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We show that the “experimental” D-functions corresponding to the ete™ annihilation into hadrons and the
inclusive 7 decay data are both in good agreement with results obtained in the framework of the nonperturbative

a-expansion method.
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The specific feature of quantum field theory is that a
sufficiently complete study of the structure of a quantum
field model within the framework of perturbative ap-
proach is not enough, even in theories with a small cou-
pling constant. Numerous publications are devoted to
the problem of going beyond perturbation theory. How-
ever, many of them use model assumptions and phe-
nomenological parameters which are not involved into
the Lagrangian. Clearly, that it is desirable to use a
theoretical method based on a minimal number of addi-
tional parameters and allowing a nonperturbative region
to be considered. The theoretical method we will use is
the nonperturbative expansion technique [1] based on
the idea of variational perturbation theory (see [2] for a
review) which, in the case of QCD, leads to a new small
expansion parameter, a. Even going into the infrared
region of small momenta where the running coupling
becomes large and the standard perturbative expansion
fails, the a-expansion parameter remains small and the
approach holds valid [3].

In comparing theoretical predictions with experimen-
tal data, it is important to connect measured quantities
with “simplest” theoretical objects to check direct conse-
quences of the theory without using model assumptions
in an essential manner. Some single-argument functions
which are directly connected with experimentally mea-
sured quantities can play the role of these objects. A the-
oretical description of inclusive processes can be made
in terms of functions of this sort. Let us mention, among
them, the hadronic correlator II(s) and the correspond-
ing Adler function [4], D, that appear in the process of
ete~ annihilation into hadrons and the inclusive decay
of the 7 lepton.

The cross-section for ete™ annihilation into hadrons
or its ratio to the leptonic cross-section, R(s), have a
resonance structure that is difficult to describe, at the
present stage of a theory, without model considerations.
Moreover, the basic method of calculations in quantum
field theory, perturbation theory, becomes ill-defined due

to the so-called threshold singularities. These prob-
lems can, in principle, be avoided if one considers a
“smeared” quantity [5]

Ra(s) = %/Ooo ds'(s_f,()%. 1)

However, a straightforward usage of conventional per-
turbation theory to calculate Ra is not possible. In-
deed, if the QCD contribution to the function R(s) in
Eq. (1) is, as usual, parametrized by the perturbative
running coupling that has unphysical singularities, it is
difficult to define the integral on the right-hand side.
Moreover, the standard method of the renormalization
group gives a Q2-evolution law of the running coupling
in the Euclidean region, and there is the question of how
to parametrize a quantity, for example, R(s), defined for
timelike momentum transfers [6]. To perform this proce-
dure self-consistently, it is important to maintain correct
analytic properties of the hadronic correlator which are
violated in perturbation theory. Within the nonpertur-
bative a-expansion it is possible to maintain such an-
alytic properties and to self-consistently determine the
effective coupling in the Minkowskian region [7]%).

Another function, which characterizes the process of
eTe~ annihilation into hadrons and can be extracted
from experimental data, is the Adler function

2y _ N2 r R(s)
D(Q*) =@ O/dsm- (2)

The D-function defined in the Euclidean region for a
positive momentum Q2 is a smooth function, and thus
it is not necessary to apply any “smearing” procedure
in order to be able to compare theoretical results with

DThe analytic approach to QCD [8] also leads to a well-defined
procedure of analytic continuation [9].
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experimental data. Recently an “experimental” curve
for this function has been obtained [10].

For massless quarks, one can write down the
Minkowskian quantity R(s) in the form

R(s)=3 E a7 [1+ oA (s)], (3)
f

where the sum runs over quark flavors, g5 are quark
charges and 7o is the first perturbative coefficients
that is renormalization-scheme independent. This ex-
pression includes the effective coupling defined in the
Minkowskian region or, as we will say, in the s-channel,
which is reflected in the subscript s. It should be
stressed that, as it has been argued from general princi-
ples, the behavior of the effective couplings in the space-
like and the timelike domains cannot be symmetric [11].

Within the a-expansion method the s-channel run-
ning coupling can be written as

1 1

(8 = — _— 4@ —_ oM
AI6) = o o (090 - 69@)), @
where a obey the equation [2]
20 8 .
F(at) = F(ao) + ol <1n @ + 17r>. (5)
At the level O(a®), the function ¢(a) has the form
72 1
®)(ag) = — _ 2z
9% (a) 4lna 11—a .
+%ln(1—a)+@ln 1+ga ©
121 363 2°)

Similarly, a more complicated expression for the O(a®)
level, we will use, can be derived.

