role). Therefore, if the &vacuum' channel is negligible, only the pQCD contributions
should be considered [50,76]. All this means that the multiplicity, momentum, etc. distributions
of hadron and colored partons are the same. (This reduces the problem practically to the level
of QED.)

Let us consider now n particles (gluons) creation in the DIS [77]. We would like to calculate
D
��

(x, q�; n), where

�
�

D
��

(x, q�; n)"D
��

(x, q�) . (3.1)

As usual, let D
��

(x, q�) be the probability to "nd parton b with virtuality q�(0 in the parton a of
&� virtuality, �<� and �

�
(�);1. We may always choose q� and x so that the leading logarithm

approximation (LLA) will be acceptable. One should assume also that (1/x)<1 to have the phase
space, into which the particles are produced, su$ciently large.

Then D
��

(x, q�) is described by ladder diagrams. From a qualitative point of view this means the
approximation of random walk over coordinate ln(1/x) and the time is ln ln�q��. LLA means that
the &mobility' &ln(1/x)/ln ln�q�� should be large

ln(1/x)<ln ln�q�/��� . (3.2)

But, on the other hand [78],

ln(1/x);ln�q�/��� . (3.3)

See also Appendix D.
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The leading contributions, able to compensate the smallness of

�
�
(�);1 ,

give integration over a wide range ��;k�
�
;!q�, where k�

�
'0 is the &mass' of a real, i.e.

time-like, gluon. If the time needed to capture the parton into the hadron is &(1/�) then the gluon
should decay if k�

�
<��. This leads to the creation of (mini)jets. The mean multiplicity n�

�
in the

QCD jets is high if the gluon &mass' �k� is high: ln n�
�
K�ln(k�/��).

Raising the multiplicity may (i) raise the number of (mini)jets � and/or (ii) raise the mean value
mass of (mini)jets �kM

�
�. We will see that the mechanism (ii) would be favorable.

But increasing the mean value of gluon masses, �k
�
�, the range of integrability over k

�
decreases,

i.e. violates the condition (3.2) for "xed x. One can retain the LLA taking xP0. But this may
contradict (3.3), i.e. in any case the LLA becomes invalid in the VHM domain and the next to
leading order corrections should be taken into account.

Note that the LLA gives the main contribution, that the rising multiplicity leads to the infrared
domain, where the soft gluon creation becomes dominant.

First of all, neglecting the vacuum e!ects, we introduce de"nite uncertainty to the formalism. It is
reasonable to de"ne the level of strictness of our computations. Let us introduce for this purpose
the generating function ¹

��
(x, q�; z):

D
��

(x, q�; n)"
1

2�i 	
dz

z���
¹
��

(x, q�; z) . (3.4)

At large n, the integral may be calculated by the saddle point method. The smallest solution z
�

of
the equation

n"z
R
Rzln ¹

��
(x, q�; z) (3.5)

de"nes the asymptotic over n behavior

D
��

(x, q�; n)Jexp�!n ln z
�
(x, q�; n)� . (3.6)

Using the statistical interpretation of z
�

as the fugacity it is natural to write

ln z
�
(x, q�; n)"

C
��

(x, q�; n)
n�
��

(x, q�)
. (3.7)

Notice that the solution of Eq. (3.5) z
�
(x, q�; n) should be an increasing function of n. At "rst glance

this follows from the positivity of all D
��

(x, q�; n). But actually this assumes that ¹
��

(x, q�; z)
is a regular function of z at z"1. This is a natural assumption considering just the pQCD
predictions.

Therefore,

D
��

(x, q�; n)Jexp�!
n

n�
��

(x, q�)
C
��

(x, q�; n)� . (3.8)

This form of D
��

(x, q�; n) is useful since usually C
��

(x, q�; n) is a slowly varying function of n. So, for
a Poisson distribution C

��
(x, q�; n)&ln n. For KNO scaling we have C

��
(x, q�; n)"const. over n.
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We would like to note that, neglecting e!ects of vacuum polarization, we introduce into the
exponent such high uncertainty assuming nKn

�
that it is reasonable to perform the calculations

with exponential accuracy. So, we would calculate

!��
��

(x, q�; n)"ln
D
��

(x, q�; n)
D
��

(x, q�)
"

n
n�
��

(x, q�)
C
��

(x, q�; n)(1#O(1/n)) . (3.9)

The n dependence of C
��

(x, q�; n) de"nes the asymptotic behavior of ��
��

(x, q�; n) and calculation
of its explicit form would be our aim.

We can conclude, see Appendix H, that our LLA is applicable in the VHM domain till

�(�, z);ln(1/x);�"ln(!q�/�) , (3.10)

where

�(�, z)"�




	

d��
��

w�(��, z) . (3.11)

and

w�(�, z)"�
�

z�w�
�
(�) (3.12)

is the generating function of the multiplicity distribution in a gluon jet. In the frame of constraints
(3.10),

F��(q�,x;w)Jexp�4�N�(�, z)ln (1/x)� . (3.13)

The mean multiplicity of gluons created in the DIS kinematics

n�
�
(�,x)"

R
Rz lnF��(q�,x;w)�


��
"�

�
(�)�4N ln(1/x)/ln �<�

�
(�) , (3.14)

where

�
�
(�)"�





	

d�
�

�
�

n�
�
(�) (3.15)

and the mean gluon multiplicity in the jet n�
�
(�) has the following estimation [79]:

ln n�
�
(�)K�� . (3.16)

Inserting (3.16) into (3.15),

�
�
(�)"n�

�
(�)/�� .

Therefore, noting (3.3),

n�
�
(�,x)Kn�

�
(�)�4N ln(1/x)/� ln �;n�

�
(�) . (3.17)
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This means that the considered &t-channel' ladder is important in the narrow domain of multi-
plicities

n&n�
�
;n�

�
. (3.18)

So, in the VHM domain n<n�
�

one should

(i) Consider the ladder diagrams with a small number of rungs;
(ii) Take into account the multi-jet correlations assuming that increasing multiplicity leads to the

increasing number of rungs in the ladder diagram.

To choose one of these possibilities one should consider the structure of �(�, z) much more
carefully. This will be done in Section 3.5.

We can conclude that in the VHM domain, multiplicity production unavoidably destroys the
ladder LLA. To conserve this leading approximation one should choose xP0 and, in result, to get
to the multi-ladder diagrams, since in this case �

�
ln(!q�/��)&1 and �

�
ln(1/x)&1. Such theory

was considered in [80].

3.2.2. QCD jets
As was mentioned above, the pQCD description is right if the color particles virtuality is

bounded from below, �q��5la�, where � is chosen so that �
�
(��);1. This kinematical restriction

leads to the infrared cuto! [81,82] and may essentially in#uence the particle production in the
VHM region. It is a special property of pQCD. Indeed, for example, careful investigation of this
question in the asymptotically free (��)

�
-theory [83] shows that this restriction is &unobservable'

since their inclusion takes us beyond the LLA [84]. At the same time, the condition �q��5la�
essentially shrinks the phase space where particles are produced.

Particle (gluons) distribution in pQCD jets was investigated "rstly in [81,85] and it was shown
that the generating function is singular at z

�
!1&(1/n� ). Let us consider this solution stable with

reference to the discussed cuto!.
The explicit formulae for one jet production may be written in the form, see Appendix I:

�
���
�

(M)"a
���(M, n)e������� � 
��, n5n�
�
(M) , (3.19)

where a
���(n,M) is the polynomial function of n, n�
�
(M) is the mean multiplicity in the mass M jet

and c
�

is a positive constant.
The linear behavior of the exponent in (I.4) over n/n� has important consequences. So, let us

assume that the total energy M is divided into two jets of masses M
�

and M
�

equally:
M

�
"M

�
"M/2. If, for instance, M

�
;M

�
KM then the distribution will coincide with (3.19),

but the second jet distribution would renormalize the coe$cient a
���.
Then the multiplicity distribution in the two-jet event would be

�
���
�

(M)"a
���(M, n)e������� � 
���� , (3.20)

where n
�
#n

�
"n is the total multiplicity.

Comparing (3.19) with (3.20) we can see that with exponential accuracy

&exp�!c
�

n�
�
(M)!n�

�
(M/2)

n�
�
(M)n�

�
(M/2)

n� ,
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(3.19) would dominate in the VHM domain since the mean multiplicity n�
�
(M) increases

with M.
The experimental observation of these phenomena crucially depends on the value of a��, a��,2

but if (3.19) is satis"ed then one can expect that the events in the VHM domain would be enhanced
by QCD jets and the mass of jets would have a tendency to be high with growing multiplicity.

The singular at "nite z solutions arise in the "eld theory, when the s-channel cascades (jets) are
described [56]. By de"nition, ¹(z, s) coincides with the total cross section at z"1. Therefore, the
nearness of z

�
to one de"nes the signi"cance of the corresponding processes. It is evident that both

s and n should be high enough to expect the jets creation.
Summarizing the above estimations, we may conclude that

O(e��)4�
�
(O(1/n) , (3.21)

i.e. the soft Regge-like channel of hadron creation is suppressed in the VHM region in the
high-energy events with exponential accuracy.

3.3. Phase transition } condensation

The aim of this section is to "nd the experimentally observable consequences of collective
phenomena in the high-energy hadron inelastic collision [86]. We will pay attention mainly to the
phase transitions, leaving out other possible interesting collective phenomena.

The statistics experience dictates that we should prepare the system for the phase transition. The
temperature in a critical domain and the equilibrium media are just these conditions. It is evident
that they are not a trivial requirement considering the hadrons inelastic collision at high energies.

The collective phenomena by de"nition suppose that the kinetic energy of particles of media
are comparable, or even smaller, than the potential energy of their interaction. It is a quite natural
condition noting that, for instance, the kinetic motion may decay even completely at a given
temperature ¹, necessary for the phase transition long-range order. This gives, more or less
de"nitely, the critical domain.

The same idea as in statistics seems natural in the multiple production physics. We will assume
(A) that the collective phenomena should be seen just in the very high multiplicity (VHM) events,
where, because of the energy}momentum conservation laws, the kinetic energy of the created
particles cannot be high.

We will lean at this point on the S-matrix interpretation of statistics [87], see Section 2.2.
It is based on the S-matrix generalization of the Wigner function formalism of Carruthers and
Zachariazen [39] and the real-time "nite-temperature "eld theory of Schwinger and Keldysh
[29,30], see Appendixes A}C.

It was mentioned that the n-particle partition function in this approach coincides with the
n-particle production cross section �

�
(s) (in the appropriate normalization condition). Then, the

cross section �
�
(s) can be calculated applying the n-point Wigner function=

�
(X

�
,X

�
,2,X

�
). In

the relativistic case X
�
"(u, q)

�
are the 4-vectors. So, the external particles are considered as the

&probes' to measure the state of the interacting "elds, i.e. the low mean energy of probes means that
the system is &cold'.

The multiple production phenomena may be considered also as the thermalization process of
incident particle kinetic energy dissipation into the created particle mass. From this point of view
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the VHM processes are highly nonequilibrium since the "nal state of this case is very far from the
initial one. It is known in statistics [24] that such processes aspire to be the stationary Markovian
with a high level of entropy production. In the case of complete thermalization, the "nal state is in
equilibrium.

The equilibrium we will classify as the condition in the frame of which the #uctuations of
corresponding parameter are Gaussian. So, in the case of complete thermalization, the probes
should have the Gaussian energy spectra. In other terms, the necessary and su$cient condition of
the equilibrium is the smallness of the mean value of energy correlators [42,87]. From the physical
point of view, the absence of these correlators means depression of the macroscopic energy #ows in
the system.

The multiple production experiment shows that the created particle energy spectrum is far from
a Gaussian law, i.e. the "nal states are far from equilibrium. The natural explanation of these
phenomena consists in the presence of (hidden) conservation laws in the interacting Yang}Mills
"elds: it is known that the presence of su$cient number of "rst integrals in involution prevents
thermalization completely.

Nevertheless, the VHM "nal state may be equilibrium (B) in the above formulated sense. This
means that the forces created by the nonAbelian symmetry conservation laws may be frozen during
the thermalization process (remembering its stationary Markovian character in the VHM domain).
We would like to take into account that the entropy S of a system is proportional to the number of
created particles and, therefore, S should tend to its maximum in the VHM region [1].

One may consider following the small parameter (n� (s)/n);1, where n� (s) is the mean value of the
multiplicity n at a given CM energy �s. Another small parameter is the energy of the fastest
hadron �

���
. One should assume that in the VHM region (�

���
/�s)P0. So, the conditions

n� (s)
n

;1,
�
���
�s

P0 (3.1)

would be considered as the mark of the processes under consideration. We can hope to organize the
perturbation theory over them having there small parameters. In this sense VHM processes may be
&simple', i.e. one can use for their description semiclassical methods.

So, considering VHM events one may assume that conditions (A) and (B) are satis"ed and one
may expect the phase transition phenomena.

