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Montréal, Québec, H3C 3J7, Canada

Received 25 October 2000

Abstract
Lie algebra contractions fromo(n+1) to e(n) are used to obtain asymptotic limits
of interbase expansions between bases corresponding to different subgroup
chains for the group O(n + 1). The contractions lead to interbase expansions
for different subgroup chains of the Euclidean group E(n). They provide
asymptotic formulae for quantities such as Wigner rotation matrices, Clebsch–
Gordan coefficients and Racah coefficients.

PACS number: 0220S

1. Introduction

This paper is the third in a series [1, 2] devoted to contractions of rotation groups O(n + 1) to
Euclidean groups E(n) and the separation of variables in Laplace–Beltrami equations. In the
first paper [1] we considered the sphere S2 on which the equation

�LB� = −λ� �LB = 1√
g

∂

∂ξi

√
g gik ∂

∂ξk

g = det gik (1.1)

allows the separation of variables in two coordinate systems: spherical and elliptic ones.
The contraction parameter was the radius R of the sphere. For R → ∞ the sphere
Sn ∼ O(n + 1)/O(n) goes into the Euclidean space En ∼ E(n)/O(n). For n = 2 the two
separable coordinate systems on S2 go into four separable coordinate systems on E2, namely
Cartesian, polar, parabolic and elliptic ones. Depending on how the limit is taken, spherical
coordinates go into polar or Cartesian ones. Elliptic coordinates on S2 go into elliptic or
parabolic coordinates on E2. Via a two-step procedure, through spherical coordinates, they
also contract to Cartesian and polar coordinates on E2. The contraction was followed through
on several levels: the coordinates, the complete sets of commuting operators, the separated
equations and the eigenfunctions and eigenvalues.

In the second paper [2] the dimension of the space was arbitrary, but only the simplest
types of coordinates were considered, namely subgroup-type coordinates. These are associated
with chains of subgroups of O(n + 1), or E(n), respectively.
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Vilenkin, Kuznetsov and Smorodinsky [3, 4] developed a graphical method, the ‘method
of trees’ to describe subgroup-type coordinates on Sn. The corresponding separated
eigenfunctions are hyperspherical functions (also called polyspherical functions) [5–8]. Their
relation to subgroup chains and subgroup diagrams was analysed in [2], as were their
contractions to subgroup-type separated basis functions for the groups E(n).

In many-body theories it is often necessary to expand one type of hyperspherical functions
in terms of other ones. The expansion coefficients have been called T -coefficients, or overlap
functions. The corresponding coefficients for functions on Sn were calculated by Kil’dyushov
[7].

The purpose of this paper is to study the R → ∞ contraction limit of the interbase
expansions and overlap functions for the different spherical and hyperspherical functions on
Sn. The mathematical motivation is to obtain asymptotic limits of various expansions and of
the overlap functions. These are objects of considerable physical interest: Wigner rotation
matrices, Clebsch–Gordan coefficients, Racah coefficients, etc. The physical motivation goes
back to the original work of Inönü and Wigner [9]. Typically, a Lie group, or Lie algebra
contraction relates two different theories. The contraction parameter in our case is not the
speed of light, so we are not relating relativistic and non-relativistic theories. Rather, we are
relating theories in flat and curved spaces, or theories of spherical and highly elongated objects,
e.g. nuclei [10].

The contractions we use are analytical ones: the radius of the sphere is built into the
infinitesimal operators and into the sets of commuting operators, not only into the structure
constants. The contractions can be viewed as singular changes of bases, as was the case of
the original Inönü–Wigner ones. They are also ‘graded contractions’ [11, 12], in this case
corresponding to a Z2 grading of o(3), o(4) and more generally o(n + 1).

The overall point of view of the separation of variables that we are taking is an operator
one [13–18]. Thus, let G be the isometry group of the considered Riemannian or pseudo-
Riemannian space and L be its Lie algebra. Let {X1, X2, . . . , XN } be a basis of L and

Ya =
∑
ik

Aa
ikXiXk [Ya, Yb] = 0 Aa

ik = Aa
ki (1.2)

a complete set of commuting second-order operators in the enveloping algebra of L. The
separated eigenfunctions will be the common eigenfunctions of such a complete set

Ya� = −λa� � =
n∏
i

fi(ξi) (1.3)

where ξi are the separable coordinates. For subgroup-type coordinates all the operators Ya are
Casimir operators of subalgebras of L (the Laplace–Beltrami operator �LB is included in the
set {Ya}).

The paper is organized as follows. In section 2 we give a brief review of the method
of trees and present a general formula for the overlap functions. The results are known, but
we include them to make the paper readable independently. In section 3 we introduce the
analytical contractions from Sn to En and give contraction formulae for basis functions. The
essentially new material starts in section 4 where we relate overlap functions for the sphere Sn

with those for the Euclidean space En. In sections 5 and 6 we specialize the general results
to low-dimensional cases, namely S2 and S3, when the formulae become simple and explicit.
Some conclusions are drawn in the final section 7. Special cases of the T -function are given
in the appendix.
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2. Method of trees and overlap functions

The method of trees [3–7] for the rotation group O(n+ 1) and the sphere Sn ∼ O(n+ 1)/O(n)

was briefly reviewed in our earlier paper [2]. To make this paper readable independently,
let us repeat some basic facts. We are dealing with the Laplace–Beltrami equation on
an n-dimensional sphere Sn (1.1) and use a graphical method, the ‘methods of trees’, for
characterizing different types of subgroup coordinates, or hyperspherical coordinates on Sn.
These methods are best presented in the original article [3] and in the books [4–6].

Figure 1. Example of tree for polyspherical coordinates on the sphere S5.

Let us briefly describe the method of trees (see figure 1). Each end point ui, i =
0, 1, 2, . . . , n on the tree corresponds to a Cartesian coordinate in the ambient space En+1.
At each branching point, we introduce an angle θj . We move along the tree from the ground
upwards to a specific coordinate ui . At each branching point, we write cos θj , if we go to
the left, and sin θj , if we go to the right. The coordinate ui is represented as a product of
the trigonometric functions obtained when following branches leading from the bottom of the
tree to the end point ui . For example, to the tree in figure 1 there correspond the following
polyspherical coordinates:

u0 = R cos θ1 cos θ2 u1 = R cos θ1 sin θ2 cos θ3

u2 = R cos θ1 sin θ2 sin θ3 u3 = R sin θ1 cos θ4 cos θ5

u4 = R sin θ1 cos θ4 sin θ5 u5 = R sin θ1 sin θ4.

To each branching point on the tree diagram we also associate quantum numbers lj .
These will determine the eigenvalue λj of the O(k) Laplace–Beltrami operators according to
the formula

Yj� = R2�k
LB� = λj� λj = lj (lj + k − 2) (2.1)

where k is the dimension of the ambient space above the corresponding vertex on the tree. For
k = 2 we have lj = 0, ±1, ±2, . . . , for k � 3 the eigenvalues λj are non-negative integers.
To specify the separated wavefunction

� = �n
j=1�j(θj ) (2.2)

on Sn, we follow [3–6] and introduce four types of vertices, or ‘cells’ on a tree, as illustrated in
figures 2(a)–(c). A full circle denotes a ‘closed’ end, otherwise the end is ‘open’. An open end
leads directly to a coordinate in the ambient space. A closed one leads to further branches. Each
vertex and each angle θj provides a ‘building block’�j(θj ) for the wavefunction�(θ1, . . . , θn).
Specifically, we have
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Figure 2. Elementary cells forSn (diagrams 2a, . . . , 2c) and their contractions toEn ones (diagrams
2d, . . . , 2f ). Full circles correspond to closed ends. There are Sα further vertices above the vertex
alpha. The broken lines are explained in the text.

Cell of type 2a.

�m(θa) = 1√
2π

eimθa m = 0, ±1, ±2, . . . 0 � θa < 2π. (2.3)

Cell of type 2b.

�c
n,lβ

(θb) = Nc,c
n (sin θb)

lβ P (c,c)
n (cos θb)

n = l − lβ c = lβ + 1
2Sβ n = 0, 1, 2, . . . 0 � θb � π

(2.4)

where P (a,b)
n (x) are the Jacobi polynomials.

Cell of type 2b′.

�a
n,lα

(θb′) = Na,a
n (cos θb′)lαP (a,a)

n (sin θb′)

n = l − lα a = lα + 1
2Sα n = 0, 1, 2, . . . −π/2 � θb′ � π/2.

(2.5)

Cell of type 2c.

�
b,a
n,lβ ,lα

(θc) = 2(b+a)/2+1Nb,a
n (sin θc)

lβ (cos θc)
lαP (b,a)

n (cos 2θc)

n = 1
2 (l − lα − lβ) b = lβ + 1

2Sβ

a = lα + 1
2Sα n = 0, 1, 2, . . . 0 � θc � π/2.

(2.6)

Here, Sα and Sβ are the numbers of vertices above the vertex lα and lβ , respectively. The
normalization constants are

Na,b
n =

{
(2n + a + b + 1)�(n + a + b + 1)n!

2a+b+1�(n + a + 1)�(n + b + 1)

}1/2

.