The convenient way to incorporate quark mass ef-
fects is to use an approximate expression [5]

R(s)=3 Zf: a4} ©(s — 4m3) Ry(s),

(M)
Ry(s) =T(vs) [1 + g(vs)rs(s)],
where
3—?
Tw)=v 5
dr [w# 34w [« 3
g(”):?[%_ 4 (5_47r)]’ (8)

/ 4m>

The quantity 77(s) is defined by the s-channel effec-
tive coupling A (s). The smeared quantity (1) and the
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D-function (2) can be calculated by using (7) in the
corresponding integrands. For MS-like renormalization
schemes, one has to consider some matching procedure.
To perform this matching procedure, we can require the
s-channel running coupling and its derivative to be con-
tinuous functions in the vicinity of the threshold [7, 12].

A description of quark-antiquark systems near the
threshold requires to take into account of the resumma-
tion factor. In a nonrelativistic approximation, this is
the well known Sommerfeld — Sakharov factor [13]. For
a systematic relativistic analysis of quark-antiquark sys-
tems, it is essential from the very beginning to have a
relativistic generalization of this factor. A new form for
this relativistic factor in the case of QCD has been pro-
posed in [14] by using the quasipotential approach to
quantum field theory formulated in the relativistic con-
figuration representation [15]. The local Coulomb po-
tential defined in this representation is specified by its
QCD-like behavior in the momentum space [16].

The relativistic S-factor has the form [14]

X(x) AT ag
Sx) = ——— X(x) = 9
0= iz X0y ©
where x is the rapidity which is related to s by
2m cosh x = /5.

To take into account the threshold resummation fac-
tor, we modify the expression (7) as follows

R(s) = T(v) S(X)—%X(X)Jrg(v)r(S) - (10)

As the mass m — 0, this expression leads to Eq. (3).
We use Eq. (10) in our analysis.

The non-strange vector contribution for the inclu-
sive 7-lepton decay can be described in analogy with
the ete~ annihilation into hadrons process. Using the
theoretical expression for R,-ratio [17]

2
r

ds s \2 28
RY = RO / Ve (1 - W) (1 + W) R(s),

0

where R corresponds to the parton level, and mea-
sured value RY = 1.775 £ 0.017 [18], as an input, we
extracted the value of parameter ag in Eq. (5) at the 7
mass scale, Qo = M.

The “light” D-function with three active quarks is
shown in Fig. 1, where we draw the experimental curve,
as dashed line, which was extracted in [19] from the
ALEPH data, and our theoretical result (solid line) ob-
tained by using the following effective masses of light
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Fig.1. The plot of the “light” D-function. The exper-
imental curve corresponding to ALEPH data is taken
from [19]

quarks m, = mg = 260MeV and m,; = 400 MeV?.
These values are close to the constituent quark masses
and incorporate some nonperturbative effects. The
shape of the infrared tail of the D-function is sensitive
to the value of these masses.
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Fig.2. The smeared quantity Ra(s) for A = 3 GeVZ.
The solid curve is our result. The smeared experi-
mental curve is taken from [22]

In Fig. 2, we have presented the smeared function
Ra(s) for A = 3 GeV2. We use the same masses for
the light quarks as before and the following masses for
heavy quarks m, = 1.3GeV and my = 4.7GeV. The
smeared R (s) function for A ~ 1-3 GeV? is less sen-
sitive to the value of light quark masses as compared
with the infrared tail of the D-function. The result for
the D-function of the ete™ annihilation process which
includes both the light and heavy quarks is plotted in
Fig. 3. The experimental curve is taken from [10].

Z)Practically the same values were used to describe the experi-
mental data in [20, 21].

The experimental D-function turned out to be a
smooth function without traces of the resonance struc-
ture of R(s). One can expect that this object more
precisely reflects the quark-hadron duality and is con-
venient for comparing theoretical predictions with ex-
perimental data. Note here that any finite order of the
operator product expansion fails to describe the infrared
tail of the D-function. Within the framework of non-
perturbative a-expansion technique, we have obtained
a good agreement between our results and the experi-
mental data down to the lowest energy scale both for
Minkowskian and Euclidean quantities.
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Fig.3. The D-function for the process of eTe™ annihi-
lation into hadrons. The solid curve is our result for
five active quarks. The experimental curve is taken
from [10]
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