The S-matrix interpretation of statistics is based on the following de"nitions. First of all, let us
introduce the generating function [49]

¹(z, s)"�
�

z��
�
(s) . (3.2)

Summation is performed over all n up to n
���

"�s/m and, at "nite CM energy �s, ¹(z, s) is
a polynomial function of z. Following our idea, see Section 2.3, let us assume now that z'1 is
su$ciently small and for this reason ¹(z, s) depends on the upper boundary n

���
only weakly. In

this case one may formally extend summation up to in"nity and in this case ¹(z, s) may be
considered as a whole function. This possibility is important since it is the equivalent of the
thermodynamical limit and it allows to classify the asymptotics over n in accordance with
the position of singularities over z.

J. Manjavidze, A. Sissakian / Physics Reports 346 (2001) 1}88 39



Let us consider ¹(z) as the big partition function, where z is &activity'. It is known [51] that ¹(z)
should be regular inside the circle of unit radius. The leftist singularity lies at z"1. This singularity
is the manifestation of the "rst order phase transition [51,24,52].

The origin of this singularity was investigated carefully in the paper [24]. It was shown that the
position of singularities over z depends on the number of particles n in the system: the two complex
conjugated singularities move to the real z-axis with rising n and in the thermodynamical limit,
n"R, they pinch the point z"1 in the "rst order phase transition case. More general analysis
[52] shows that if the system is in equilibrium, then ¹(z) may be singular only at z"1 and z"R.

The position of the singularity over z and the asymptotic behavior of �
�

are closely related.
Indeed, for instance, inserting into (3.2) �

�
Jexp�!cn�� we "nd that ¹(z) is singular at z"1 if

�(1. Generally, using the Mellin transformation (2.37) one can "nd an asymptotic estimation
(2.39)

�
�
Je�� �	 
� 
��, z

�
'1 , (3.3)

where z
�

is the smallest solution of the equation of state

n"z
R
Rzln¹(z) . (3.4)

Therefore, to have the singularity at z"1, we should consider z
�
(n) as a decreasing function of n.

On the other hand, at constant temperature, ln z
�
(n)&�

�
(n) is the chemical potential, i.e. is the

work necessary for creation of one particle. So, the singularity at z"1 means that the system is
unstable: the less work is necessary for creation of one more particle if �(n) is a decreasing function
of n.

The physical explanation of these phenomena is the following, see also [88]. The generating
function ¹(z) has the following expansion:

¹(z)"exp��
�

z�b
�� , (3.5)

where b
�

are known as Mayer's group coe$cients [25]. They can be expressed through the
inclusive correlation functions and may be used to describe the formation of droplets of correlated
particles, see Section 2.3.3. So, if droplets consist of l particles, then

b
�
&e����
������ (3.6)

is the mean number of such droplets. Here �l
������ is the surface energy of d-dimensional droplet.
Inserting this estimation into (3.5),

ln ¹(z)&�
�

e�
�����
�������, ��"ln z . (3.7)

The "rst term in the exponent �l� is the volume energy of the droplet and being positive it tries
to enlarge the droplet. The second surface term !��l
������ tries to shrink it. Therefore, the
singularity at z"1 is the consequence of instability: at z'1 the volume energy abundance leads to
unlimited growth of the droplet.
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�	The corresponding formalism has been described, e.g. in [18].

In conclusion we wish to formulate once more the main assumptions.
(I) It was assumed "rst of all that the system under consideration is in equilibrium. This

condition may be naturally reached in the statistics, where one can wait for an arbitrary time
till the system reaches equilibrium. Note, in the critical domain, the time of relaxation
t
�
&(¹

�
/(¹!¹

�
))�PR, (¹!¹

�
)P#0, �'0, ¹

�
is the critical temperature.

We cannot give any guarantee that in the high-energy hadron collisions the "nal-state system is
in equilibrium. The reason for this uncertainty is the "nite time the inelastic processes and the
presence of hidden (con"nement) constraints on the dynamics. But if the con"nement forces
are frozen in the VHM domain, i.e. the production process is &fast', then the equilibrium may be
reached.

We may formulate the quantitative conditions, when the equilibrium is satis"ed [42]. One
should have the Gaussian energy spectra of created particles. If this condition is hardly investigated
in the experiment, then one should consider the relaxation of &long-range' correlations. This
excludes the usage of relaxation condition for the &short-range' (i.e. resonance) correlation.

(II) The second condition consists in the requirement that the system should be in the critical
domain, where the (equilibrium) #uctuations of the system become high. Having no theory of
hadron interaction at high energies we cannot de"ne where the &critical domain' lies and even
whether it exists or not.

But, having the VHM &cold' "nal state, we can hope that the critical domain is achieved.
The quantitative realization of this picture is given in Appendix J. It is important to note that the

semiclassical approximation used there is rightfully in the VHM domain.

4. Conclusion

4.1. Discussion of physical problems

It seems useful to start the discussion of models by outlining the main problems, from the
authors point of view.

A. Soft color parton problems. The infrared region of soft color parton interactions is a very
important problem of high-energy hadron dynamics. Such fundamental questions as the infrared
divergences of pQCD, collective phenomena in the colored particles system and symmetry
breaking are the phenomena of the infrared domain.

The standard (most popular) hadron theory considers pQCD at small distances (in the scale of
�K0.2 Gev) as the exact theory. This statement is con"rmed by a number of experiments,
namely deep-inelastic scattering data, hard jets observation. But the pQCD predictions have a "nite
range of validity since the nonperturbative e!ects should be taken into account at distances larger
than 1/�.

It is natural to assume, building the complete theory, that at large distances the nonperturbative
e!ects lay on�	 the perturbative ones. As a result, pQCD loses its predictability screened by the
nonperturbative e!ects.
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Notice, the pQCD running coupling constant �
�
(q�)"1/b ln(q�/��) becomes in"nite at q�"��

and we do not know what happens with pQCD if q�(��. There are few possibilities. For instance,
there is a suspicion [13] that at q�&�� the properties of theory changed so drastically (being
de"ned on a new vacuum) that even the notions of pQCD disappeared. This means that pQCD
should be truncated from below on the &fundamental' scale �. It seems natural that this infrared
cut-o! would in#uence the soft hadrons emission.

The new possibility is described in Appendix K. This strict formalism allows to conclude that
pure pQCD contributions are realized on zero measure, i.e. it is the phenomenological theory only.
The successive approach shows that the Yang}Mills theory should be described in terms of
(action,angle)-like variables. The last one means that the self-consistent description excludes such
notions as the &gluon'. As a result of this substitution new perturbation theory would be free from
infrared divergences, i.e. there is no necessity to introduce the infrared cuto! parameter �.
(Moreover, in the sector of vector "elds (without quarks) the theory is ultraviolet stable.) It seems
important for this reason to investigate experimentally just VHM events, where the soft color
partons production is dominant.

It is important to try to raise the role of pQCD in the &forbidden' area of large distances. The
VHM processes are at highly unusual condition, where the nonperturbative e!ects must be
negligible.

B. Dissipation problems. The highly nonequilibrium states decay (thermalization) which means in
pQCD terms that the process of VHM formation should be enhanced, at least in asymptotics over
multiplicity and energy, by jets. It is the general conclusion of nonequilibrium thermodynamics and
it means that the very nonequilibrium initial state tends to equilibrium (thermalized) as fast as
possible.

The entropy S of a system is proportional to the number of created particles and, therefore,
S should tend to its maximum in the VHM region [1]. But the maximum of entropy testi"es also
to the equilibrium of the system.

C. Collective phenomena. We should underline that the collective phenomena may take place if
and only if the particles interaction energy is comparable to the kinetic one. The VHM system
considered may be &cold' and &equilibrium'. For this reason the VHM state is mostly adopted for
investigation of collective phenomena. One of the possible states in which the collective e!ects, see,
e.g. [89], may be important is the &could colored plasma' [90].

The fundamental interest presents the problem of vacuum structure of Yang}Mills theory.
For instance, if the process of cooling is &fast', since the dissipation process of VHM "nal-state
formation should be as fast as possible, then one may consider formation of vacuum domains with
various properties. Then decay of these domains may lead to large #uctuations, for instance, of the
isotopic spin.

Another important question is the collective phenomena in the VHM "nal state. The last one
may be created &perturbatively', for instance, by the formation of heavy jets. Then the color charges
should be con"ned. There are various predictions about this process. One of them predicts that
there should be a "rst-order phase transition.

4.2. Model predictions

Now we can ask: what can models say concerning the above problems?
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A. Soft colored partons production. The multiperipheral models predict fast decreasing of
topological cross section in the VHM domain n� (s)�;n;n

���
, �

�
(O(e��). At the same time the

mean transverse momentum should decrease in this domain since the interaction radii should
&increase' with n.

The BFKL Pomeron predicts the same asymptotics, �
�
(O(e��), but the pQCD jet predicts

�
�
"O(e��). The naive attempt to insert into the BFKL Pomeron the production of particles via

(mini)jets seems impossible.
This &insertion' can be done into the DIS ladder but investigation of the LLA kinematics in

the VHM domain allows the conclusion that the &low-x' contributions should be taken into
account.

All this experience allows the assumption that in the VHM domain no &t-channel ladder'
diagrams play su$cient role. This implies the existence of a transition to the processes with jet
dominance. The pQCD is unable to predict the transition mechanism.

B. Transition into &equilibrium'. If the t-channel ladders are &destroyed' in the VHM region, then
jets, despite the small factor O(1/s) in the cross sections, are the only mechanism of particle
production in the VHM domain. Dominance of heavy jets in the VHM domain may naturally
explain the tendency towards equilibrium.

But the description of thermalization in terms of jets of massless gluons production destroys this
hope: the jet contribution �

�
"O(e��) assumes &bremsstrahlung' of soft gluons [91]. This prevents

the equilibrium since ordering without fail introduces the nonrelaxing correlations.
C. Collective phenomena. Considering the collective phenomena, we propose to distinguish (a) the

collective phenomena connected with the vacuum and (b) the collective phenomena produced in
the VHM system. Following the experience of Section 3.3 we can conclude that the signal of
vacuum instability is inequality: �

�
'O(e��).

Case (b) will not e!ect the cross section �
�
. But if the system reached equilibrium in the VHM

domain then the collective phenomena may be investigated using ordinary thermodynamical
methods. For instance, noting that !�ln(¹(�

�
, z)/¹(�

�
, z))�/�

�
"F(�

�
, z) is the free energy one can

measure the thermal capacity

R
R�

�

F(�
�
, z)"C(�

�
, z) . (4.8)

Then, comparing capacities of hadron and �-quanta systems we can say whether or not the phase
transition happened.

The connection of the equilibrium and relaxation of correlations is well known [42]. Continuing
this idea, if the VHM system is in equilibrium one may assume that the color charges in the
pre-con"nement phase of VHM event form the plasma. One should note here that the expected
plasma is &cold' and &dense'. For this reason no long-range con"nement forces would act among
color charges. Then, being &cold', in such a system various, collective phenomena may be
important.

4.3. Experimental perspectives

The experimental possibilities in the VHM domain are not clear till now. Nevertheless, "rst step
toward formulation of trigger system was done, see [92]. For this reason we would like to restrict
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ourselves by following two general questions. It seems that these questions are most important,
being in the very beginning of VHM theory.

I. For what values of multiplicity at a given energy the VHM processes become hard?
The answer to this question depends on the value of the incident energy. If we know the answer

then it will appear possible to estimate

� the role of multiperipheral contributions,
� the jet production rate,
� the role of vacuum instabilities.

It seems that the experimental answer to this question is absent since the produced particles are
soft, their mean transverse and longitudinal momenta have the same value. In our understanding
this question means: the total transverse energy may be extremely high.

It is interesting also to search the heavy jets, i.e. to observe the #uctuations of particle density
in the event-by-event experiment, but this program seems vague since, for all evidence, fractal
dimensions tend to zero with increasing multiplicities.

II. For what values of multiplicity does the VHM xnal state reach equilibrium?
We hope that having the answer for this question we would be able

� to investigate the status of pQCD,
� to observe the phase transition phenomena directly,
� to estimate the role of con"nement constraints.

The equilibrium means that the energy correlation function mean values are small. Another
point of interest, for example, is the charge equilibrium, when the mean value of charge correlation
functions is small.

Notice, the e!ect of the phase space boundary may lead to &equilibrium'. Indeed, if
(p)Km#p�/2m and p�;m� then one may neglect the momentum dependence of the amplitudes
a
�
. In this case the momentum dependence is de"ned by the Boltzmann exponent e�������, �PR

only and we get naturally to the Gaussian law for momentum distribution. Correlators
should be small in this case since there are no interactions among particles (a

�
are constants).

But our question assumes that we investigate the possibility of equilibrium when n;n
���

and
p�<m�.
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Appendix A. Matsubara formalism and the KMS boundary condition

There are various approaches to build the real-time "nite-temperature "eld theories of
Schwinger}Keldysh type (e.g. [47]). All of them use various tricks for analytical continuation
of imaginary-time Matsubara formalism to real time [93]. The basis of the approaches is the
introduction of the Matsubara "eld operator

�
�
(x,�)"e���

�
(x)e��� , (A.1)

where �
�
(x) is the interaction-picture operator introduced instead of the habitual Heisenberg

operator

�(x, t)"e����
�
(x)e���� .