We mention that the wavefunctions (2.4) and (2.5) can also be expressed in terms of the
Gegenbauer polynomials by using the formula [19]

Cλ
n(x) = �(2λ + n)�(λ + 1

2 )

�(2λ)�(λ + n + 1
2 )

P (λ−1/2,λ−1/2)
n (x).
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Figure 3. Diagrams representing elementary ‘transitions’ between trees.

A convenient way of calculating the T -coefficients corresponding to a transformation
from one SO(n + 1) tree to another, is to introduce a sequence of ‘elementary’ trees, each
differing from the previous one by the transplantation of exactly one branch from one side
of a branching point to the other. The general T -matrix will be factorized into a product of
‘elementary T -matrices’ corresponding to such elementary transformations. Each elementary
T -matrix connects two tree-type diagrams. Both are cells with three ends, each of which
can be either open or closed (see figure 3). Eight inequivalent elementary diagrams of this
type exist: one with three closed ends, three with two closed ends, three with one closed
end and one with all three ends open (see figure 3). The T -coefficients for all eight types
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of elementary transformations were calculated by Kil’dyushov [7]. They were expressed
in terms of generalized hypergeometric functions of argument x = 1: 3F2(1), 4F3(1),
Wigner D-functions, or Clebsch–Gordon and Racah coefficients for positive discrete series
of representations of the group SU(1, 1) [20]. We mention that a relation between the T -
coefficients and polynomials of discrete variables has been established [21], namely, the
Racah–Wilson, Hahn and Krawtchouk polynomials.

The T -coefficient, representing the general transformation, corresponds to the diagram
with three closed ends in figure 3(a) are [7]

T
αβγ

J lm =
√

(l + 1
2 (Sβ + Sγ ) + 1)(m + 1

2 (Sα + Sβ) + 1)( 1
2 (J − m − γ ))!

�(β + 1
2Sβ + 1)

× �( 1
2 (J − α − β + γ + Sγ ) + 1)

�( 1
2 (J + α + β − γ + Sα + Sβ) + 2)

{[
�( 1

2 (l + β + γ + Sβ + Sγ ) + 1)

×�( 1
2 (l + β − γ + Sβ) + 1)�( 1

2 (J + α + l + Sα + Sβ + Sγ ) + 2)
]

×[
�( 1

2 (m + α − β + Sα) + 1)�( 1
2 (l − β + γ + Sγ ) + 1)

×�( 1
2 (J + m + γ + Sα + Sβ + Sγ ) + 2)

]−1
}1/2

×
{[

�( 1
2 (J + α − l + Sα) + 1)�( 1

2 (J + m − γ + Sα + Sβ) + 2)

×�( 1
2 (m + α + β + Sα + Sβ) + 1)�( 1

2 (m − α + β + Sβ) + 1)
]

×[
( 1

2 (m − α − β))!( 1
2 (l − β − γ ))!( 1

2 (J − l − α))!

×�( 1
2 (J + l − α + Sβ + Sγ ) + 2)�( 1

2 (J − m + γ + Sγ ) + 1)
]−1

}1/2

× 4F3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2 (m − α − β), 1

2 (m + α + β + Sα + Sβ) + 1,
1
2 (l − γ + β + Sβ) + 1, − 1

2 (l − β + γ + Sγ );
β + 1

2Sβ + 1, 1
2 (J − γ + α + β + Sα + Sβ) + 2,

− 1
2 (J − α − β + γ + Sγ )

∣∣∣∣∣∣∣∣∣
1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.7)

Here, for brevity we replace the numbers (lα, lβ, lγ ) by (α, β, γ ) and Sαj
(αj = α, β, γ ) is the

number of branching points above the point αj .
It was pointed out in [21, 22] that if we allow the numbers Sαj

= −1, αj = 0, 1 we
obtain the T functions for diagrams with open ends. The transition matrices for all eight types
of T -‘cells’ in figure 3 (up to a phase factor!), can be obtained in this manner and they are
presented in the appendix.

3. Contractions of the basis functions

Let us introduce a standard basis Lμν for the Lie algebra o(n + 1)

Lik = (ui∂k − uk∂i) (3.1)

[Lik, Lmn] = δkmLin + δinLkm − δimLkn − δknLim 0 � i, k, m, n � n. (3.2)

The Laplace–Beltrami operator on Sn is

�LB = 1

R2

∑
0�i<k�n

L2
ik. (3.3)
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We shall use R−1 as a contraction parameter. To realize the contraction explicitly, let us
introduce Beltrami coordinates on the sphere Sn putting

yi = R
ui

u0
= ui

(
1 − 1

R2

n∑
k=1

u2
k

)−1/2

i = 1, 2, 3, . . . , n. (3.4)

Then, the O(n + 1) generators can be expressed as

L0i

R
≡ πi = pi +

yi

R2

n∑
k=1

(ykpk) (3.5)

Lik ≡ yipk − ykpi = yiπk − ykπi i, k = 1, 2, . . . , n (3.6)

where pi = ∂/∂yi . The commutation relations are now

[Lik, Lmn] = δkmLin + δinLkm − δimLkn − δknLim (3.7)

[πi, Lkj ] = δikπj − δijπk [πi, πk] = Lik

R2
(3.8)

so that as R → ∞ the o(n + 1) algebra contracts to the Euclidean e(n) one. The Beltrami
coordinates yi (3.4) contract to the Cartesian coordinates on En, and we have

yi → xi πi → pi = ∂

∂xi

(3.9)

so that the rotation generators L0i turn into the translations pi . The o(n + 1) Laplace–Beltrami
operator (3.3) contracts to the e(n) one

�LB =
n∑

i=1

π2
i +

n∑
i,k=1

L2
ik

2R2
→ � = p2

1 + p2
2 + · · · + p2

n. (3.10)

Recently [2], we introduced a graphical method of connecting subgroup-type coordinates
systems on the sphere Sn (characterized by tree diagrams) and on the Euclidean space En

(characterized by cluster diagrams) and gave the rules relating the contraction limit R → ∞
of the coordinates, invariant operators, eigenvalues and basis functions.

Graphically, the contraction R → ∞ can be interpreted as cutting off the branch from
the ground to the point u0 along the broken line, represented for the general Sn tree diagram
in figure 4(a). The broken line then becomes the ground for the corresponding En cluster
diagram of figure 4(b) (see also figure 2). The ambient space coordinates (u0, u1, . . . , un) for
Sn are transformed into the Cartesian coordinates (x1, x2, . . . , xn). The angles θ1, θ2, . . . , θj

and the angular momentum quantum numbers l1, l2, . . . , lj leading to the branches, cut off by
the dotted line, satisfy θi → 0 and li → ∞. In the contraction the angles are replaced by
the radial coordinates ri , or Cartesian coordinates xm (if a surviving branch leads directly to a
single coordinate on Sn and En). The angular momenta li are replaced by some constants ki .
We have

θj ∼ rj

R
lj ∼ kjR R → ∞. (3.11)

When we cut off the branches of a tree as in figure 4(a), the cutting line intersects an
elementary cell at a branch (see figure 2) and each elementary cell in the top row of figure 2
goes into an elementary trunk, as indicated in the bottom row of figure 2. The limiting procedure
for cells is always the same as in equation (3.11).

Let us now run through the contraction of basis functions for the individual cells in figure 2.
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Figure 4. Contractions of tree diagrams into cluster ones: from Sn to En.

Cells 2a–d. In the contraction limit R → ∞, m ∼ kR, θa ∼ x/R we have

�k(x) = lim
R→∞

�m(θa) = lim
R→∞

1√
2π

eimθa = 1√
2π

eikx . (3.12)

Cells 2b–e. In the contraction limit l ∼ kR, θb ∼ r/R we have

�c
k,lβ

(r) = lim
R→∞

1√
RSβ+1

�c
n,lβ

(θb) = lim
R→∞

N
lβ+ 1

2 Sβ ,lβ+ 1
2 Sβ

l−lβ√
RSβ+1

(sin θb)
lβ P

(lβ+ 1
2 Sβ ,lβ+ 1

2 Sβ)

l−lβ
(cos θb)

=
√

k

rSβ
Jlβ+ 1

2 Sβ
(kr) (3.13)

where Jν(z) is a Bessel function.

Cells 2b′–e′. In the limit R → ∞ and θb′ ∼ xn/R, l ∼ kR, lα ∼ pR we have

�a
k,p(xn) = lim

R→∞
(−1)

1
2 (l−lα)�a

n,lα
(θb′) = lim

R→∞
(−1)

1
2 (l−lα)N

lα+ 1
2 Sα,lα+ 1

2 Sα

l−lα
(cos θb′)lα

×P
(lα+ 1

2 Sα,lα+ 1
2 Sα)

l−lα
(sin θb′) =

√
2k

πkn

{
cos(knxn) (l − lα) even

−i sin(knxn) (l − lα) odd
(3.14)

where k2 = k2
n + p2.