Eq. (A.1) introduces the averaging over the Gibbs ensemble instead of averaging over zero-
temperature vacuum states.

If the interaction switched on at the moment t
�
adiabatically and switched o! at t

�
then there is

the unitary transformation

�(x, t)";(t
�
, t

�
);(t

�
, t)�

�
(x);(t, t

�
) . (A.2)

Introducing the complex Mills time contours [46] to connect t
�
to t, t to t

�
and t

�
to t

�
we form

a &closed-time' contour C (the end points of the contours joined together). This allows to write the
last equality (A.2) in the compact form

�(x)"¹
�
��(x)e���
�

����	� 
����
�

,

where ¹
�

is the time-ordering on the contour C operator.
The generating functional Z( j) of correlation (Green) functions has the form

Z( j)"R(0)�¹
�
e���
�

����	� 
����
���
����	 ,

where �	 means averaging over the initial state.
If the initial correlations have a little e!ect, we can perform averaging over the Gibbs ensemble.

This is the main assumption of the formalism: the generating functional of the Green functions Z( j)
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has the form in this case

Z( j)"�D�����; t
�
�e���¹

�
e���
�

��
���
�����; t
�
	

with ��"��(x). In accordance with (A.1) we have

���; t
�
�e���"���; t

�
!i��

and, as a result,

Z( j)"�D��e����
�
���
����
���
��� , (A.3)

where the path integration is performed with KMS periodic boundary condition

�(t
�
)"�(t

�
!i�) .

In (A.3) the contour C� connects t
�

to t
�
, t

�
to t

�
and t

�
to t

�
!i�. Therefore it contains an

imaginary-time Matsubara part t
�
to t

�
!i�. A more symmetrical formulation uses the following

realization: t
�
to t

�
, t

�
to t

�
!i�/2, t

�
!i�/2 to t

�
!i�/2 and t

�
!i�/2 to t

�
!i� (e.g. [28]). This case

also contains the imaginary-time parts of the time contour. Therefore, Eq. (A.3) presents the
analytical continuation of the Matsubara generating functional to real times.

One can note that if this analytical continuation is possible for Z( j) then representation (A.3)
gives good recipe of regularization of frequency integrals in the Matsubara perturbation theory, e.g.
[47]. But it gives nothing new for our problem since the Matsubara formalism is a formalism for
equilibrium states only.

Appendix B. Constant temperature formalism

The starting point of our calculations is the n- into m-particles transition amplitude a
��

, the
derivation of which is the well-known procedure in the Lehmann}Symanzik}Zimmermann (LSZ)
reduction formalism [94] framework, see also [95]. The (n#m)-point Green function G

��
are

introduced for this purpose through the generating functional Z
�

[96]

G
��

(x, y)"(!i)���
�



���

jK (x
�
)
�


���

jK (y
�
)Z
�

, (B.1)

where

jK (x)"
�

�j(x)
(B.2)

and

Z
�
"�D�e��� 
�� . (B.3)
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The action

S
�
(�)"S

	
(�)!<(�)#�dxj(x)�(x) , (B.4)

where S
	
(�) is the free part and <(�) describes the interactions. At the end of the calculations one

can put j"0.
To provide the convergence of the integral (B.3) over the scalar "eld � the action S

�
(�) must

contain a positive imaginary part. Usually for this purpose Feynman's i�-prescription is used. But it
is better for us to use the integral on the Mills complex time contour C

�
[46,47]. For example,

C
�

: tPt#i�, �P#0, !R4t4#R (B.5)

and after all the calculations return the time contour on the real axis putting �"0.
In Eq. (B.3) the integration is performed over all "eld con"gurations with standard vacuum

boundary condition

�d�xR�(�R��)"�
�

d���R��"0 , (B.6)

which leads to zero contribution from the surface term.
Let us introduce now "eld � through the equation

!

�S
	
(�)

��(x)
"j(x) (B.7)

and perform the shift �P�#� in integral (B.3), conserving boundary condition (B.6). Consider-
ing � as the probe "eld created by the source

�(x)"� dyG
	
(x!y)j(y) ,

(R�#m�)
�
G

	
(x!y)"�(x!y) , (B.8)

only the connected Green function G�
��

will be of interesting to us. Therefore,

G�
��

(x, y)"(!i)���
�



���

jK (x
�
)
�


���

jK (y
�
)Z(�) , (B.9)

where

Z(�)"�D�e��
�����
��(� (B.10)

is the new generating functional.
To calculate the nontrivial elements of the S-matrix we must put the external particles on the

mass shell. Formally, this procedure means amputation of the external legs of G�
��

and further
multiplication on the free particle wave functions. As a result, the amplitude of n- into m-particles
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transition a
��

in the momentum representation has the form

a
��

(q, p)"(!i)���
�



���

�K (q
�
)
�


���

�K H(p
�
)Z(�) . (B.11)

Here we introduce the particle distraction operator

�K (q)"� dxe��
��K (x), �K (x)"
�

��(x)
. (B.12)

Supposing that the momentum of particles is insu$cient for us the probability of n- into
m-particles transition is de"ned by the integral

r
��

"

1
n!m!�d�

�
(q) d�

�
(p)�
���

�
�
���

q
�
!

�
�
���

p
���a�� �� , (B.13)

where

d�
�
(q)"

�


���

d�(q
�
)"

�


���

d�q
�

(2�)�2�(q
�
)

, (B.14)

is the Lorentz-invariant phase space element. We assume that the energy}momentum conservation
�-function was extracted from the amplitude.

Note that r
��

is the divergent quantity. To avoid this problem with trivial divergence, connected
integration over reference frame, let us divide the energy}momentum "xing �-function into two
parts:

�
��(�q
�
!�p

�
)"�d�P�
��(P!�q

�
)�
��(P!�p

�
) (B.15)

and consider a new quantity

R(P)"�
���

1
n!m!� d�

�
(q) d�

�
(p)�
���P!

�
�
���

q
���
���P!

�
�
���

p
���a�� �� (B.16)

de"ned on the energy}momentum shell (2.6). Here we suppose that the number of particles is not
"xed. It is not too hard to see that, up to a phase space volume

R"�d�PR(P) (B.17)

is the imaginary part of the amplitude �vac�vac	. Therefore, computing r(P) the standard renormal-
ization procedure can be applied and the new divergences will not arise in our formalism.

The Fourier transformation of �-functions in (B.16) allows one to write R(P) in the form

R(P)"�
d��

�
(2�)�

d��
�

(2�)�
e��
����� �
(�) , (B.18)
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where


(�)"�
���

1
n!m!�

�


���

�d�(q
�
)e����
��

�


���

�d�(p
�
)e��������a

��
�� . (B.19)

Introducing the Fourier-transformed probability 
(�) we assume that the phase-space volume is
not "xed exactly, i.e. it is proposed that the 4-vector P is "xed with some accuracy if �

�
are "xed.

The energy and momentum in our approach are still locally conserved quantities since an
amplitude a

��
is translationally invariant. So, we can perform the transformation

�
�
�q

�
"(�

�
!�

�
)�q

�
#�

�
�q

�
P(�

�
!�

�
)�q

�
#�

�
P , (B.20)

since 4-momenta are conserved. The choice of �
�
"xes the reference frame. This degree of freedom

of the theory was considered in [11].
Inserting (B.11) into (B.19) we "nd that


(�)"exp�!i�dx dx�(�K
�

(x)D
��

(x!x�, �
�
)�K

�
(x�)

!�K
�

(x)D
��

(x!x�, �
�
)�K
�

(x�))�Z(�
�

)ZH(!�
�

) , (B.21)

where D
��

and D
��

are the positive and negative frequency correlation functions, respectively:

D
��

(x!x�, �)"!i�d�
�
(q)e�

������� (B.22)

describes the process of particles creation at the time x
	

and its absorption at x�
	
, x

	
'x�

	
, and � is

the CM 4-coordinate. Function

D
��

(x!x�, �)"i�d�
�
(q)e��

������� (B.23)

describes the opposite process, x
	
(x�

	
. These functions obey the homogeneous equations

(R�#m�)
�
G
��

"(R�#m�)
�
G

��
"0 , (B.24)

since the propagation of mass-shell particles is described.
We suppose that Z(�) may be computed perturbatively. For this purpose the following trans-

formations will be used (XK ,�/�X at X"0):

e���
(�"e��� 
��K 
��(K �
��e�� 
��
��(
��e���
(��

"e� 
�(
��(K �
��e���
(��"e���
���K �e�� 
��
��(
�� , (B.25)

where jK was de"ned in (B.2) and �K in (B.12). At the end of the calculations, the auxiliary variables j,
�� can be taken equal to zero. Using the "rst equality in (B.25) we "nd that

Z(�)"e��� 
��K 
���K 
��e���
��(�e����� 
� 
���
����� 
������
��� , (B.26)

where D
��

is the causal Green function:

(R�#m�)
�
G
��

(x!y)"�(x!y) . (B.27)
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Inserting (B.26) into (B.21) after simple manipulations with di!erential operators, see (B.25), we
may "nd the expression


(�)"e���
���K � ����
���K ��exp�
i
2� dx dx�

( j
�

(x)D
��

(x!x�, �
�
)j
�

(x�)!j
�

(x)D
��

(x!x�, �
�
)j
�

(x�)

!j
�

(x)D
��

(x!x�)j
�

(x�)#j
�

(x)D
��

(x!x�)j
�

(x�))� , (B.28)

where

D
��

"(D
��

)H (B.29)

is the anticausal Green function.
Considering the system with a large number of particles, we can simplify the calculations

choosing the CM frame P"(P
	
"E, 0). It is useful also [41,33] to rotate the contours of

integration over

�
	��

: �
	��

"!i�
�
, Im�

�
"0, k"1, 2 .

For the result, omitting the unnecessary constant, we will consider 
"
(�).
External particles play a double role in the S-matrix approach: their interactions create and

annihilate the system under consideration and, on the other hand, they are probes through which
the measurement of a system is performed. Since �

�
are the conjugate to the particles energies

quantities we will interpret them as the inverse temperatures in the initial (�
�
) and "nal (�

�
) states

of interacting "elds. They are &good' parameters if and only if the energy correlations are relaxed.

B.1. Kubo}Martin}Schwinger boundary condition

The simplest (minimal) choice of �(�
�

)O0 assumes that the system under consideration is
surrounded by black-body radiation. This interpretation restores Niemi}Semeno! 's formulation
of the real-time "nite temperature "eld theory [28].

Indeed, as follows from (B.21), the generating functional 
(�) is de"ned by corresponding
generating functional



	
(�

�
)"Z(�

�
)ZH(!�

�
)"�D�

�
D�

�
e��	 
�� ����	 
���e���
���(� ����
���(�� , (B.30)

see (B.21). The "elds (�
�

, �
�

) and (�
�

, �
�

) were de"ned on the time contours C
�

and C
�

.
As was mentioned above, see (2.11), the path integral (B.30) describes the closed-path motion in

the space of "elds �. We want to use this fact and introduce a more general boundary condition
which also guarantees the cancelation of the surface terms in the perturbation framework. We will
introduce the equality

�
�

d����
R��

�
"�
�

d����
R��

�
. (B.31)
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The solution of Eq. (B.31) requires that the "elds �
�

and �
�

(and their "rst derivatives R���
)

coincide on the boundary hypersurface �
�

�
�

(�
�

)"�(�
�

)O0 , (B.32)

where, by de"nition, �(�
�

) is the arbitrary `turning-pointa "eld.
In the absence of the surface terms, the existence of a nontrivial "eld �(�

�
) has the in#uence only

on the structure of the Green functions

G
��

"�¹�
�

�
�

	, G
��

"��
�

�
�

	 ,

G
��

"��
�

�
�

	, G
��

"�¹I �
�

�
�

	 , (B.33)

where ¹I is the antitemporal time ordering operator. These Green functions must obey the
equations:

(R�#m�)
�
G
��

(x!y)"(R�#m�)
�
G

��
(x!y)"0 ,

(R�#m�)
�
G
��

(x!y)"(R�#m�)H
�
G

��
(x!y)"�(x!y) (B.34)

and the general solutions of these equations

G
��
"D

��
#g

��
,

G
��

"g
��
, iOj , (B.35)

contain the arbitrary terms g
��

which are the solutions of homogenous equations

(R�#m�)
�
g
��
(x!y)"0, i, j"#,! . (B.36)

The general solutions of these equations (they are distinguished by the choice of the time contours
C

�
)

g
��
(x!x�)"�d�

�
(q)e�

�����n

��
(q) (B.37)

are de"ned through the functions n
��

which are the functionals of the &turning-point' "eld �(�
�

):
if �(�

�
)"0 we must have n

��
"0.

Our aim is to de"ne n
��
. We can suppose that

n
��

&��(�
�

)2�(�
�

)	 .

The simplest supposition gives

n
��

&��
�
�
�
	&���(�

�
)	 . (B.38)

We will "nd the exact de"nition of n
��

starting from the S-matrix interpretation of the theory.
It was noted previously that the turning-point "eld �(�

�
) may be arbitrary. We will suppose that

on the remote �
�

there are only free, on the mass-shell, particles. Formally, it follows from
(B.35)}(B.37). This assumption is natural also in the S-matrix framework [40]. In other respects the
choice of boundary condition is arbitrary.
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Therefore, we wish to describe the evolution of the system in a background "eld of mass-shell
particles. The restrictions connected with energy}momentum conservation laws will be taken into
account and in other respects background particles are free. Then our derivation is the same as in
[11]. Here we restrict ourselves to mentioning only the main quantitative points.

Calculating the product a
��

aH
��

we describe time-ordered processes of particle creation and
absorption described by D

��
and D

��
. In the presence of the background particles, this

time-ordered picture is slurred over because of the possibility to absorb particles before their
creation occurs.

The processes of creation and absorption are described in vacuum by the product of operators
�K
�

�K
�

and �K
�

�K
�

. We can derive (see also [11]) the generalizations of (B.21). The presence of the
background particles will lead to the following generating functional:

R
��

"e��N
(H
� (� �R

	
(�

�
) , (B.39)

where R
	
(�

�
) is the generating functional for the vacuum case, see (B.30). The operator

N(�H
�
�
�
)

describes the external particles environment.
The operator �K H

�
(q) can be considered as the creation and �K

�
(q) as the annihilation operator and

the product �K H
�
(q)�K

�
(q) acts as the activity operator. So, in the expansion of N(�K H

�
�K
�
) we can leave

only the "rst nontrivial term

N(�H
�
�
�
)"�d�(q)�K H

�
(q)n

��
�K
�
(q) , (B.40)

since no special correlation among background particles should be expected. If the external
(nondynamical) correlations are present then the higher powers of �K H

�
�K
�
will appear in expansion

(B.40). Following the interpretation of �K H
�
�K
�
, we conclude that n

��
is the mean multiplicity of

background particles.
Computing 


��
we must conserve the translation invariance of amplitudes in the background

"eld. Then, to take into account the energy}momentum conservation laws one should adjust to
each vertex of in-going a

��
particles the factor e����
�� and for each out-going particle we have

correspondingly e����
��.
So, the product e����
��e���� 
�� can be interpreted as the probability factor of the one-particle

(creation#annihilation) process. The n-particles (creation#annihilation) process probability is
the simple product of these factors if there are no special correlations among background particles.
This interpretation is evident in the CM frame �

�
"(!i�

�
, 0).

After these preliminaries, it is not too hard to "nd that in the CM frame we have

n
��

(q
	
)"n

��
(q

	
)"

��
��	

ne�
����� ����
	 ��

��
��	

e�
����� ����
	 ��

"

1
e
����� ����
	 �!1

"n� ��q	 �
�
�
#�

�
2 � . (B.41)
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Computing n
��

for iOj we must take into account the presence of one more particle

n
��

(q
	
)"�(q

	
)
��
���

ne�
����� ��� 
	�

��
���

e�
����� ��� 
	�
#�(!q

	
)
��
��	

ne
����� ��� 
	�

��
��	

e
����� ��� 
	�

"�(q
	
)(1#n� (q

	
�
�
))#�(!q

	
)n� (!q

	
�
�
) (B.42)

and

n
��

(q
	
)"�(q

	
)n� (q

	
�
�
)#�(!q

	
)(1#n� (!q

	
�
�
)) . (B.43)

Using (B.41)}(B.43), and the de"nition (B.35) we "nd the Green functions:

G
���

(x!x�, (�))"�
d�q
(2�)�

e�

�����GI
��
(q, (�)) (B.44)

where

iGI
�
j(q, (�))"�

i
q�!m�#i�

0

0 !

i
q�!m�!i��

#2��(q�!m�)�
n� �

�
�
#�

�
2

�q
	
�� n� (�

�
�q

	
�)a
�

(�
�
)

n� (�
�
�q

	
�)a

�
(�

�
) n� �

�
�
#�

�
2

�q
	
��� (B.45)

and

a
�

(�)"!e���(�q
	
�$q

	
) . (B.46)

The corresponding generating functional has the standard form

R
�
( j

�
)"e���
���K � ����
���K ��e����
� 
���� 
�� �� 
�����
����� 
��� , (B.47)

where the summation over repeated indexes is assumed.
Inserting (B.47) in the equation of state (2.8) we can "nd that �

�
"�

�
"�(E). If �(E) is a &good'

parameter then G
��
(x!x�;�) coincides with the Green functions of the real-time "nite-temperature

"eld theory and the KMS boundary condition:

G
��

(t!t�)"G
��

(t!t�!i�), G
��

(t!t�)"G
��

(t!t�#i�) , (B.48)

is restored. Eq. (B.48) can be deduced from (B.45) by direct calculations.

Appendix C. Local temperatures

We start this consideration from the assumption that the temperature #uctuations are large
scale. We can assume that the temperature is a &good' parameter in a cell whose dimension is much
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smaller than the #uctuation scale of temperature. (The &good' parameter means that the corre-
sponding #uctuations are Gaussian.)

Let us divide the remote hypersurface �
�

on an N
�

and let us propose that we can measure the
energy and momentum of groups of in- and out-going particles in each cell. The 4-dimension of
cells cannot be arbitrarily small because of the quantum uncertainty principle.

To describe this situation we decompose the �-function of the initial state constraint (2.6) on the
product of (N

�
#1) �-functions:

�
���P!

�
�
���

q
��"�

��



���
�dQ���Q�!

��
�
���

q
������
���P!

��

�
���

Q�� ,

where q
��� is the momentum of the kth in-going particle in the �th cell and Q� is the total

4-momenta of n� in-going particles in this cell, �"1, 2,2,N
�
. Therefore,

�
�
���

��
�
���

q
���"P .

The same decomposition will be used for the second �-function of outgoing particle constraints.
We must take into account the multinomial character of particle decomposition on N groups. This
will give the coe$cient

n!
n
�
!2n

�
!
�
��n!

�
�
���

n��
m!

m
�
!2m

�
!
�
��m!

�
�
���

m�� ,

where �
�

is the Kronecker symbol. The summation over

�n
�
, n

�
,2, n

��
�"�n�

��
, �m

�
,m

�
,2,m

��
�"�m�

��

is assumed.
As a result, the quantity

R
��

(P,Q)" �
�����

��
��a�� ��

��



���
�
d�

��
(q
�
)

m� !
�
���Q�!

��
�
���

q
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d�
��

(p
�
)
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�
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��
�
���

p
�����

(C.1)

de"nes the probability to "nd in the �th cell the #uxes of in-going particles with total 4-momentum
Q� and of out-going particles with the total 4-momentum P� . The sequence of these two measure-
ments is not "xed.

The Fourier transformation of �-functions in (C.1) gives

R
��

(P,Q)"�
�


���

d��
���
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d��

���
(2�)�

e���
���
!�������� ���� �
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(�) ,

where



��

(�)"

��

(�
���

, �
���2, �

����
; �

���
, �

���
,2, �

���
)
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has the form



��

(�)"�
��



���
�
��


���

d�
��

(q)
m� !

e������
���
��


���

d�
��

(p)
n� !

e������������a�� �� . (C.2)

Inserting

a
��

(p, q)"(!i)���
�


���

�K (q
���)

�


���

�K H(p
���)Z(!�)

into (C.2) we "nd



��

(�)"exp�i
��

�
���
�dxdx�[�K

�
(x)D

��
(x!x�; �

��� )�K �(x�)

!�K
�

(x)D
��

(x!x�; �
���)�K � (x�)]�
	

(�) , (C.3)

where D
��

(x!x�; �), and D
��

(x!x�; �) are the positive and negative frequency correlation
functions.

We must integrate over sets �Q�
��

and �P�
��

if the distribution of momenta over cells is not
"xed. As a result,

R(P)"�D��
�
(P)D��

�
(P)


��
(�) , (C.4)

where the di!erential measure

D��(P)"
��



���

d���
(2�)�

K(P, ���
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)

takes into account the energy}momentum conservation laws

K(P, ���
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d�Q�e�
���
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���P!

��
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���

Q�� .

Explicit integration gives that

K(P, ���
��

)&
��



���

�
��(�!�� ) ,

where � is 3-vector of the CM frame. Choosing CM frame, �"(!i�, 0),

K(E, ���
��

)"�
�

	

��



���

dE�e
���

�����	���E!

��
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���

E�� .

In this frame



��

(P)"�D�
�
(E)D�

�
(E)


��
(�) ,
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where

D�(E)"
��



���

d��
2�i

K(E, ���
��

)

and 

��

(�) was de"ned in (C.3) with �
���"(!i�

��� , 0), Re�
���'0, k"1, 2.

We will calculate integrals over �
�

using the stationary phase method. The equations for the
most probable values of �

�
:

!

R
R�

���
lnK(E, ���

��
)"

R
R�

���
ln


��
(�), k"1, 2 , (C.5)

always have unique positive solutions ��
���(E). We propose that the #uctuations of �

�
near ��

��� are
small, i.e. are Gaussian. This is the basis of the local-equilibrium hypothesis [97]. In this case 1/��

���
is the temperature in the initial state in the measurement cell � and 1/��

��� is the temperature of the
"nal state in the �th measurement cell.

The last formulation (C.4) implies that the 4-momenta �Q�
��

and �P�
��

cannot be measured. It is
possible to consider another formulation also. For instance, we can suppose that the initial set
�Q�

��
is "xed (measured) but �P�

��
is not. In this case we will have a mixed experiment: ��

��� is
de"ned by the equation

E�"!

R
R�

���
ln


��

and ��
��� is de"ned by the second equation in (C.5).

Considering the continuum limit, N
�
PR, the dimension of the cells tends to zero. In this case

we are forced by quantum uncertainty principle to assume that the 4-momenta sets �Q� and �P� are
not "xed. This formulation becomes pure thermodynamical: we must assume that just ��

�
� and

��
�
� are measurable quantities. For instance, we can "x ��

�
� and try to "nd ��

�
� as a function of

the total energy E and the functional of ��
�
�. In this case, Eqs. (C.5) become the functional

equations.
In the considered microcanonical description, the "niteness of temperature does not touch the

quantization mechanism. Indeed, one can see from (C.3) that all thermodynamical information is
con"ned in the operator exponent

eN
(H
� (� �"


�


���

e��(K ����(K � ,

the expansion of which describes the environment, and the &mechanical' perturbations are de-
scribed by the functional 


	
(�). This factorization was achieved by the introduction of the auxiliary

"eld � and is independent of the choice of boundary conditions, i.e. una!ected by the choice of the
systems environment.

C.1. Wigner functions

We will adopt the Wigner functions formalism in the Carruthers}Zachariazen formulation [39].
For the sake of generality, the m into n particles transition will be considered. This will allow the
inclusion of the heavy ion}ion collisions.
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In the previous section, the generating functional 

��

(�) was calculated by means of dividing the
&measuring device' on the remote hypersurface �

�
into N

�
cells



��

(�)"e��N
(_��
�

	
(�) , (C.6)

where

N(�;�, z)"�
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�dx dx�(�K

�
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��� , z� )�K
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!�K
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��

(x!x�;�
��� , z�)�K

�
(x�))� (C.7)

is the particle number operator. The frequency correlation functions D
��

and D
��

are de"ned by
equalities

D
��

(x!x�;�
��� , z�)"!i�d�

�
(q)e�
��� 
�����e����� �

��� �z

�
(q

���) , (C.8)
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��� , z�)"i�d�

�
(q)e��
��� 
�����e������

��� �z

�
(q

���) . (C.9)

It was assumed that the dimension of the device cells tends to zero (N
�
PR). Now we wish to

specify the cells coordinates. As a result we will get to the Wigner function formalism.
Let us introduce Wigner variables [98]

x!x�"r, x#x�"2y : x"y#r/2, x�"y!r/2 . (C.10)

Then

N(�;�, z)"!i
��

�
���
�d�(q) dr(�K
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(y#r/2)�K

�
(y!r/2)z
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(q

���)e�
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#�K
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(y#r/2)�K
�

(y!r/2)z
�
(q

���)e��
����e����� �

��� �) dy . (C.11)

The Boltzmann factor, e����� �

��� �, can be interpreted as the probability to "nd a particle with the
energy �(q

���) in the "nal (i"2) or initial (i"1) state. The total probability, i.e. the process of
creation and further absorption of n particles, is de"ned by multiplication of these factors. Besides,
e�
���� is the out-going particle momentum measured in the �th cell.