Cells 2c–f. In the limit R → ∞ l ∼ kR, lα ∼ kαR and θc ∼ r/R, we have

�
lβ
k,kβ ,kα

(r) = lim
R→∞

�
b,a
n,lβ ,lα

(θc)√
RSβ+1

= lim
R→∞

√
2lα+lβ+(Sα+Sβ)/2+2

RSβ+1 N
lβ+ 1

2 Sβ ,lα+ 1
2 Sα

1
2 (l−lα−lβ )

(sin θc)
lβ (cos θc)

lα

×P
(lβ+ 1

2 Sβ ,lα+ 1
2 Sα)

1
2 (l−lα−lβ )

(cos 2θc) =
√

2k

rSβ
Jlβ+ 1

2 Sβ
(kβr) (3.15)
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where k2 = k2
α + k2

β and the parameters a, b and c are determined using formulae (2.4)–(2.6).
Thus, using these contractions for basis functions corresponding to the elementary cells,

we go from (2a, . . . , 2c) to (2d, . . . , 2f) (see figure 2) and can determine the general contractions
for hyperspherical functions corresponding to any O(n + 1) tree (see figure 4).

4. Contractions of the interbase expansions

Having the explicit form of the T -coefficients for all eight types of ‘elementary’ transitions
between trees, we shall now consider the contraction limit R → ∞ for the interbase expansions
in figure 3.

4.1. Contraction of Racah coefficients: three closed ends

The tree on the left-hand side of figure 5(a) corresponds to the subgroup chains O(n + 1) ⊃
O(nα + nβ) ⊗ O(nγ ), while the tree on the right-hand side of figure 5(a) corresponds to the
chain O(n + 1) ⊃ O(nα) ⊗ O(nγ + nβ), where n + 1 = nα + nγ + nβ .

The interbase expansion corresponding to the transformations between trees in figure 5(a)
has the form

�
αβγ

Jm (θ ′
1, θ

′
2) =

J−α∑
l=β+γ,β+γ +2,...

T
αβγ

J lm �
αβγ

J l (θ1, θ2) (4.1)

where

cos θ1 = cos θ ′
1 cos θ ′

2 cot θ2 = cot θ ′
1 sin θ ′

2.

The T -coefficients are given by formula (2.7), and the wavefunctions � can be obtained with
the help of the rules of section 2 (equation (2.6)).

Figure 5. Contractions for three closed ends. A broken line in the bottom row implies that the
closed end α gives rise to further trees in the En cluster diagram.
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Consider now the contraction limit R → ∞ in the interbasis expansion (4.1). For large
R we put

J ∼ kR m ∼ pR α ∼ qR

θ ′
1 ∼ rγ

R
θ ′

2 ∼ rβ

R
θ1 ∼ rβγ

R

(4.2)

where rβγ =
√

r2
β + r2

γ , k2
β = p2 − q2, k2

γ = k2 − p2 and k2
βγ = k2

β + k2
γ and we have

lim
R→∞

�
αβγ

Jm (θ ′
1, θ

′
2) = �

βγ

kkβkγ
(rβ, rγ ) = 2

√
kp

(rβ)Sβ/2(rγ )Sγ /2 Jβ+ 1
2 Sβ

(kβrβ)Jγ + 1
2 Sγ

(kγ rγ ) (4.3)

lim
R→∞

�
αβγ

J l (θ1, θ2) = �
lβγ

kkβγ
(rβγ , θ2) =

√
2k(2l + Sβ + Sγ + 2)

(rβγ )1+ 1
2 (Sβ+Sγ )

Jl+ 1
2 (Sβ+Sγ )+1(kβγ rβγ )

×
√

�( 1
2 (l + Sβ + Sγ + β + γ ) + 1)( 1

2 (l − β − γ ) + 1)!

�( 1
2 (l − β + γ + Sγ ) + 1)�( 1

2 (l + β − γ + Sβ) + 1)

×(sin θ2)
γ (cos θ2)

βP
(γ + 1

2 Sγ ,β+ 1
2 Sβ)

1
2 (l−β−γ )

(cos 2θ2). (4.4)

Using the asymptotic formulae for the 4F3 functions and � functions [19] in equation (2.7),
we obtain

lim
R→∞

T
αβγ

J lm = W
lβγ

kkβγ kβkγ
=

{[
2p(2l + Sβ + Sγ + 2)�( 1

2 (l + β + γ + Sβ + Sγ ) + 1)

×�( 1
2 (l + β − γ + Sβ + Sγ ) + 1)

]
×[

( 1
2 (l − β − γ ))!�( 1

2 (l − β + γ + Sγ ) + 1)[�(β + 1
2Sβ + 1)]2

]−1
}1/2

× k
β+ 1

2 Sβ

β k
γ + 1

2 Sγ

γ

k
β+γ + 1

2 (Sβ+Sγ )+1
βγ

×2F1

(
− 1

2 (l − β − γ ), 1
2 (l + β + γ + Sγ + Sβ) + 1; β + 1

2Sβ + 1; k2
β

k2
β + k2

γ

)

= (−1)
1
2 (l−β−γ )

×
√√√√2p(2l + Sγ + Sβ + 2)( 1

2 (l − β − γ ))!�( 1
2 (l + β + γ + Sβ + Sγ ) + 1)

k2
βγ �( 1

2 (l + β − γ + Sβ) + 1)�( 1
2 (l − β + γ + Sγ ) + 1)

(4.5)

×(cos φ)β+ 1
2 Sβ (sin φ)γ + 1

2 Sγ P
(γ + 1

2 Sγ ,β+ 1
2 Sβ)

1
2 (l−β−γ )

(cos 2φ). (4.6)

Taking the contraction limit R → ∞ in (4.1), we obtain (θ2 ≡ θ )

�
βγ

kkβkγ
(rβ, rγ ) =

∞∑
l=β+γ,β+γ +2,...

W
lβγ

kkβγ kβkγ
�

lβγ

kkβγ
(rβγ , θ). (4.7)

Using the orthogonality condition for the Jacobi polynomials∫ kβγ

0
W

lβγ

kkβγ kβkγ
W

l′βγ ∗
kkβγ kβkγ

kβ√
k2 − k2

γ

dkβ = δll′
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we obtain the inverse expansion

�
lβγ

kkβγ
(rβγ , θ) =

∫ kβγ

0
W

l′βγ ∗
kkβγ kβkγ

�
βγ

kkβkγ
(rβ, rγ )

kβ√
k2 − k2

γ

dkβ. (4.8)

Putting the functions (4.3), (4.4) and the interbase coefficients (4.5) into the expansions (4.7)
and (4.8), we obtain

Jβ+ 1
2 Sβ

(z cos θ cos φ)Jγ + 1
2 Sγ

(z sin θ sin φ) = (sin φ sin θ)γ + 1
2 Sγ (cos φ cos θ)β+ 1

2 Sβ

×
∞∑

l=β+γ,β+γ +2,...

(−1)
1
2 (l−β−γ ) (2l + Sβ + Sγ + 2)

z

× �( 1
2 (l + Sβ + Sγ + β + γ ) + 1)( 1

2 (l − β − γ ) + 1)!

�( 1
2 (l − β + γ + Sγ ) + 1)�( 1

2 (l + β − γ + Sβ) + 1)

×P
(γ + 1

2 Sβ ,β+ 1
2 Sβ)

1
2 (l−β−γ )

(cos 2φ)P
(γ + 1

2 Sγ ,β+ 1
2 Sβ)

1
2 (l−β−γ )

(cos 2θ)Jl+ 1
2 (Sβ+Sγ )+1(z) (4.9)

and

(−1)
1
2 (l−β−γ )

z
Jl+(Sβ+Sγ )/2+1(z)(sin θ)γ + 1

2 Sγ (cos θ)β+ 1
2 Sβ P

(γ + 1
2 Sγ ,β+ 1

2 Sβ)
1
2 (l−β−γ )

(cos 2θ)

=
∫ π/2

0
(sin φ)γ + 1

2 Sγ + 1
2 Jβ+ 1

2 Sβ
(z cos θ cos φ)

×Jγ + 1
2 Sγ

(z sin θ sin φ)(cos φ)β+ 1
2 Sβ+ 1

2 P
(γ + 1

2 Sγ ,β+ 1
2 Sβ)

1
2 (l−β−γ )

(cos 2φ) dφ (4.10)

where z ≡ kβγ rβγ and

rβ = rβγ cos θ rγ = rβγ sin θ

kβ = kβγ cos φ kγ = kβγ sin φ.

The previous two expansions are equivalent to well known formulae in the theory of Bessel
functions [19], namely expansions of the product of two Bessel functions in terms of the
product of one Bessel function and two Jacobi polynomials, and vice versa.

The entire procedure of contraction is illustrated in figure 5. The vertical arrows correspond
to the contraction (4.2) from the Sn trees to the En clusters. The first tree in figure 5(a) contracts
to bihyperspherical coordinates and the second to hyperspherical ones. The contraction of the
coefficients T or overlap functions is given by equation (4.5). This is an asymptotic formula
for the Racah coefficients, where the three momenta satisfy J, m, α → ∞. The interbase
expansion (4.7) and its inverse integral expansion (4.8) between two En cluster diagrams (see
figure 5(b)) are obtained from the interbase expansions (4.1) for the Sn tree diagrams. We
thus obtain relations between the bihyperspherical and hyperspherical bases for the Helmholtz
equation on En.