Generally, it is impossible to adjust the 4-index of cell � with coordinate y. For this reason the
summation over � and the integration over r are performed in (C.11) independently. But let us
assume that the 4-dimension of the cell ¸ is higher than the scale of the characteristic quantum
#uctuations ¸



,

¸<¸



. (C.12)

One can divide the four-dimensional y space into the ¸-dimensional cells. Then, because of (C.12),
the quantum #uctuations cannot take away particles from this cell. Then we can adjust the index of
the measurements cell with the index of the y space cell.
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As a result,

N(�;�, z)"!i�dy�d�
�
(q) dr(�K
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where

�dy"�
� ��
��dy (C.14)

and C(�) is the dimension ¸ of the y space cell with index �. Notice that the momentum q did not
carry the index � (or the index y of the space cell).

Our formalism allows the introduction of more general &closed-path' boundary conditions.
The presence of external black-body radiation will only reorganize the di!erential operator
exp�NK (�H

�
�
�
)� and a new generating functional 


��
has the same form



��

(�, z)"e��N
(_��
�

	
(�) .

The calculation of operator NK (�H
�
�
�
) is strictly the same as in Appendix B. Introducing the cells

we will "nd that
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where the occupation number n�
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carries the cell index y:
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For simplicity the CM system was used. Other calculations are the same as the constant
temperature case.

Appendix D. Multiperipheral kinematics

First of all [21], two light-like 4-momenta

p
���

"P
���

!P
���

m�/s
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are introduced. Here P
���

are momenta of colliding particles. The "nal-state particles momenta
have the following representation:

p�
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�
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p
�
#k

��
. (D.1)

Sudakov's parameters, �,�, are not independent. The mass-shell conditions and the energy}
momentum conservation laws give
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"1 , (D.2)

where E
��

is the transverse energy.
We have for the multiperipheral kinematics
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and the transverse momenta are restricted:

�p�
��

�&�k
��

�&m . (D.4)

It corresponds to small production angles in the considered CM frame

�
�
"

�k
��

�

�s�
�

, ��
�
�<��

�
� , (D.5)

if the particle moves along P
�
, and a similar expression exists for particles moving in the opposite

direction, where ��
�
�;��

�
�. In the &central region' of the CM frame ��

�
�&��

�
�&(E

��
/E);1 the

angles of produced particles are large and energies are small. It should be underlined that all this
excludes the (mini)jets formation.

The "nal-state particles phase space volume element is
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where C
�

"3 and the 4-momentum of produced particle
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The square of pairs invariant mass
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.

The energy conservation law takes the form

s
�
s
�
2s

�
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2E�
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.

The trajectory of reggeized gluon is

�(q�)"
q��

�
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d�k
(k�#��)((q!k)�#��)

,

where � is the gluon &mass'. If this virtuality is large, �<m, then the gluon decays creating a pQCD
jet, but the constraint on the multiperipheral kinematics prevents this possibility.

D.1. Deep inelastic reactions

For the pure deep inelastic case, when one of the initial hadrons which is scattered at the angle
� has the energy E� in the cms of beams whereas another which is scattered at small angle and
the large transfer momentum Q"4EE� sin�(�/2)<m�, is distributed to the same number of the
emitted particles due to evolution mechanism we have [91] (� is small)
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where �
��"�(�
���

!�
�
) and the emission angle �

�
"�k

�
�/(Emax(�

�
.�
�
)).

D.2. Large angle production

For the large-angle particle production process the di!erential cross section (as well as the total
one) decreases with CM energy �s. Let us consider for de"niteness the process of annihilation of
electron}positron pairs to n photons [99]:
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Similar formulae can be written for subprocess of quark-antiquark annihilation into n large-angle
moving gluons.

At the end, one can consider the following possibilities:

(a) Pomeron regime (P);
(b) Evolution regime (DIS);
(c) Double logarithmic regime (DL);
(d) DIS#P regime;
(e) P#DL#P regime.

The description of every regime may be performed in terms of e!ective ladder-type Feynman
diagrams. This can be done using the blocks dZ

�
, dD

�
and dF

�
.

Appendix E. Reggeon diagram technique for generating function

We will consider, see (3.11)

P(q,�; z)"�
�

	

d�e�	�P(q,�; z)"
1

�#��
	
q�#�

	
(z)

, �"ln(s/m�) . (E.1)

as the &propagator of the cut Pomeron'. It will be assumed also that

�
	
(z)"!�#(1!z)n

	
, n

	
'0 .

So, the resonance short-range correlations will be ignored in this de"nition or propagator. It was
assumed also that the &bare' slope �� is z independent.

It should be underlined that the &propagator' (E.1) is written phenomenologically. It absorbs the
assumptions that (i) the di!raction cone shrinks with energy and (ii) the inclusive cross sections are
universal, see (3.2).

The set of principal rules concerning multiperipheral kinematics of Feynman diagrams is given
in Appendix D. The reggeon calculus supposes that the virtuality of each line of the Feynman
diagram is restricted. This ignores &hard jets', later known as the pQCD jets.

Then the � Pomeron exchange eikonal diagram has only (�#1) ways of being cut. If the cut line
goes through � Pomerons, then the corresponding contributions are:

���(�, q)"�d��(M�� (q� ,2, q� ))�Y��
�


���

P(q
�
, �

�
; z)

�



�����

P(q
$
, �

�
; z"1) , (E.2)

where M��(q� ,2, q�) is the &vertex function', the combinatorial coe$cient is
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and the phase space element is
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As usual, contribution (E.2) leads to the following mean multiplicity of produced particles:

n� (s)��"
R
Rz ln�d�� (s/m�)	��� (�, q"0)�


��

&�n� (s) . (E.4)

Therefore,

�&n� (s) (E.5)

is essential in the VHM region, where n&n� (s)� is assumed.
The impact parameter representation:

��� (s, q)"�d��
s

m��
	 d�q
(2�)�

e�qb��� (�, q) (E.6)

would be useful also. The contribution (E.2) describes interactions with impact parameter

�b�	K4�� ln(s/m�)/� . (E.7)

Notice that �b�	 is the number of cut pomerons independent of �. But, remembering that �5� and
that the Regge model is only able to describe large-distance interactions, m��b�	51, one can
conclude that the Regge pole description is valid only for

n4n� (s)� . (E.8)

This is why the VHM region is de"ned by n� (s)�.

Appendix F. Pomeron with � > 0

Then the cut Pomeron propagator in the impact parameter representation

g� (b,�; z)"g(b, �)e

����� 
�� , (F.1)

where

g(b, �)"
1

2���
e��e�b������ (F.2)

is the uncut Pomeron pro"le function. Using this de"nition one can "nd that the contribution of
the eikonal diagrams gives a contribution

F
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�
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1
2
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�
b���
�

����� 
�����) , (F.3)

where � is a constant.
The "rst bracket is essential for b�44�����. So, with exponential accuracy, the "rst term is

equal to

�(4�����!b�) .
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Let us now consider the second bracket. For z(1

b�44������1#

1
�

ln(1!e

����� 
��)�"4������(�, z) (F.4)

are essential. It is not hard to see that �(�, z) decreases if zP1 and �(�, z) is equal to zero for z"1. In
this case, by the de"nition of the generating function, the integral over b of F

	
(b, �; z"1) de"nes

the contribution to the total cross section. So, the model predicts the production of particles in the
ring

4�����(�, z)4b�44����� . (F.5)

if z(1, i.e. if n(n� (s). Notice also that �(�, z"0)"�#O(e��). Then,

F
	
(b, �; z"0)"�

�
F

	
(b, �; z"1) . (F.6)

So, the elastic part of the total cross section is half of the total cross section. This means, using the
optical analogy, that the scattering on the absolutely black disk is well described.

The last conclusion means that the interaction radii should increase with n in the VHM region.
Indeed, as follows from (F.3),

F
	
(b, �; z)K

1
2
(e���

�
b���
�

����� 
�����!1) , (F.7)

at z'1 and, therefore,

04b�4B�"4���(��#(z!1)n� (s)) (F.8)

are essential.

Appendix G. Dual resonance model of VHM events

Our purpose is to investigate the role of the exponential spectrum (3.19) in the asymptotic region
over multiplicity n. In this case one can validate heavy resonance creation and such a formulation
of the problem has de"nite advantages.

(i) If creation of heavy resonances at nPR is expected, then one can neglect the dependence on
the resonance momentum q

�
. So, the &low-temperature' expansion is valid in the VHM region.

(ii) Having the big parameter n, one can construct the perturbations expanding over 1/n.
(iii) We will be able to show at the end the range of applicability of these assumptions.

For this purpose, the following formal phenomena will be used. The grand partition function

¹(z, s)"�
�

z��
�
(s), ¹(1, s)"�

�
�
(s), n4�s/m

	
,n

���
(s) (G.1)

will be introduced, see (2.35). Then the inverse Mellin transformation, see (2.37)

�
�
(s)"

1
2�i�

dz
z���

¹(z, s) . (G.2)
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will be performed expanding it in the vicinity of the solution z
�
'0 of the equation of state,

see (2.38):

n"z
R
Rzln¹(z, s) . (G.3)

It is assumed, and this should be con"rmed at the end, that the #uctuations in the vicinity of z
�
are

Gaussian.
It is natural at "rst glance to consider z

�
"z

�
(n, s) as an increasing function of n. Indeed, this

immediately follows from the positivity of �
�
(s) and the "niteness of n

���
(s) at "nite s. But one can

consider the &thermodynamical limit', see Section 2.3.1, or the limit m
	
P0. Theoretically, the last

one is right because of the PCAC hypotheses and nothing should happen if the pion mass m
	
P0.

In this sense, ¹(z, s) may be considered as the whole function of z. Then, z
�
"z

�
(n, s) would be an

increasing function of n if and only if ¹(z, s) is a regular function at z"1.
The proof of this statement is as follows. We should conclude, as follows from Eq. (G.3), that

z
�
(n, s)Pz

�
at nPR and at s"const , (G.4)

i.e. the singularity point z
�
attracts z

�
in asymptotics over n. If z

�
"1, then (z

�
!z

�
)P#0, when

n tends to in"nity [50]. The concrete realization of this possibility is shown in Section 3.3. But if
z
�
'1, then (z

�
!z

�
)P!0 in VHM region, see Sections 3.1, 3.5.

One may use the estimation, see also (2.39):

!

1
n

ln
�
�
(s)

�
�
�

(s)
"ln z

�
(n, s)#O(1/n) , (G.5)

where z
�
is the smallest solution of (G.3). It should be underlined that this estimation is independent

of the character of singularity, i.e. the position z
�

is only important with O(1/n) accuracy.

G.1. Partition function

Introducing the &grand partition function' (G.1) the &two-level' description means that

ln
¹(z,�)
�
�
�

(s)
"�

�

1
k!�

�


���

�d�
�
(q) dm

�
�(q

�
, z)e�����N

�
(q

�
, q

�
,2, q

�
;�),!�F(z, s) , (G.6)

where �(q
�
)"(q�

�
#m�

�
)���. This is our group decomposition. The quantity �(q, z) may be considered

as the local activity. So,

�¹

��(q, z) ����

&�
�
�

B
�
(q) . (G.7)

If the resonance decay forms a group of particles with total 4-momentum q, then B
�
(q) is the mean

number of such groups. The second derivative gives

��¹

��(q
�
, z)��(q

�
, z) ����

&�
�
�

�B
�
(q

�
, q

�
)!B

�
(q

�
)B

�
(q

�
)�,�

�
�
K

�
(q

�
, q

�
) , (G.8)
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where K
�
(q

�
, q

�
) is the two groups correlation function, and so on. One can consider B

�
as Mayer's

group coe$cients, see Section 2.3.3.
The Lagrange multiplier � was introduced in (G.6) to each resonance: the Boltzmann exponent

exp�!��� takes into account the energy conservation law �
�
�
�
"E, where E is the total energy of

colliding particles, 2E"�s in the CM frame. This conservation law means that � is de"ned by the
equation

�s"
R
R� ln ¹(z,�) . (G.9)

So, to de"ne the state one should solve two equations of state (G.3) and (G.9).
The solution �

�
of Eq. (G.9) has the meaning of inverse temperature of the gas of resonances if

and only if the #uctuations in the vicinity of �
�

are Gaussian, see Section 2.2.2.
On the second level, we should describe the resonance decay into hadrons. Using (3.24) we can

write in the vicinity of z"1:

�(q, z)"�
�

z���
�
(q)"g��

m
	

m �e

����� 
�� . (G.10)

The assumptions B and D, see (3.21), were used here
So,

!�F(z, s)"�
�
�

�


���

�dm
�
�(m

�
, z)�BI

�
(m;�) , (G.11)

where m"(m
�
,m

�
,2,m

�
)� was de"ned in (G.10) and

BI
�
(m;�)"�

�


���

�d�
�
(q)e���� 

� ��B

�
(m; q) . (G.12)

Assuming now that �q
�
�;m are essential,

BI
�
(m;�)KB

�
(m)

�


���
�


2m
�

��
e����� . (G.13)

Following the duality assumption, one may write

B
�
(m)"BM

�
(m)

�


���

�m�
�
e�	��� (G.14)

and BM
�
(m) is a slowly varying function of m"(m

�
,m

�
,2,m

�
):

NM
�
(m)Kb

�
.

As a result, the low-temperature expansion is as follows:

!�F(z, s)"�
�

2���m�
	
(g�)�b

�
����� ��

�

�	

dmm�����e

����� �
���
���	 ���
�

. (G.15)
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We should assume that (�!�
	
)50. In this sense one may consider 1/�

	
as the limiting

temperature and the above-mentioned constraint means that the resonance energies should be high
enough.

G.2. Thermodynamical parameters

Remembering that the position of the singularity over z is essential, let us assume that the
resonance interactions cannot renormalize it, i.e. that the sum (G.15) is convergent. Then, leaving
the "rst term in the sum (G.15),

!�F(z, s)"
m

	
g�C

�
���� �

�

�	

dm(m/m
	
)����� e

����� �
���
���	 �� . (G.16)

We expect that this assumption is satis"ed if

�
�

�	

dmm����� e

����� �
���
���	 ��<

2���m
	
(g�)b

�
b
�
���� ��

�

�	

dmm����� e

����� �
���
���	 ���
�

(G.17)

for

nPR, sPR,
nm

	
�s

,

n
n
���

;1 . (G.18)

So, we would solve our equations of state with the following free energy:

!�F(z, s)"
�

�����
�

�	

d�
m
m

	
��

m
m

	
�

����
e��
���	 � , (G.19)

where, using (3.20),

��"�#2(z!1)n� �
	
#5/2"2(z!1)n� �

	
, �"m

	
(�!�

	
)50, �"const . (G.20)

We have in terms of these new variables the following equation for z:

n"z
2�n� �

	
����

R
R��

�(��,�)
���

. (G.21)

The equation for � takes the form

n
���

"

�m
	

����

�(��#1,�)
�����

, (G.22)

where n
���

"(�s/m
	
) and �(�, ��) is the incomplete �-function

�(��,�)"�
�

�

dxx����e�� .
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G.3. Asymptotic solutions

Following physical intuition, one should expect the cooling of the system when nPR, for "xed
�s, and heating when n

���
PR, for "xed n. But, as was mentioned above, since the solution of

Eq. (G.22) �
�
is de"ned by the value of the total energy, one should expect that �

�
decreases in both

cases. So, the solution

�
�
50,

R�
�
Rn (0 at nPR,

R�
�
Rs (0 at sPR (G.23)

is natural for our consideration.
The physical meaning of z is activity. It de"nes at �"const the work needed for the creation of

one particle. Then, if the system is stable and ¹(z, s) may be singular at z'1 only,

Rz
�
Rn '0 at nPR,

Rz
�
Rs (0 at sPR . (G.24)

One should assume solving Eqs. (G.21) and (G.22) that

z
�
������

R
R��

�

�(��
�
, �

�
)

����
�

;�(��
�
#1,�

�
) . (G.25)

This condition contains the physical requirement that n;n
���

. In the opposite case, the "niteness
of the phase space for m

	
O0 should be taken into account.

As was mentioned above, the singularity z
�

attracts z
�

at nPR. For this reason one may
consider the following solutions:

A. z
�
"R: z

�
<�, �;1.

In this case

�����(��,�)& e�� �	
����� . (G.26)

This estimation gives the following equations:

n"C
�
�� ln(��/�) e�� �	
�����,

n
n
���

"C
�
��� ln�

��
��;1 , (G.27)

where C
�
"O(1) are the unimportant constants. The inequality is a consequence of (G.25).

These equations have the following solutions:

�
�
K

n
n
���

ln n
;1, ��

�
&ln n<1 . (G.28)

Using them one can see from (G.5) that it gives

�
�
(O(e��) . (G.29)

B. z
�
"#1: z

�
P1, �

�
;1.
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One should estimate �(��,�) near the singularity at z"1 and in the vicinity of �"0 to consider
the consequence of this solution. Expanding �(��,�) over � at ��P0,

�(��,�)"�(��)!��� e��
#O(�����)K

1
��

#O(1) . (G.30)

This gives the following equations for ��:

n"C�
�

�� ln(1/�)!1
��

e�� �	
���� . (G.31)

The equation for � has the form

n
���

"C�
�
e
������	
���� , (G.32)

where C�
�
"O(1) are unimportant constants.

At

0(�� ln(1/�)!1;1, i.e. at ln(1/�);n; ln�(1/�) , (G.33)

we "nd

��
�
&

1
ln(1/�

�
)

. (G.34)

Inserting this solution into (G.32)

�
�
&

1
n
���

. (G.35)

It is remarkable that �
�

in the leading approximation is n independent. By this reason ��
�

becomes
n independent also

��
�
&

1
ln(n

���
)
: z

�
"1#

1
n� �
	

ln(n
���

)
. (G.36)

This means that

�
�
"O(e��) (G.37)

and obeys the KNO scaling with mean multiplicity n� "n� �
	

ln(n
���

).

Appendix H. Correlation functions in DIS kinematics

Considering particle creation in the DIS processes, one should distinguish correlation of
particles in the (mini)jets and the correlations between (mini)jets. We will start from the description
of the jet correlations. One should introduce the inclusive cross section for the � jets creation

�
���� (k
�
, k

�
,2, k� ; q�,x) ,
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where k
�
, i"1, 2,2, n are the jets 4-momentum in the DIS kinetics, !q�<��. Having �� we can

"nd the correlation functions

N
��� (k
�
, k

�
,2, k� ; q�,x) ,

where (r)"r
�
,2, r� and r

�
"(q, g) de"nes the sort of created color particle. It is useful to introduce

the generating functional

F��(q�,x;w)"�
�
� d�

�
(k)

�


���

w�� (k
�
)�a��
�

(k
�
, k

�
,2, k

�
; q�, x)�� , (H.1)

where a��
�

is the amplitude, d�
�
(k) is the phase space volume and w�� (k

�
) are the arbitrary functions.

It is evident that

F��(q�,x;w)�
%��

"D��(q�,x) . (H.2)

The inclusive cross sections

�
��� (k
�
, k

�
,2, k� ; q�,x)"

�


���

�
�w�� (k

�
)
F��(q�,x;w)�

%��
. (H.3)

The correlation function

N
��� (k; q�,x)"
�



���

�
�w�� (k

�
)
lnF��(q�,x;w)�

%��
. (H.4)

We can "nd the partial structure functions D��(q�,x; n), where n is the number of produced
(time-like) gluons, using their de"nitions.

It will be useful to introduce the Laplace transform over the variable ln(1/x):

F��(q�,x;w)"�
�� �&	

dj
2�i�

1
x�

�
f ��(q�, j;w) . (H.5)

The expansion parameter of our problem �
�
ln(!q�/��)&1. For this reason one should take

into account all possible cuts of the ladder diagrams. So, calculating D��(q�,x) in the LLA all
possible cuts of the skeleton ladder diagrams are de"ned by the factor [78]:

1
�
����

�
G
�
���
�

� , (H.6)

i.e. the cut line may not only get through the exact Green function G
�
(k�
�
) but through the exact

vertex functions ���
�

(q
�
, q
���

, k
�
) also (q�

�
, q�
���

are negative). We have in the LLA (see Appendix D)

��;!q�
�
;!q�

���
;!q�

and

x4x
���

4x
�
41 .
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Following our approximation, see the previous section, we could not distinguish the way in which
the cut line goes through the Born amplitude

a��
�

"�(���
�
)�G

�
� .

We will simply associate w� Im a��
�

to each rung of the ladder.
Considering the asymptotics over n, the time-like partons virtuality k

�
K!q�

�
/y
�

should be
maximal. Here y

�
is the fraction of the longitudinal momentum of the jet. Then, slightly limiting the

jets phase space,

ln k�
�
"ln �q

���
��(1#O(ln(1/x)/�q

���
��)) . (H.7)

As a result, introducing �
�
"ln(q�

�
/��), where �

�
(q�)"1/��, �"(11N/3)!(2n

'
/3) in the LLA

variable, we can "nd the following set of equations:

�
R
R� f

��
(q�, j;w)"�

���

��
��

( j)w�(�)f
��

(q�,x;w) , (H.8)

where

��
��

( j)"�
��

( j)"�
�

	

dx
x

x�P
��

(x) (H.9)

and P
��

(x) is the regular kernel of the Bethe}Salpeter equation [78]. At w"1 this equation is the
ordinary one for D��(q�,x).

We will search the correlation functions from Eq. (H.8) in terms of the Laplace transform

n
���
��

(k
�
, k

�
,2, k� ; q�, j)"n
���

��
(k; q�, j) .

Let us write

f
��

(q�, j;w)"d
��

(q�, j) exp���
1
�!�

�


���
�
d�
�

�
�

(w�� (�
�
)!1)�n
�����

(k; q�, j)� . (H.10)

Inserting (H.10) into (H.8) and expanding over (w!1) we "nd the sequence of coupled equations.
Omitting the cumbersome calculations, we write in the LLA that

�
���
��

(�
�
, �

�
,2, �� ; q�, j)"d

���
( j, �

�
)���
����

( j)d
����

( j, �
�
)2���

�� ����
( j)d

�����
( j, ����

) . (H.11)

One should take into account the conservation laws:

�
�

) �
�
2����

"�, �
�
(�

�
(2(����

(� . (H.12)

Computing the Laplace transform of this expression we "nd

�
���
��

(�
�
, �

�
,2, �� ; q�,x) .

The kernel d
��

( j, �) was introduced in (H.11). Let us write it in the form

d
��

( j, �)" �

��

�
d
��

( j)
�
�

!�
�

��
 
�� , (H.13)
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where

d
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, d
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�
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(H.14)

and

�
"�
�
��




#�

��
#�[(�




!�

��
)�!4n

'
�

�

�
�


]���� . (H.15)

If x;1, then (j!1);1 are essential. In this case [78],

�
��

&�
�


<�

�

&�




"O(1) . (H.16)

This means that the gluon jets dominate and

n�
��

"�
��

#O(1) . (H.17)

One can "nd the following estimation of the two-jet correlation function:

n�� ��
��

(�
�
, �

�
; �, �)"O(max�(�

�
/�)��� , (�

�
/�)��� , (�

�
/�

�
)����) . (H.18)

This correlation function is small since in the LLA �
�
(�

�
(�. This means that the jet correlation

becomes high if and only if the masses of the correlated jets are comparable. But this condition
shrinks the range of integration over � and for this reason one may neglect the &short-range'
correlations among jets. Therefore, as follows from (H.10),

f
��

(q�, j;w)"d
��

(�, j) exp�����




	

d��
��

w�(��)� . (H.19)

We will use this expression to "nd the multiplicity distribution in the DIS domain.

H.1. Generating function

To describe particle production, one should replace:

w� Im a��
�

Pw�
�
Im a��

�
,

where w�
�

is the probability of n particle production,

�
�

w�
�
"1 . (H.20)

Having � jets, one should take into account the conservation condition n
�
#n

�
#2#n�"n.

For this reason, the generating functions formalism is useful. As a result, one can "nd that if we take
(H.19)

w�"w�(�, z), w�(�, z)�

��

"1 , (H.21)

then f
��

(q�, j;w) de"ned by (H.19) is the generating functional of the multiplicity distribution in the
&j representation'. In this expression w�(�, z) is the generating function of the multiplicity distribu-
tion in the jet of mass �k�"�e
��.
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As a result, see (H.5),

F��(q�,x;w)J�
�� �&	

dj
2�i

(1/x)�e���	

�
� , (H.22)

where

�(�, z)"�




	

d��
��

w�(��, z) . (H.23)

Noting the normalization condition (H.21),

�(�, z"1)"ln � . (H.24)

The integral (H.22) may be calculated by the steepest descent method. It is not hard to see that

jKj
�
"1#�4N�(�, z)/ln(1/x)���� (H.25)

is essential. Notice that j!1;1 should be essential but we "nd, instead of the constraint (3.2), that

�(�, z);ln(1/x) . (H.26)

In the frame of this constraint,

F��(q�,x;w)Jexp�4�N�(�, z)ln1/x)� . (H.27)

Generally speaking, there exist such values of z that j
�
!1&1. This is possible if �(�, z) is

a regular function of z at z"1. Then z
�

should be an increasing function of n and consequently
�(�, z

�
) would be an increasing function of n. Therefore, one may expect that in the VHM domain

j
�
!1&1.
Then jK1#�(�, z)/ln(1/x) would be essential in the integral (H.22). This leads to the following

estimation:

F��(q�,x;w)J e�	

�
� .

But this is impossible since F��(q�,x;w) should be an increasing function of z. This shows that the
estimation (H.27) has a "nite range of validity.

Solution of this problem with unitarity is evident. One should take into account correlations
among jets considering the expansion (H.10). Indeed, smallness of n
���

��
may be compensated by

large values of 
�
�
w�� (�

�
, z) in the VHM domain.