The contraction limit R → ∞ of the interbase expansion corresponding to figure 3(b)
with α an open end (or q2 = 0; see, e.g., (4.2)) can be obtained from equations (4.7) and (4.8)
by performing the substitutions r = rβγ and k = kβγ .
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Figure 6. Contractions for two closed ends (the open one is transplanted).

4.2. Contraction for two closed ends; open one in the middle

The two trees in figure 6 correspond to two subgroup reductions: O(n+1) ⊃ O(nα+1)⊗O(nγ )

on the left-hand side and O(n + 1) ⊃ O(nα) ⊗ O(nγ + 1) on the right. The overlap functions
are again expressed in terms of Racah coefficients (see equation (A.3)). The corresponding
interbase expansion is

�
αγ

Jm(θ ′
1, θ

′
2) =

J−α∑
l=γ,γ +1

T
αγ

J lm�
αγ

J l (θ1, θ2) (4.11)

where the T -coefficients are given by equation (A.3) and the hyperspherical functions � on
both sides of equation (4.11) can be written with the help of the formulae of section 2. Since
the quantum numbers J −m−γ and J − l −α are even, l − γ + m−α is also even, and in the
expansion (4.11) we have l = γ, γ +2, . . . J −α for (m−α) even, and l = γ +1, γ +3, . . . J −α

for (m − α) odd.
As in the previous case, the contraction will involve three quantum numbers: J, m and α.

In the contraction limit R → ∞,

J ∼ kR m ∼ pR α ∼ qR

θ ′
1 ∼ rγ

R
θ ′

2 ∼ x

R
θ1 ∼

√
r2
γ + x2

R

(4.12)

where k2
γ = k2 − p2, k2

x = p2 − q2, k2
xγ = k2

x + k2
γ , we obtain

lim
R→∞

(−1)
1
2 (m−α)�

αγ

Jm(θ ′
1, θ

′
2) = �

γ

kkxkγ
(rγ , x) =

√
k

πkx

2(k2 − k2
γ )1/4

r
Sγ /2
γ

×Jγ + 1
2 Sγ

(kγ rγ )

{
cos kxx (m − α) even

−i sin kxx (m − α) odd
(4.13)

lim
R→∞

R− 1
2 (Sγ +1)�

αγ

J l (θ1, θ2) = �
lγ

kkxγ
(

√
r2
γ + x2, θ2)
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=
√

k(2l + Sγ + 1)(l − γ )!

π(l + Sγ + γ )!

�(γ + 1
2 (Sγ + 1))

(r2
γ + x2)

1
4 (Sγ +1)

×2γ + 1
2 Sγ (sin θ2)

γ Jl+ 1
2 (Sγ +1)(kxγ

√
r2
γ + x2)P

(γ + 1
2 Sγ ,γ + 1

2 Sγ )

l−γ (cos θ2). (4.14)

For the contractions of the interbase coefficients T , we obtain

lim
R→∞

(−1)
1
2 (m−α)T

αγ

J lm = W
lγ

kkxγ kxkγ
=

√
2(2l + Sγ + 1)

πkxγ kx

(k2 − k2
γ )1/4

(
kγ

kxγ

)γ + 1
2 Sγ

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1/2 · 2F1

(
− 1

2 (l − γ ), 1
2 (l + γ + Sγ + 1); 1

2 ; k2
x

k2
xγ

)
(l − γ ) even

−2iA−1/2

(
kx

kxγ

)
· 2F1

(
− 1

2 (l − γ − 1), 1
2 (l + γ + Sγ ) + 1; 3

2 ; k2
x

k2
xγ

)
(l − γ ) odd

(4.15)

where

A = �
(

1
2 (l + γ + Sγ + 1)

)
�

(
1
2 (l − γ + 1)

)
�( 1

2 (l + γ + Sγ ) + 1)�( 1
2 (l − γ ) + 1)

.

Using the connection between hypergeometrical functions 2F1 and the Gegenbauer
polynomials [19], we obtain

W
lγ

kkxγ kxkγ
= (−1)

1
2 (l−γ )2γ + 1

2 (Sγ +1)

(k2 − k2
γ )−

1
4

�
(
γ + 1

2 (Sγ + 1)
)√ (2l + Sγ + 1)(l − γ )!

πkxkγ (l + γ + Sγ )!

×(sin φ)γ + 1
2 (Sγ +1)C

γ + 1
2 (Sγ +1)

l−γ (cos φ) cos φ = kx

kxγ

. (4.16)

Multiplying the interbase expansion (4.11) by the factor R− 1
2 (Sγ +1) and taking the contraction

limit R → ∞, we obtain (θ2 ≡ θ )

�
γ

kkxkγ
(rγ , x) =

∞∑
l=γ,γ +1

′
W

lγ

kkxγ kxkγ
�

lγ

kkxγ

(√
r2
γ + x2, θ

)
. (4.17)

We use the orthogonality condition for the Gegenbauer polynomials [19]∫ kxγ

−kxγ

W
lγ

kkxγ kxkγ
W

l′γ ∗
kkxγ kxkγ

kx dkx√
k2 − k2

γ

= 4δll′ (4.18)

to obtain the inverse expansion

�
lγ

kkxγ

(√
r2
γ + x2, θ

) = 1
4

∫ kxγ

−kxγ

W
lγ ∗
kkxγ kxkγ

�
γ

kkxkγ
(rγ , x)

kx dkx√
k2 − k2

γ

. (4.19)

Thus, the interbase expansion (4.11) transforms in to the expansion between the
hypercylindrical and hyperspherical bases for Helmholtz equation.

Substituting formulae (4.13), (4.14) and (4.16) into expansions (4.17) and (4.19) and
putting

kx = kxγ cos φ kγ = kxγ sin φ

x =
√

r2
γ + x2 cos θ2 rγ =

√
r2
γ + x2 sin θ2
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Figure 7. Contractions for two closed ends (open one on the right).

we have (z ≡ kxγ

√
r2
γ + x2)

Jγ + 1
2 Sγ

(z sin φ sin θ)

{
cos(z cos φ cos θ)

sin(z sin φ sin θ)

}
= 22γ +Sγ −1

√
πz

�2(γ + 1
2 (Sγ + 1))(sin φ sin θ)γ + 1

2 Sγ

×
∞∑

l=γ,γ +1

(2l + Sγ + 1)(l − γ )!

(l + γ + Sγ )!

×C
γ + 1

2 (Sγ +1)

l−γ (cos φ)C
γ + 1

2 (Sγ +1)

l−γ (cos θ)Jl+ 1
2 (Sγ +1)(z) (4.20)

and

Jl+ 1
2 (Sγ +1)(z)(sin θ)γ + 1

2 Sγ C
γ + 1

2 (Sγ +1)

l−γ (cos θ) =
√

z

2π

∫ π

0
dφ (sin φ)γ + 1

2 Sγ +1

×C
γ + 1

2 (Sγ +1)

l−γ (cos φ)Jγ + 1
2 Sγ

(z sin φ sin θ)

{
cos(z cos φ cos θ)

sin(z sin φ sin θ)

}
.

The contraction limit R → ∞ of the interbase expansion corresponding to figure 3(e)
with α an open end (or q2 = 0; see, e.g., (4.12)) can be presented by formulae (4.17) and
(4.19) with the substitutions r2 = r2

γ + x2 and k2 = k2
x + k2

γ .

4.3. Contraction for two closed ends, open one on the right

In this case, the left tree corresponds to the subgroup chains O(n + 1) ⊃ O(nα + nβ) and the
right one to O(n + 1) ⊃ O(nα) ⊗ O(nβ + 1). The overlap functions (A.4) of the appendix are
again expressed in terms of the Racah coefficients. The expansion corresponding to figure 7
has the form

�
αβ

Jm(θ ′
1, θ

′
2) =

J−α∑
l=β,β+1

T
αβ

J lm�
αβ

J l (θ1, θ2) (4.21)

where the T -coefficient is given by equation (A.4) and the wavefunctions � may be constructed
by using the rules given in section 2. As in the previous case the quantum number l runs through
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l = β, β + 2, . . . , J − α or l = β + 1, β + 3, . . . , J − α depending on J − m being even or
odd.

In the contraction limit R → ∞
J ∼ kR m ∼ pR α ∼ qR

θ ′
1 ∼ x

R
θ ′

2 ∼ rβ

R
θ1 ∼

√
r2
β + x2

R

we obtain

�
β

kkxkβ
(x, rβ) = lim

R→∞
(−1)

1
2 (J−m)�

αβ

Jm(θ ′
1, θ

′
2)

= 2
√

kp√
πkx

(rβ)−
1
2 Sβ Jβ+ 1

2 Sβ
(kβrβ)

{
cos kxx (J − m) even

−i sin kxx (J − m) odd
(4.22)

�
lβ

kkxβ

(√
r2
β + x2, θ2

) = lim
R→∞

�
αβ

J l (θ1, θ2)

= 2β+ 1
2 Sβ �(β + 1

2 (Sβ + 1))

(r2
β + x2)

1
4 (Sβ+1)

√
k(2l + Sβ + 1)(l − β)!