Appendix I. Solution of the jets evolution equation

One may neglect quark jets in the VHM region since the gluons mean multiplicity n�
�
'n�



-

quarks multiplicity [81,85] and in the VHM region the leftmost singularities are important. Then
we can write [84]

R
R�¹
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(�, z)"

12
11

¹
�
(�, z)�





	
d��(¹
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(��, z)!1) , (I.1)
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where �"ln(q�/��) and ¹
�
(�, z) is the generating function of the distribution over the number of

gluons w
�
(tau):

¹
�
(�, z)"�

�

z�w
�
(�), ¹

�
(�, z"1)"1 . (I.2)

We search a solution in the VHM region, where

n<n
�
Jexp��a��, a"��

��
. (I.3)

Let us consider the following solution:

w
�
"�

n
n�
�
�

�
e������ � . (I.4)

It is useful to introduce

�
�
(�)"

1
k!

�
�
���

n���w
�
(�) (I.5)

for this solution. Inserting (I.4) into this expression,

�
�
(�)"n� �(�)�

�
, (I.6)

where �
�

(i) should be positive and (ii) � independent.
These conditions are satis"ed for the following values of k. Indeed, at k<1:

�
�
"

1
k!

�
�
���

1
n�

n
n�
�
�
���

e������ �K��
����
�(k#�)
�(k#1)

. (I.7)

The generating function ¹
�

has the following form in terms of �
�
:

¹
�
(�, z)"

�
�
���

(ln z)��
�
(�) . (I.8)

Inserting (I.8) into (I.1) and assuming that �
�

is a �-independent quantity, we "nd the following
recurrent equation for �

�
:

�
�
"

4
k

�
�
����

1
k
�

�
��

�
����

!2
�a�
k

�
�

. (I.9)

Therefore, if

k<�a� , (I.10)

then we can neglect the last term on the right-hand side of (I.9) and in this case �
�

are positive and
� independent. Noting that in (I.7) n&kn�

�
are essential inequality (I.10) means that the solution

(I.4) is correct if

n<n�
�
ln n�

�
, (I.11)
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i.e., only for this value of n w
�

has the form (I.4) and the corresponding generating functional has
singularity at

z
�
"1#

�
n�
�

. (I.12)

Appendix J. Condensation and type of asymptotics over multiplicity

It is important for the VHM experiment to have an upper restriction on the asymptotics. We
wish to show that �

�
decreases faster than any power of 1/n:

�
�
(O(1/n) . (J.1)

To prove this estimation, one should know the type of singularity at z"1.
One can imagine that the points, where the external particles are created, form the system. Here

we assume that this system is in equilibrium, i.e. in this system, there are no macroscopical #ows of
energy, particles, charges and so on.

The lattice gas approximation is used to describe such a system. This description is quite general
and does not depend on details. Motion of the gas particles leads to the necessity to sum over all
distributions of the particles on cells. For simplicity, we will assume that only one particle can
occupy the cell.

So, we will introduce the occupation number �
�
"$1 in the ith cell: �

�
"#1 means that we

have no particle in the cell and �
�
"!1 means that a particle exists in a cell. Assuming that the

system is in equilibrium, we may use the ergodic hypothesis and sum over all &spin' con"gurations
of �

�
, with the restriction: ��

�
"1. It is evident that this restriction introduces the interactions [100].

The corresponding partition function in temperature representation [52]


(�,H)"�D�e���

� , (J.2)

where integration is performed over ��(x)�4R and, considering the continuum limit,
D�"


�
d�(x). The action

S�(�)"�dx�
1
2
(��)�!���#g��!��� , (J.3)

where

�&�1!

�
��
� �, g&

�
��
�

, �&�
�
��
� �

���
�H . (J.4)

and 1/�
��

is the critical temperature.

J.1. Unstable vacuum

We start this consideration from the case �'0, i.e. assuming that �'�
��

. In this case the
ground state is degenerate if H"0. The extra term &�H in (J.3) can be interpreted as the
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interaction with external magnetic "eld H. This term regulates the number of &down' spins with
�"!1 and is related to the activity

z���"e�� , (J.5)

i.e. H coincides with the chemical potential.
The potential

v(�)"!���#g��, �'0 , (J.6)

has two minima at

�
�

"$��/2g .

If the dimension d'1, no tunnelling phenomena exist. But choosing H(0 the system in the
correct minimum (it corresponds to the state without particles) becomes unstable. The system
tunnels into the state with an absolute minimum of energy.

The partition function 
(�, z) becomes singular at H"0 because of this instability. The square
root branch point gives

Im 
(b, z)"
a
�
(�)

H�
e���
�����, a

�
'0 . (J.7)

Note, Im
(b, z)"0 at H"0. Deforming the contour in the Mellin integral over z on the branch
line,



�
(�)"

1
��

�

�

dz
z���

8a
�
��

ln� z
e��������	�


 . (J.8)

In this integral

z
�
Jexp�

8a
�
��

n �
���

(J.9)

is essential. This leads to the following estimation:



�
Je��
������������(O(1/n) . (J.10)

It is useful to note at the end of this section that

(i) The value of 

�

is de"ned by Im
(b, z) and the metastable states, the decay of which gives
a contribution to Re
(b, z), are not important.

(ii) It follows from (J.9) that in the VHM domain

H&H
�
&ln z

�
&(1/n)���P0 . (J.11)

So, the calculations are performed for the &weak' external "eld case, when the degeneracy is weakly
broken. It is evident that the lifetime of the unstable (without particles) state is large in this case and
for this reason the semiclassical approximation is correct. This is an important consequence of (3.1).
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J.2. Stable vacuum

Let us consider now �(0, i.e. �(�
��

. The potential (J.6) has only one minimum at �"0 in this
case. The inclusion of an external "eld shifts the minimum to the point �

�
"�

�
(H). In this case the

expansion in the vicinity of �
�

should be useful. As a result,


(�, z)"exp��dx��
�
!=(�

�
)� , (J.12)

where=(�
�
) can be expanded over �

�
:

=(�
�
)"�

�

1
l �


�

�dx
�
�
�
(x
�
;H)�bI

�
(x

�
,2, x

�
) . (J.13)

In this expression, bI
�
(x

�
,2, x

�
) is the one-particle irreducible Green function, i.e. bI

�
is the virial

coe$cient. Then �
�

can be considered as the e!ective activity of the correlated l-particle group.
The sum in (J.13) should be convergent and, therefore, �s

�
�PR if �H�PR. But in this case the

virial decomposition is equivalent to the expansion over the inverse density of particles [25]. In the
VHM region it is high and the mean "eld approximation becomes correct. As a result,

�
�
K!�

���
4g�

���
: �s

�
�PR if ���PR (J.14)

and


(�, z)Je
���������

��������12g�
���
4g�

���

�
����

. (J.15)

We can use this expression to calculate 

�
. In this case

z
�
Je����PR at nPR , (J.16)

is essential and in the VHM domain



�
Je�����(O(e��) . (J.17)

This result is an evident consequence of vacuum stability. It should be noted once more that the
conditions (3.1) considerably simplify calculations.

Appendix K. New multiple production formalism and integrable systems

K.1. S-matrix unitarity constraints

To explain our idea, let us consider the spectral representation of the one-particle amplitude:

A
�
(x

�
, x

�
;E)"

	H
�
(x

�
)	

�
(x

�
)

E!E
�
!i�

, �P#0 . (K.1)
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It describes the transition of a particle with energy E from point x
�

to x
�
. According to our general

idea, see introduction to Section 2.1, we will calculate

R
�
(E)"�dx�

dx
�
A

�
(x

�
,x

�
;E)AH

�
(x

�
,x

�
;E) . (K.2)

The integration over the end points x
�

and x
�

is performed only for the sake of simplicity.
Inserting (K.1) into (K.2) and using ortho-normalizability of the wave functions 	

�
(x) we

"nd that

�R
�
(E)"��

�
�

1
E!E

�
!i� �

�
"

1
2i

�
�
�

1
E!E

�
!i�

!

1
E!E

�
#i��

"Im�
�

1
E!E

�
!i�

"��
�

�(E!E
�
) . (K.3)

On the other hand, the closed-path amplitude, o!ered for calculation in [101],

C
�
(E)"�

�
�dx

	H
�
(x)	

�
(x)

E!E
�
!i�

"�
�

1
E!E

�
!i�

"�
�
�P

1
E!E

�

#i��(E!E
�
)�"�

�

P
1

E!E
�

#i�R
�
(E) . (K.4)

So, we wish to calculate only the imaginary part of the closed-path contribution

�R(E)"ImC
�
(E) .

Notice the extra factor � on the left-hand side.
The reason for this choice is evident: the real part of C

�
(E) is equal to zero at E"E

�
, i.e. did not

contribute to the measurable. To calculate the bound states energy spectrum, it is enough to know
only the imaginary part of the closed-path amplitude.

This property is not accidental. It is known as the optical theorem and is the consequence of the
total probability conservation principles. The formal realization of this is the unitarity condition
for the S-matrix: SS�"I. In terms of the amplitudes A, S"I#iA, the unitarity condition presents
an in"nite set of nonlinear operator equalities:

iAAH"A!AH . (K.5)

Notice that expressing the amplitude by the path integral one can see that the left-hand
side of this equality o!ers the double integral and, at the same time, the right-hand side is
the linear combination of integrals. Thus, the continuum contributions into the amplitudes
should be canceled to provide the conservation of total probability. In this sense it is a necessary
condition.
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�� It is well known that this unitary transformation is the analogy of the tangent transformations of classical mechanics
[103].

Indeed, to see the integral form of our approach, let us use the proper-time representation:

A
�
(x

�
, x

�
;E)"�

�

	
�
(x

�
)	H

�
(x

�
)i�

�

	

d¹e�
	�	������ (K.6)

and insert it into (K.2):

R
�
(E)"�

�
�

�

	

d¹
�

d¹
�

e�
�������e�
	�	� �
������ . (K.7)

We will introduce new time variables instead of ¹
�

:

¹
�

"¹$� , (K.8)

where, as follows from the Jacobian of transformation, ���4¹, 04¹4R. But we can put
���4R since ¹&1/�PR is essential in the integral over ¹. As a result,



�
(E)"2��

�
�

�

	

d¹e�����
��

��

d�
�

e��
	�	� �
 . (K.9)

In the last integral, the continuum of contributions with EOE
�

are canceled. Note that the
product of amplitudes AAH was &linearized' after the introduction of &virtual' time [103]
�"(¹

�
!¹

�
)/2.

We wish to calculate the density matrix 
(�, z) including the consequence of the unitarity
condition cancelation of unnecessary contributions. Here we demonstrate the result and the
intermediate steps we will formulate, without proof, as the statements o!ered in [16,15], where the
formalities are described.

K.2. Dirac measure

The statement, see [15] and references cited therein,
S1. The unitarity condition unambiguously determines contributions in the path integrals for 
 looks

like a tautology since e��
��, where S(x) is the action, is the unitary operator which shifts a system
along the trajectory.�� So, it seems evident that the unitarity condition is already included in the
path integrals.

The rule as the path integrals should be calculated is well known, see e.g. [102]. Nevertheless, the
general path-integral solution contains unnecessary degrees of freedom (unobservable states with
EOE

�
in the above example). We would de"ne the path integrals in such a way that the condition

of absence of unnecessary contributions in the "nal (measurable) result be loaded from the very
beginning. Just in this sense, the unitarity looks like the necessary and su$cient condition
unambiguously determining the complete set of contributions.
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S2. The m- into n-particles transition (unnormalized) probability R
��

would have on the Dirac
measure the following symmetrical form

R
��

(p
�
,2, p

�
, q

�
,2, q

�
)"�

�


���

��(q
�
; u)��

�


���

��(p
�
; u)���

(

"e��K
��)��DM(u)e��* 
(���+
(�)�
�


���

��(q
�
; u)��

�


���

��(p
�
; u)��,OK (u)

�


���

��(q
�
; u)��

�


���

��(p
�
; u)�� .

(K.10)

Here p(q) are the in(out)-going particle momenta. It should be underlined that this representation is
strict and is valid for arbitrary Lagrange theory of arbitrary dimensions. The eikonal approxima-
tion for inelastic amplitudes was considered in [104].

The operator OK contains three elements, the Dirac measure DM, the functional ;(x, e) and the
operator K( j, e).