π(l + β + Sβ)!

×Jl+ 1
2 (Sβ+1)

(
kxβ

√
r2
β + x2

)
(cos θ2)

βC
β+ 1

2 (Sβ+1)

l−β (sin θ2) (4.23)

where k2
β = p2 − q2, k2

x = k2 − p2 and k2
xβ = k2

x + k2
β .

For the T -coefficients we obtain

W
lβ

kkxβkxkβ
= lim

R→∞
T

αβ

J lm = 1

2β+ 1
2 (Sβ−1)

√
(2l + Sβ + 1)(l + β + Sβ)!

(l − β)![�(β + 1
2Sβ + 1)]2

√
p

kxkβ

×
(

kx

kxβ

)l (
kβ

kx

)β (
kβ

kxβ

)Sβ/2

×2F1

(
− 1

2 (l − β), − 1
2 (l − β − 1); β + 1

2Sβ + 1; −k2
β

k2
x

)

= 2β+ 1
2 (Sβ+1)�(β + 1

2 (Sβ + 1))√
πkxkxβ

{
p(2l + Sβ + 1)(l − β)!

(l + β + Sβ)!

}1/2

×(cos φ)β+ 1
2 Sβ C

β+ 1
2 (Sβ+1)

l−β (sin φ)

where cos φ = kβ/kxβ .
Multiplying the expansion (4.21) by the factor R−(Sβ+1)/2 and taking the contraction limit

R → ∞, we obtain the flat-space expansion (θ2 ≡ θ )

�
β

kkxkβ
(x, rβ) =

∞∑
l=β,β+1

W
lβ

kkxβkxkβ
�

lβ

kkxβ

(√
r2
β + x2, θ

)
. (4.24)

Using the orthogonality condition for the Gegenbauer polynomials [19], we have∫ kxβ

−kxβ

W
lβ

kkxβkxkβ
W

l′β∗
kkxβkxkβ

kx dkx√
k2 − k2

β

= 4δll′ (4.25)



536 A A Izmest’ev et al

and the inverse expansion has the following form:

�
lβ

kk2
xβ

(√
r2
β + x2, θ

) = 1
4

∫ kxβ

−kxβ

W
lβ∗
kkxβkxkβ

�
β

kkxkβ
(rβ, x)

kx dkx√
k2 − k2

β

. (4.26)

Putting

kx = kxβ sin φ kγ = kxβ cos φ

x =
√

r2
β + x2 sin θ2 rβ =

√
r2
β + x2 cos θ2

we finally obtain the expansion of the product of Bessel and trigonometric functions in terms
of the product of two Gegenbauer polynomials and one Bessel function

√
zJβ+ 1

2 Sβ
(z cos θ cos φ)

{
cos(z sin θ sin φ)

sin(z sin θ sin φ)

}
= 22β+Sβ �2(β + 1

2 (Sβ + 1))

π
(cos θ cos φ)β+ 1

2 Sβ

×
∞∑

l=β,β+1

(2l + Sβ + 1)(l − β)!

(l + β + Sβ)!
C

β+ 1
2 (Sβ+1)

l−β (sin φ)C
β+ 1

2 (Sβ+1)

l−β (sin θ2)Jl+ 1
2 (Sβ+1)(z)

(4.27)

where (z ≡ kxβ

√
r2
β + x2) and the top line on the left-hand side corresponds to a summation

over l = β, β+2, . . . , J −α and the bottom one to a summation over l = β+1, β+3, . . . , J −α.
The expansion (4.27) is related to (4.20) by the substitutions θ → π/2 − θ , φ → π/2 −φ and
γ → β, Sγ → Sβ .

Note that the contraction limit R → ∞ in the interbase expansion, corresponding to
figure 3(f ) with α an open end (or q2 = 0), can be obtained from the expansion (4.24) and
(4.26) by the substitutions k2 = k2

xβ and r2 = r2
β + x2.

4.4. Contractions for one closed end

The tree on the left-hand side of figure 8(a) corresponds to the subgroup chains O(n + 1) ⊃
O(nα + 1) ⊃ O(nα) and the right one to O(n + 1) ⊃ O(nα) ⊗ O(2). The overlap functions

Figure 8. Contractions for one closed end.
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(A.7) are expressed in terms of the Clebsch–Gordan coefficients of the SU(2) group and the
interbase expansion is

�α
Jm(θ ′

1, θ
′
2) =

(J−α)∑
l=−(J−α)

(−i)m−α+l(−1)
1
2 (|l|−l)

×C
m+ 1

2 Sα,α+ 1
2 Sα

1
2 J+ 1

4 (Sα), 1
2 (α+l)+ 1

4 (Sα); 1
2 J+ 1

4 (Sα), 1
2 (α−l)+ 1

4 (Sα)
�α

J l(θ1, θ2) (4.28)

where the wavefunctions � can be written out by using the formulae in section 2, and l has
the same parity as (J − α).

In the contraction limit R → ∞
J ∼ kR m ∼ pR α ∼ qR θ1 ∼ r

R
θ ′

2 ∼ x1

R
θ ′

1 ∼ x2

R

where k2
1 = p2 − q2, k2

2 = k2 − p2, k2
r = k2

1 + k2
2 , we obtain (θ ≡ θ2)

lim
R→∞

1√
R

�α
Jl(θ1, θ2) = �l

kkr
(r, θ) =

√
k

π
J|l|(krr) eilθ (4.29)

lim
R→∞

(−1)
1
2 (J−α)�α

Jm(θ ′
1, θ

′
2) = �kk1k2(x1, x2) =

√
4pk

π2k1k2

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos(k1x1) cos(k2x2) (J − m) even, (m − α) even

−i cos(k1x1) sin(k2x2) (J − m) odd, (m − α) even

−i sin(k1x1) cos(k2x2) (J − m) even, (m − α) odd

− sin(k1x1) sin(k2x2) (J − m) odd, (m − α) odd

(4.30)

lim
R→∞

(−1)−
1
2 (J−α)

√
R(−i)m−α+l(−1)

1
2 (|l|−l)C

m+ 1
2 Sα,α+ 1

2 Sα

1
2 J+ 1

4 (Sα), 1
2 (α+l)+ 1

4 (Sα); 1
2 J+ 1

4 (Sα), 1
2 (α−l)+ 1

4 (Sα)
= Wl

kk1k2

= (i)l(−1)
1
2 (|l|−l)

√
4p

πk1k2

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2F1

(
− 1

2 (|l|), 1
2 (|l|); 1

2 ; −k2
2

k2
r

)
(J − m) even

−il
k2

kr
2F1

(
1
2 (1 − |l|), 1

2 (1 + |l|); 3
2 ; −k2

2

k2
r

)
(J − m) odd

= (i)l(−1)
1
2 (|l|−l)

√
4pkr

πk1k2

{
cos |l|φ (J − m) even

−i sin |l|φ (J − m) odd, cos φ = k1/kr .
(4.31)

Multiplying the expansion (4.28) by the factor (−1)
1
2 (J−α) and taking the contraction limit

R → ∞, we obtain

e−ik1x1

{
cos(k2x2)

sin(k2x2)

}
=

∞∑
l=−∞

(i)l(−1)
1
2 (|l|−l)

√
kr

{
cos |l|φ
sin |l|φ

}
J|l|(krr) eilθ (4.32)

where r =
√

x2
1 + x2

2 and tan θ = x2/x1. The inverse expansion is

J|l|(krr) eilθ = (i)l(−1)
1
2 (|l|−l)

2π

∫ 2π

0
eilφ−ikr r cos(θ−φ) dφ. (4.33)
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For θ = 0 the latter formula is equivalent to a well known formula in the theory of Bessel
functions [19].

Let us sum up. We explicitly gave the contractions of T -coefficients corresponding to
figures 3(a), (c), (d) and (g), in sections 4.1–4.4, respectively. Those for figures 3(b), (e), (f )
and (h) are obtained as the corresponding limits for q = 0. In each case, graphically a closed
end on the left is replaced by an open one in the limit. We recall that this left end is ‘cut-off’
in the contraction.

5. The group O(3)

The general formulae of section 4 simplify considerably for n = 2 and 3. We give some
specific results here, as illustrations of the general ones.

For the sphere S2 all three ends of the tree diagrams are open, as in figure 3(h). Two types
of three diagrams exist for the sphere S2, both shown in figure 9(a). In [2] we introduced
subgroup diagrams for the groups O(n + 1) and E(n), illustrating graphically possible chains
of subgroups. We also gave a relation between tree diagrams for coordinates and subgroup

Figure 9. Tree diagrams and subgroup diagrams illustrating S2 → E2 contractions.
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diagrams. For O(3) only one chain exists, namely O(3) ⊃ O(2), for E(2) two exist, namely
E(2) ⊃ O(2) and E(2) ⊃ E(1) ⊗ E(1). All are shown in figure 9(c). Circles denote O(n)

groups, squares E(n) ones. The value of n is given in the circle, or square, respectively. The
two diagrams in figure 9(a) both correspond to O(3) ⊃ O (2) chains, but one privileges the
(01) pair, and for the other the (12) one.

The spherical functions corresponding to the two trees are connected by the interbase
expansion

Ylm1

(
1
2π − θ ′

1, θ
′
2

) =
l∑

m2=−l

Dl
m2,m1

( 1
2π, 1

2π, 0)Ylm2(θ1, θ2) (5.1)

so that the overlap functions are the Wigner rotation matrices Dl
m2,m1

(α, β, γ ) =
e−im2αdl

m2,m1
(β) e−im1γ [7, 23, 24]. The angles in both sides of the expansions are connected

by the relations

u0 = R cos θ1 = R cos θ ′
1 cos θ ′

2

u1 = R sin θ1 cos θ2 = R cos θ ′
1 sin θ ′

2

u2 = R sin θ1 sin θ2 = R sin θ ′
1.

The expansion (5.1) corresponds to an ‘elementary’ transformation of the O(3) tree diagram
in figure 9: the branch leading to the Cartesian coordinate u1 is ‘transplanted’ from the u0

branch to the u2 one.
Let us now consider the contraction R → ∞ for the interbasis expansion (5.1).

Contractions of basis functions were presented earlier [1, 2]. In order to obtain the
corresponding limits of the Wigner D-functions, we use an integral representation for the
function dl

m2,m1
(π/2)

dl
m2,m1

( 1
2π) = (−1)

1
2 (l−m1)

2l

π

{
(l + m2)!(l − m2)!

(l + m1)!(l − m1)!

}1/2 ∫ π

0
(sin α)l−m1(cos α)l+m1 e2im2α dα

and the formulae [19]

cos(2nα) = Tn(cos 2α) sin(2nα) = sin 2α · Un−1(cos 2α)

where Tl(x) and Ul(x) are Tchebyshev polynomials of the first and second kind. After
integrating over α, we obtain a representation of the Wigner D-functions in terms of the
hypergeometrical function 3F2 (of argument 1):

Dl
m2,m1

( 1
2π, 1

2π, 0) = (−1)
1
2 (l+m2−m1)

√
πl!

√
(l + m2)!(l − m2)!

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
�

(
1
2 (l + m1 + 1)

)
�

(
1
2 (l − m1 + 1)

)
�

(
1
2 (l + m1) + 1

)
�

(
1
2 (l − m1) + 1

)
}1/2

×3F2

(
−m2, m2,

1
2 (l + m1 + 1)

1
2 , l + 1

∣∣∣∣∣1
)

(l − m1) even

2il

(l + 1)

{
�

(
1
2 (l + m1) + 1

)
�

(
1
2 (l − m1) + 1

)
�

(
1
2 (l + m1 + 1)

)
�

(
1
2 (l − m1 + 1)

)
}1/2

×3F2

(
−m2 + 1, m2 + 1, 1

2 (l + m1) + 1
3
2 , l + 2

∣∣∣∣∣1
)

(l − m1) odd.

(5.2)
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Consider now the contraction limit R → ∞ in the expansion (5.1). For large R we put

l ∼ kR m1 ∼ k1R θ1 ∼ r

R

θ ′
1 ∼ y

R
θ ′

2 ∼ x

R
R → ∞

(5.3)

where k2 = k2
1 + k2

2 , and have [2]

lim
R→∞

1√
R

Ylm2(θ1, θ2) = (−1)
1
2 (m2+|m2|)√kJ|m2|(kr)

eim2θ2

√
2π

(5.4)

lim
R→∞

(−1)−
1
2 (l−|m1|)Ylm1

(
1
2π − θ ′

1, θ
′
2

) =
√

k

k2

eik1x

π

{
cos k2y (l − |m1|) even

−i sin k2y (l − |m1|) odd.
(5.5)

Using known asymptotic formulae [19] for the 3F2 functions and � functions in equation (5.2)
we obtain

lim
R→∞

(−1)−
1
2 (l−|m1|)√RDl

m2,m1
( 1

2π, 1
2π, 0) = (−1)

1
2 m2

√
2

πk

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
k2

k2

)1/4

2F1

(
−m2, m2; 1

2
; k + k1

2k

)
(l − m1) even

−im2

(
k2

k2

)1/4

2F1

(
−m2 + 1, m2 + 1; 3

2
; k + k1

2k

)
(l − m1) odd

= (−1)
3
2 m2

√
2

πk2

{
cos m2ϕ (l − m1) even

i sin m2ϕ (l − m1) odd
(5.6)

where cos ϕ = k1/k.
Multiplying the interbase expansion (5.1) by the factor (−1)−

1
2 (l−|m1|) and taking the

contraction limit R → ∞ we obtain (θ ≡ θ2, m ≡ m2)

eik1x

{
cos k2y

sin k2y

}
=

∞∑
m=−∞

(i)|m|
{

cos mϕ

− sin mϕ

}
J|m|(kr) eimθ (5.7)

or in exponential form

eikr cos(θ−ϕ) =
∞∑

m=−∞
(i)mJm(kr) eim(θ−ϕ). (5.8)

The inverse expansion is

Jm(kr) eimθ = (−i)m

2π

∫ 2π

0
eimϕ−ikr cos(θ−ϕ) dϕ. (5.9)

For θ = 0 the latter two formulae are equivalent to well known formulae in the theory of
Bessel functions [19], namely expansions of plane waves in terms of cylindrical ones and vice
versa.

The entire procedure is illustrated in figure 9. The vertical arrows correspond to the
contraction (5.3). The O(3) interbasis expansion (5.1) has contracted to the E(2) interbasis
expansion (5.8) and its inverse (5.9), i.e. the relations between plane and spherical waves. The
contraction of the overlap functions is given by equation (5.6): an asymptotic formula for
Wigner D-functions.
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We recall [2] that the En ‘cluster’ diagrams are obtained from the Sn tree diagrams by
cutting along the dotted lines in figures 4 and 9. The dotted line becomes the basis for the En

(in this case E2) diagram. Thus two topologically equivalent tree diagrams go into inequivalent
cluster diagrams. The first contracts to Cartesian coordinates, the second to polar ones. In
terms of subgroup diagrams the situation is illustrated in figure 9(c). Equations (5.8) and (5.9)
are special limiting cases of equations (4.32) and (4.33), respectively.

6. The group O(4)

Five types of tree diagrams exist for the sphere S3 ∼ O(4)/O(3). Two of them are shown in
figure 10(a), two more in figure 11(a), the fifth on the left-hand side of figure 12(a). Elementary
transitions correspond to the transplanting of a branch (or a twig) to a neighbouring branch.
All transitions can be composed from elementary ones.

Figure 10. Elementary interbase expansions contracted from O(4) to E(3). Contractions of
rotation matrices.
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Figure 11. Elementary interbase expansions contracted from O(4) to E(3). Contractions of Racah
coefficients.

Elementary transitions for O(4) can involve either three open ends, or one closed and two
open ones. For three open ends we obtain the same results as for O(3). For a closed end we
obtain a special cases of the formulae corresponding to figures 3(e), (f ) or (g).

6.1. Contractions of Clebsch–Gordan coefficients

The tree on the left-hand side of figure 10(a) corresponds to the subgroup chain O(4) ⊃
O(2) ⊗ O(2), as indicated in figure 10(c). The one on the right-hand side corresponds to the
chain O(4) ⊃ O(3) ⊃ O(2).

The translated branch is an open one and we are in the case of figure 3(e).
The interbase expansions no longer correspond to a rotation of the sphere, but to a

recoupling of some of the angular momenta involved. The overlap functions are expressed in
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Figure 12. Elementary interbase expansions contracted from O(4) to E(3). Contractions of
Clebsch–Gordan coefficients.

terms of Clebsch–Gordan coefficients of the O(3) group and we have

�Jnm(θ1, θ2, θ3) =
J∑

l=|m|
(i)l−|m|(−1)

1
2 (J−|m|−n)C

l,|m|
1
2 J, 1

2 (|m|+n); 1
2 J, 1

2 (|m|−n)
�J lm(θ ′

1, θ
′
2, θ3) (6.1)

where

u0 = R cos θ1 cos θ2 = R cos θ ′
1

u1 = R cos θ1 sin θ2 = R sin θ ′
1 cos θ ′

2

u2 = R sin θ1 cos θ3 = R sin θ ′
1 sin θ ′

2 cos θ3

u3 = R sin θ1 sin θ3 = R sin θ ′
1 sin θ ′

2 sin θ3

(6.2)

and C
l,γ

a,α;b,β are the Clebsch–Gordan coefficients for the O(3) group. The corresponding
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hyperspherical functions have the form

�Jnm(θ1, θ2, θ3) =
√

2J + 2

2π

√
( 1

2 (J + |m| + |n|))!( 1
2 (J − |m| − |n|))!

( 1
2 (J + |m| − |n|))!( 1

2 (J − |m| + |n|))! einθ2 eimθ3

×(sin θ1)
|m|(cos θ1)

|n|P (|m|,|n|)
1
2 (J−|m|−|n|)(cos 2θ1) (6.3)

�Jlm(θ ′
1, θ

′
2, θ3) =

√
(2J + 1)(J + l + 1)!(J − l)!