The expansion over the operator

K( j, e)"
1
2
Re�

��

dx dt
�

�j(x, t)
�

�e(x, t)
,

1
2
Re�

��

dxdtjK (x, t)e( (x, t) (K.11)

generates the perturbation series. We will assume that this series exists (at least in Borel sense).
The functionals ;(u, e) and S

*
(u) are de"ned by the equalities

S
*
(u)"(S

	
(u#e)!S

	
(u!e))#2 Re�

��

dxdte(x, t)(R�#m�)u(x, t) , (K.12)

;(u, e)"<(u#e)!<(u!e)!2 Re�
��

dxdte(x, t)v�(u) , (K.13)

where S
	
(u) is the free part of the Lagrangian and<(u) describes interactions. The quantity S

*
(u) is

not equal to zero if u have nontrivial topological charge (see also [105]).
According to S1, considering motion in the phase space (u, p) the measure DM(u, p) has the

Dirac form

DM(u, p)"

���

du(x, t) dp(x, t)��u� !
�H

�
(u, p)

�p ���p� #
�H

�
(u, p)

�u � (K.14)

with the total Hamiltonian

H
�
(u, p)"�dx�

1
2
p�#

1
2
(�u)�#v(u)!ju� . (K.15)

This last one includes the energy ju of quantum #uctuations.
The measure (K.14) contains the following information:

a. Only strict solutions of the equations

u� !
�H

�
(u, p)

�p
"0, p� #

�H
�
(u, p)

�u
"0 (K.16)
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��The following trivial analogy with ferromagnetic may be useful. So, the external magnetic "eld H&�� , if �� is the
magnetics order parameter, and the phase transition means that �� O0. �(q, u) has just the same meaning as H.

with j"0 should be taken into account. This &rigidness' of the formalism means the absence of
pseudo-solutions (similar to multi-instanton, or multi-kink) contribution.

b. 

��

is described by the sum of all solutions of Eq. (K.16), independent of their &nearness' in the
functional space;

c. 

��

did not contain the interference terms from various topologically nonequivalent contribu-
tions. This displays the orthogonality of the corresponding Hilbert spaces;

d. The measure (K.14) includes j(x) as the external adiabatic source. Its #uctuation disturbs the
solutions of Eq. (K.16) and vice versa since the measure (K.14) is strict;

e. In the frame of the adiabaticity condition, the "eld disturbed by j(x) belongs to the same
manifold (topology class) as the classical "eld de"ned by (K.16) [105].

f. The Dirac measure is derived for real-time processes only, i.e. (K.14) is not valid for tunneling
ones. For this reason, the above conclusions should be taken carefully.

g. It can be shown that theory on the measure (K.14) restores ordinary (canonical) perturbation
theory.

The parameter �(q; u) is connected directly with external particle energy, momentum, spin,
polarization, charge, etc., and is sensitive to the symmetry properties of the interacting "elds
system.�� For the sake of simplicity, u(x) is the real scalar "eld. The generalization would be
evident.

As a consequence of (K.14), �(q; u) is the function of the external particle momentum q and is
a linear functional of u(x):

�(q; u)"!�dxe�
�
�S

	
(u)

�u(x)
"�dxe�
�(R�#m�)u(x), q�"m� , (K.17)

for the mass m "eld. This parameter presents the momentum distribution of the interacting "eld
u(x) on the remote hypersurface �

�
if u(x) is the regular function. Notice, the operator (R�#m�)

cancels the mass-shell states of u(x).
The construction (K.17) means, because of the Klein}Gordon operator and the external states

being mass-shell by de"nition [40], that the solution 

��

"0 is possible for a particular topology
(compactness and analytic properties) of quantum "eld u(x). So, �(q; u) carries the following
remarkable properties:

� it directly de"nes the observables,
� it is de"ned by the topology of u(x),
� it is the linear functional of the actions symmetry group element u(x).

Notice, the space-time topology of u(x, t) becomes important in calculating integral (3.2) by parts.
This procedure is available if and only if u(x, t) is the regular function. But the quantum "elds are
always singular. Therefore, the solution �(q;u)"0 is valid if and only if the quasiclassical
approximation is exact. Just this situation is realized in the soliton sector of sin-Gordon model.
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��The S-matrix was introduced &phenomenologically', see also the example considered in [106,95], postulating the
LSZ reduction formulae, see Eq. (B.1). So, the formal constraints, e.g. the Haag theorem, would not be taken into account
on the chosen level of accuracy.

��A number of problems of quantum mechanics were solved using also the &time sliced'method [109]. This approach
presents the path integral as the "nite product of well-de"ned ordinary integrals and, therefore, allows to perform
arbitrary space and space-time transformations. But the transformed &e!ective' Lagrangian gains an additional term
&��. The latter crucially depends on the way in which the &slicing' was performed. This phenomenon considerably
complicates calculations and the general solution of this problem is unknown to us. It is evident that this method is
especially e!ective if the quantum corrections &� play no role. Such models are well known. For instance, the Coulomb
model in quantum mechanics, the sine-Gordon model in "eld theory, where the bound-state energies are exactly
quasiclassical.

Despite evident ambiguity �(q; u) carries the de"nite properties of the order parameter since the
opposite solution 


��
"0 can only be the dynamical display of an unbroken symmetry,�� i.e. of the

nontrivial topology of interacting "elds, as the consequence of unbroken symmetry.
If (K.16) have nontrivial solution u

�
(x, t), then this &extended objects' quantization problem [107]

arises. We solve it by introducing convenient dynamical variables [15]. The main formal di$culty,
see e.g. [108], of this program consists of transformation of the path-integral measure which was
solved in [105].��

Then
S3. The measure (K.14) admits the transformation

u
�
: (u,p)P(�, �)3="G/G

�
. (K.18)

and the transformed measure has the form

DM(u, p)"

����

d�(t) d�(t)���Q !
�h
�
(�, �)
�� ����� #

�h
�
(�, �)
�� � , (K.19)

where h
�
(�, �)"H

�
(u

�
, p

�
) is the transformed Hamiltonian.

It is evident that (�, �) are parameters of integration of Eqs. (K.16) and they form the factor space
="G/G

�
. For instance, if one particle dynamics is considered, then one may choose �"x(0) and

�"p(0). One may consider also the following possibility:

�"�
� du

�2(�!v(u))

and

�"p�/2#v(x) .

In these terms h
�
"�!j(t)u

�
(�, �) and new Hamilton equations have the form

�Q "1!j
Ru

�
(�, �)
R� , �� "j

Ru
�
(�, �)
R� . (K.20)

So, we have at j"0: �"t#t
	

and �"�
	
. For this reason

S4. The (action, angle)-type variables are most useful.
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According to (K.18) there exists transformation of the perturbation generating operator:
S5. The operator K has the following transformed form

2K"�dt�jK � ) e( �#jK � ) e( �� , (K.21)

in the factor space, where j
,
, e
,
, X"�, �, are new auxiliary variables.

As a result of mapping of the perturbation generating operator K on the manifold = the
equations of motion became linearized:

DM"

�

���Q !
�h(�)
��

!j���(�� !j�) . (K.22)

Then
S6. If Feynman's i�-prescription is adopted, then the Green function of Eq. (K.22)

g(t!t�)"�(t!t�) . (K.23)

Later on we will consider the soliton sector of the sin-Gordon model. In this case �
�

is the
coordinate and �

�
is the momentum of the ith soliton and N is the number of solitons.

Expansion of exp�K( je)� gives the &strong coupling' perturbation series. Its analysis shows that
S7. Action of the integro-diwerential operator OK leads to the following representation:

R
��

(p, q)"�
-
�d�(0) )

R
R�(0)

R�
��

(p, q)#d�(0) )
R
R�(0)

R�
��

(p, q)� . (K.24)

This means that the contributions into R
��

(p, q) are accumulated strictly on the boundary
&bifurcation manifold' R= [110], i.e. depends directly on the topology of =.

K.3. Multiple production in sin-Gordon model

Let us consider now the completely integrable sin-Gordon model. For the sake of simplicity the
integral

R
�
(q)"e��.K 
��)��DM(u, p)��(q; u)��e��	 
(���+
(�)� , (K.25)

where �(q;u) was de"ned in (3.2), will be calculated.
The e!ective potential of the sin-Gordon model

;(u
�
; e

�
)"!

2m�

�� � dxdt sin �u
�
(sin �e!�e) (K.26)

with

e
�
"e� )

Ru
�
R� !e� )

Ru
�
R� . (K.27)
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Performing the shifts in (K.22):

�
�
(t)P�

�
(t)#�dt�g(t!t�)j���(t�),�

�
(t)#��

�
(t) ,

�
�
(t)P�

�
(t)#�dt�g(t!t�)j���(t�),�

�
(t)#��

�
(t) , (K.28)

we can get the Green function g(t!t�) into the operator exponent:

K(ej)"
1
2� dtdt��(t!t�)��K �(t) ) e( �(t�)#�( �(t) ) e( � (t�)� . (K.29)

Note the Lorentz noncovariantness of our perturbation theory with Green function (K.23).
As a result

D�M(�, �)"
�


���



�

d�
�
(t) d�

�
(t)�(�Q

�
!�(�#��))�(��

�
), �(�)"

Rh
R� (K.30)

with

u
�

"u
�
(x; �#��, �#��) . (K.31)

Using the de"nition

�Dx�(x� )"� dx(0)"�dx	
,

the functional integrals on the measure (K.30) are reduced to the ordinary integrals over initial data
(�, �)

	
. These integrals de"ne zero modes volume. Notice that the zero-modes measure was de"ned

without the Faddeev}Popov anzats.
We divide the calculations into two parts. First of all, we consider the quasiclassical approxima-

tion and then we will show that this approximation is exact.
This strategy is necessary since it seems to be important to show the role of quantum corrections

noting that for all physically acceptable "eld theories R
��

"0 in the quasiclassical approximation.
The N-soliton solution u

�
depends upon 2N parameters. Half of them, N, can be considered as

the position of solitons and the other N as the solitons momentum. Generally, at �t�PR the
u
�

solution decomposed on the single solitons u
�
and on the double-soliton bound states u

�
[111]:
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��
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���

u
���

(x, t)#
��
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���

u
���

(x, t)#O(e����) .

Note that this asymptotic is achieved if �
�
PR or/and �

�
PR. This latter de"nes the bifurcation

line of our model. So, the one soliton u
�
and two-soliton bound state u

�
would be the main elements

of our formalism. Its (�,�) parametrizations have the form

u
�
(x; �, �)"!

4
�
arctan�exp(mx cosh��!�)�, �"

��

8
(K.32)
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and

u
�
(x; �, �)"!

4
�
arctan�tan

��
�

2
mx sinh��

�
/2 cos ��

�
/2!�

�
mx cosh��

�
/2 sin ��

�
/2!�

�
� . (K.33)

Performing the last integration we "nd

R
�
(q)"�

�
�
�


���

�d�
	

d�
	
�
�
e��.K e��* 
(� �e��+
(� _)� �)� ���(q; u

�
)�� (K.34)

where

u
�

"u
�
(�

	
#��, �

	
#�(t)#��) (K.35)

and

�(t)"� dt��(t!t�)�(�
	
#��)(t�) . (K.36)

In the quasiclassical approximation ��"��"0 we have

u
�

"u
�
(x; �

	
, �

	
#�(�

	
)t) . (K.37)

Notice that the surface term

�dx�R�(e�
�u� )"0 . (K.38)

Then

�d�xe�
�(R�#m�)u
�
(x, t)"!(q�!m�)�d�xe�
�u

�
(x, t)"0 , (K.39)

since q� belongs to the mass shell by de"nition. The condition (K.38) is satis"ed for all q�O0 since
u
�

belongs to Schwarz space (the periodic boundary condition for u(x, t) does not alter this
conclusion). Therefore, in the quasiclassical approximation R

�
"0.

Expanding the operator exponent in (K.34) we "nd that action of operators �K �, �( � creates terms

&�d�xe�
��(t!t�)(R�#m�)u
�
(x, t)O0 . (K.40)

So, generally, if the quantum corrections are included, R
�
O0.

Now we will show that the quasiclassical approximation is exact in the soliton sector of the
sin-Gordon model. The structure of the perturbation theory is readily seen in the &normal-product'
form

R
�
(q)"�

�
�
�


���

�d�
	

d�
	
�
�
: e��+
(� _�K ����e��	 
(� ���(q; u

�
)�� , (K.41)
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where

jK"jK � )
Ru
�
R� !jK � )

Ru
�
R� "�jK

,

Ru
�
RX (K.42)

and

jK
,

"�dt��(t!t�)XK (t�) (K.43)

with the 2N-dimensional vector X"(�, �). In Eq. (K.42) � is the ordinary symplectic matrix.
The colons in (K.41) mean that the operator jK should stay to the left of all functions in the

perturbation theory expansion over it. The structure (K.42) shows that each order over jK
,�

is
proportional at least to the "rst order derivative of u

�
over the variable conjugate to X

�
.

The expansion of (K.41) over jK
,

can be written [105] in the form (omitting the quasiclassical
approximation):

R
�
(q)"�

�
�
�


���

�d�
	

d�
	
�
��

��
�
���

R
RX

	�

P
,�

(u
�
)� , (K.44)

where P
,�

(u
�
) is the in"nite sum of &time-ordered' polynomials (see [105]) over u

�
and its

derivatives. The explicit form of P
,�

(u
�
) is complicated since the interaction potential is non-

polynomial. But it is enough to know, see (K.42), that

P
,�

(u
�
)&�

��

Ru
�

RX
	�

. (K.45)

Therefore,

R
�
(q)"0 (K.46)

since (i) each term in (K.44) is the total derivative, (ii) we have (K.45) and (iii) u
�

belongs to
Schwarz space.
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