2l+1�(J + 3
2 )

(sin θ ′
1)

lP
(l+ 1

2 ,l+ 1
2 )

J−l (cos θ ′
1)Ylm(θ ′

2, θ3) (6.4)

where P
(α,β)
n (x) are Jacobi polynomials. We again make use of the Beltrami coordinates (3.4)

(with n = 3). In the contraction limit R → ∞ and

θ ′
1 → r

R
θ1 → ρ

R
θ2 → x1

R
J ∼ kR n ∼ k1R

where r =
√

x2
1 + ρ2 =

√
x2

1 + x2
2 + x2

3 , k =
√

k2
1 + p2 =

√
k2

1 + k2
2 + k2

3 . We have [2]

lim
R→∞

1√
R

�Jnm(θ1, θ2, θ3) = �kk1m(x1, ρ, θ3) =
√

k

π
J|m|(pρ) eik1x1

eimθ3

√
2π

(6.5)

and

lim
R→∞

1

R
�Jlm(θ ′

1, θ
′
2, θ3) = �klm(r, θ ′

2, θ3) =
√

k

r
Jl+ 1

2
(kr)Ylm(θ ′

2, θ3). (6.6)

We take the Clebsch–Gordan coefficients in the form

C
l,|m|
1
2 J, 1

2 (|m|+n); 1
2 J, 1

2 (|m|−n)
= (−1)

1
2 (J−|m|−n) (J )!

(|m|)!

√
(2l + 1)(l + |m|)!

(J − l)!(J + l + 1)!(l − |m|)!

×
√

( 1
2 (J + |m| − |n|))!( 1

2 (J − |m| + |n|))!
( 1

2 (J + |m| + |n|))!( 1
2 (J − |m| − |n|))!

× 3F2

{− 1
2 (J − n − |m|), −l, l + 1

−J, |m| + 1,

∣∣∣∣1
}
. (6.7)

In the contraction limit R → ∞, we obtain

lim
R→∞

√
R(−1)

1
2 (J−|m|−n)C

l,|m|
1
2 J, 1

2 (|m|+|n|); 1
2 J, 1

2 (|m|−|n|)

= Wl
k|m|(cos φ) =

√
(2l + 1)(l + |m|)!

k(l − |m|)!
(sin φ)|m|

2|m||m|!

× 2F1
(−l + |m|, l + |m| + 1; |m| + 1; 1

2 (1 − cos φ)
) =

√
2

k
P |m|

l (cos φ) (6.8)

where

P |m|
l (x) =

√
(2l + 1)(l − |m|)!

2(l + |m|)! P
|m|
l (x)

are the orthonormalized Legendre polynomials and cos φ = p/k. Thus the interbase
expansion (6.1) transforms into the expansion between the cylindrical and spherical bases
for the Helmholtz equation

�kk1m(x1, ρ, θ3) =
∞∑

l=|m|
Wl

k|m|(cos φ)�klm(r, θ ′
2, θ3). (6.9)
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We use the formula∫ π

0
Wl

k|m|(cos φ)W ∗l′
k|m|(cos φ) sin φ dφ = 2δl,l′ (6.10)

to obtain the inverse expansion

�klm(r, θ ′
2, θ3) = 1

2

∫ π

0
W ∗l

k,|m|(cos φ)�kk1m(x1, ρ, θ3) sin φ dφ. (6.11)

Putting the functions (6.5), (6.6) and interbase coefficients (6.8) into the expansions (6.9) and
(6.11), we obtain

1√
2π

eikr cos φ cos θ ′
2J|m|(kr sin φ sin θ ′

2) =
∞∑

l=|m|
(i)l+m 1√

kr
Jl+ 1

2
(kr)P |m|

l (cos φ)P |m|
l (cos θ ′

2)

1√
kr

Jl+ 1
2
(kr)P |m|

l (cos θ ′
2)

= (−i)l+m

√
2π

∫ π

0
eikr cos φ cos θ ′

2J|m|(kr sin φ sin θ ′
2)P |m|

l (cos φ) sin φ dφ.

(6.12)

The previous two expansions coincide with well known formulae in the theory of the Bessel
functions [19]. They are special cases of the limits of equation (4.20) mentioned at the end of
section 4.2.

6.2. Contraction of Racah coefficients

In this case both trees in figure 11(a) correspond to isomorphic subgroup chains O(4) ⊃
O(3) ⊃ O(2). The twig leading to the Cartesian coordinates (u1, u2) is transplanted to the
neighbouring branch, so an O(2) subgroup is moved from the O(3) subgroup (012) to the
(123) one. The transplanted branch is a closed one, as in figure 3(f ). In the contraction the
(012) subgroup is destroyed, the (123) one survives (see the ‘cut’ lines in figure 11(a)).

The O(4) interbase expansion in this case is

�Jnm(θ1, θ2, θ3) =
J∑

l=|m|
T l

Jnm�Jlm(θ ′
1, θ

′
2, θ3) (6.13)

where

u0 = R cos θ1 cos θ2 = R cos θ ′
1

u1 = R cos θ1 sin θ2 cos θ3 = R sin θ ′
1 cos θ ′

2 cos θ3

u2 = R cos θ1 sin θ2 sin θ3 = R sin θ ′
1 cos θ ′

2 sin θ3

u3 = R sin θ1 = R sin θ ′
1 sin θ ′

2

(6.14)

(see figure 11(a)). The hyperspherical wavefunctions corresponding to these two trees are

�Jnm(θ1, θ2, θ3) =
√

(2J + 1)(J + n + 1)!(J − n)!

2n+1�(J + 3
2 )

(cos θ1)
nP

(n+ 1
2 ,n+ 1

2 )

J−n (sin θ1)Ynm(θ2, θ3)

(6.15)

and

�Jlm(θ ′
1, θ

′
2, θ3) =

√
(2J + 1)(J + l + 1)!(J − l)!

2l+1�(J + 3
2 )

(sin θ ′
1)

lP
(l+ 1

2 ,l+ 1
2 )

J−l (cos θ ′
1)Ylm( 1

2π − θ ′
2, θ3)

(6.16)
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respectively. The interbase coefficients T l
Jnm are expressed [7] in terms of Racah coefficients,

in turn expressed in terms of the 4F3 hypergeometric function:

T l
Jnm = [

1
2 (1 + (−1)J−n+l−m)

]√ (2l + 1)(2n + 1)(n + |m|)!(l + |m|)!(J − l)!(J − n)!

(n − |m|)!(l − |m|)!(J + n + 1)!(J + l + 1)!

×(−1)
1
2 (J−n+l−m) 2l+n−2m

|m|!
�( 1

2 (J − n − l + |m|) + 1)

�( 1
2 (J + n + l − |m|) + 1)

× 4F3

{− 1
2 (n − |m|), − 1

2 (n − |m| − 1), − 1
2 (l − |m|), − 1

2 (l − |m| − 1)

|m| + 1, − 1
2 (J + n + l − |m|), 1

2 (J − n − l + |m|) + 1

∣∣∣∣1
}
.

In the contraction limit R → ∞ and

θ1 ∼ x3

R
θ2 ∼ ρ

R
θ ′

1 ∼ r

R
J ∼ kR n ∼ pR

where r =
√

ρ2 + x2
3 and k =

√
p2 + k2

3 , we obtain [2]

lim
R→∞

(−1)−
1
2 (J−n)

√
R

�Jnm(θ1, θ2, θ3) = �kpm(ρ, x3, θ3)

=
√

kJm(pρ)
eimθ3

π

{
cos k3x3 (J − n) even

−i sin k3x3 (J − n) odd

lim
R→∞

1

R
�Jlm(θ ′

1, θ
′
2, θ3) = �klm(r, θ ′

2, θ3) =
√

k

r
Jl+ 1

2
(kr)Ylm( 1

2π − θ ′
2, θ3).

For the contractions of interbase coefficients T l
Jnm we obtain

lim
R→∞

(−1)−
1
2 (J−n)

√
RT l

Jnm = Wl
k|m|(cos φ) = (−1)

1
2 (l−m)

|m|!

√
(2l + 1)(l + |m|)!

2k(l − |m|)!

×(cot φ)|m|+ 1
2 (sin φ)l2F1

(− 1
2 (l − |m|), − 1

2 (l − |m| − 1); |m| + 1; − cot2 φ
)

= (−1)
1
2 (l+|m|)

√
2

k
(cot φ)1/2P |m|

l (sin φ) (6.17)

where cos φ = p/k. The interbase expansion in equation (6.13) transforms into the expansion
between the cylindrical and spherical bases for the Helmholtz equation

1√
π

Jm(pρ)

{
cos k3x3

−i sin k3x3

}
=

∑
l

(−1)
1
2 (l−|m|)

√
kr

Jl+ 1
2
(kr)(cot φ)1/2P |m|

l (sin φ)P |m|
l (sin θ ′

2)

(6.18)

where the top line on the left-hand side corresponds to a summation over l = |m|, |m| +
2, |m| + 4, . . . and the bottom one to a summation over l = |m| + 1, |m| + 3, . . . on the right-
hand side. The E(3) expansion (6.18) is related to the expansion (6.12) by the substitution
k1 = k cos φ → k3, x1 = r cos θ ′

2 → x3, φ → π/2 − φ and θ ′
2 → π/2 − θ ′

2. Equation (6.18)
is the limit of a special case of expansion (4.27).
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6.3. Further contractions of Clebsch–Gordan coefficients

As in figure 10, the two O(4) trees in figure 12 correspond to two different subgroup reductions:
O(4) ⊃ O(3) ⊃ O(2) on the left and O(4) ⊃ O(2) ⊗ O(2) on the right. As in the case of
figure 10 we are transplanting an open end. However, the contraction is different, as can be
seen by comparing figures 10(a) and 12(a) (the dotted lines are different). Since a recoupling
of momenta is involved the overlap functions are again expressed in terms of O(3) Clebsch–
Gordan coefficients [7]. The corresponding interbase expansion is

�Jlm(θ1, θ2, θ3) =
J−|m|∑

n=−(J−|m|)
(−i)l−|m|Cl,|m|

1
2 J, 1

2 (|m|+n); 1
2 J, 1

2 (|m|−n)
�Jmn(θ

′
1, θ

′
2, θ3) (6.19)

where n has the same parity as (J − |m|) and

u0 = R cos θ1 cos θ2 cos θ3 = R cos θ ′
1 cos θ3

u1 = R cos θ1 cos θ2 sin θ3 = R cos θ ′
1 sin θ3

u2 = R cos θ1 sin θ2 = R sin θ ′
1 cos θ ′

2

u3 = R sin θ1 = R sin θ ′
1 sin θ ′

2

(6.20)

(see figure 12). The corresponding hyperspherical function is

�Jlm(θ1, θ2, θ3) =
√

(2J + 1)(J + l + 1)!(J − l)!

2l+1�(J + 3
2 )

(cos θ1)
lP

(l+ 1
2 ,l+ 1

2 )

J−l (sin θ1)Ylm

(
1
2π − θ2, θ3

)
and the wavefunction �Jmn(θ

′
1, θ

′
2, θ3) is given by equation (6.3) (with n replaced by m).

The contraction in this case (see figure 12 and equation (6.22) below) will involve three
quantum numbers J , l and m. Equation (6.7) expressing Clebsch–Gordan coefficients in terms
of the 3F2 function is not convenient for taking this limit. Instead, we use the following integral
representation [7]:

C
l,|m|
1
2 J, 1

2 (|m|+n); 1
2 J, 1

2 (|m|−n)
= (i)l−|m|(−1)

1
2 (J−|m|−n)

×
{

(l + |m|)!( 1
2 (J − |m| − |n|))!( 1

2 (J − |m| + |n|))!
(l − |m|)!( 1

2 (J + |m| − |n|))!( 1
2 (J + |m| + |n|))!

}1/2

×
√

(2l + 1)(J − l)!(J + l + 1)!

2l+|m|+2�(J + 3/2)

× 1√
π

∫ 2π

0
(sin φ)l−|m|P

(l+ 1
2 ,l+ 1

2 )

J−l (cos φ) e−inφ dφ (6.21)

and the formulae [19]

P (α,α)
n (cos φ) = �(α + n + 1)

�(α + 1)n!

×
{

2F1(− 1
2n, 1

2 (n + 1) + α; α + 1; sin2 φ) n even

cos φ2F1(− 1
2 (n − 1), 1

2n + α + 1; α + 1; sin2 φ) n odd.

After integrating over φ, we obtain a representation of the Clebsch–Gordan coefficients in
terms of the hypergeometrical function 4F3 (of argument 1):

C
l,|m|
1
2 J, 1

2 (|m|+n); 1
2 J, 1

2 (|m|−n)
= (i)l−|m|(−1)

1
2 (J−|m|)−n

√
2l + 1

22l
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×
√

(J + l + 1)!( 1
2 (J − |m| − |n|))!( 1

2 (J + |m| − |n|))!
(J − l)!( 1

2 (J − |m| + |n|))!( 1
2 (J + |m| + |n|))!

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
(l − |m|)!(l + |m|)!

�(1 + 1
2 (l + |m| − n))�(1 + 1

2 (l − |m| − n))

�
(

1
2 (J − l + 1)

)
�( 1

2 (J + l + 3))

× 4F3

(
− 1

2n, − 1
2 (n − 1), 1

2 (J + l) + 1, − 1
2 (J − l)

1
2 , 1 + 1

2 (l − |m| − n), 1 + 1
2 (l + |m| − n)

∣∣∣∣∣1
)

(J − l) even

−in
√

(l − |m|)!(l + |m|)!
�( 1

2 (l + |m| − n + 3))�(1 + 1
2 (l − |m| − n + 3))

�
(

1
2 (J − l)

)
�( 1

2 (J + l + 2))

× 4F3

(
− 1

2 (n − 1), − 1
2 (n − 2), 1

2 (J + l + 3), − 1
2 (J − l − 1)

3
2 , 1

2 (l − |m| − n + 3), 1
2 (l + |m| − n + 3)

∣∣∣∣∣1
)

(J − l) odd.

(To the best of our knowledge, this expression is new.) In the contraction limit R → ∞ and

θ1 ∼ x3
R

θ2 ∼ x2
R

θ3 ∼ x1
R

θ ′
1 ∼ ρ

R

J ∼ kR l ∼ pR m ∼ k1R
(6.22)

we obtain

lim
R→∞

(−1)−
1
2 (J−|m|)�J lm(θ1, θ2, θ3) =

√
2kp

πk2k3

eik1x1

π

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos k2x2 cos k3x3 (J − |m|) even, (l − |m|) even

−i sin k2x2 cos k3x3 (J − |m|) odd, (l − |m|) even

−i cos k2x2 sin k3x3 (J − |m|) even, (l − |m|) odd

− sin k2x2 sin k3x3 (J − |m|) odd, (l − |m|) odd

(6.23)

lim
R→∞

(−i)l−|m|(−1)−
1
2 (J−|m|)√RC

l,|m|
1
2 J, 1

2 (|m|−n); 1
2 J, 1

2 (|m|+n)
=

√
8p

(k2 − k2
1)π

(sin 2φ)−1/2

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos nφ (J − |m|) even, (l − |m|) even

−i sin nφ (J − |m|) odd, (l − |m|) even

−i sin nφ (J − |m|) even, (l − |m|) odd

− cos nφ (J − |m|) odd, (l − |m|) odd

(6.24)

where cos φ = (p2 −k2
1)/(k

2 −k2
1) and k2 = p2 +k2

3 = k2
1 +k2

2 +k2
3 . Substituting the formulae

(6.5), (6.23) and (6.24) into the expansion (6.19) we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos k2x2 cos k3x3

sin k2x2 cos k3x3

cos k2x2 sin k3x3

sin k2x2 sin k3x3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
∞∑

n=−∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos nφ

sin nφ

sin nφ

cos nφ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

J|n|(qρ) einθ ′
2

where

tan θ ′
2 = x3

x2
q2 = k2

2 + k2
3 ρ2 = x2

2 + x2
3 cos2 φ = k2

2

k2
2 + k2

3

.

These results are special cases of equation (4.31) and (4.32) of section 4.4.
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7. Conclusions

The ‘method of trees’ was introduced [2–7] in order to describe the separation of variables on
homogeneous spaces of compact Lie groups, more specifically O(n+1) and SU(n). The ‘trees’
turned out to be related to subgroup chains and it is useful to complement the tree diagrams
by subgroup diagrams [2]. Moreover, the method of trees has been extended in a simple and
straightforward way to Euclidean spaces [2], where instead of trees we have clusters of trees.
The Sn tree diagrams and En cluster diagrams are very helpful in the study of contractions.
They tell us, at least for subgroup-type coordinates, how coordinates on Sn and En can be
related by contractions.

The contribution of this paper is to treat contractions of interbase expansions and hence
of the overlap function. Overlap functions for different bases corresponding to isomorphic
subgroup chains involve rotation matrices. If the subgroup chains are not isomorphic, the
overlap functions will be expressed in terms of Clebsch–Gordan coefficients, Racah coefficients
or higher-order recoupling coefficients. For all of these we obtain asymptotic expressions.

For O(3) the contraction breaks the equivalence of the two types of subgroup chains. One
O(3) ⊃ O(2) basis contracts to an E(2) ⊃ O(2) basis and the other to an E(2) ⊃ E(1)⊗E(1)

one. Thus we obtain the well known relations between plane and cylindrical waves in E2.
For O(4) the contraction provides relations between spherical and cylindrical bases and

also between cylindrical and Cartesian ones. The interbase expansions relating E(3) Cartesian
and spherical bases are obtained by composing the elementary transitions.

Work is in progress on an extension of the methods of this paper and of [1] to spaces
of negative constant curvature, generalizing the results on the two-dimensional hyperboloid,
obtained earlier [25].

In this paper we restricted ourselves to subgroup-type coordinates only. Two earlier articles
were devoted to contractions of separated basis functions that correspond to non-subgroup-
type coordinates, in particular, elliptic coordinates on S2 and on the hyperboloid H2 [1, 25]. It
would also be possible to obtain interbase expansions for other types of bases, though so far
this has not been done.
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Appendix

Let us consider all particular cases of the overlap functions T . The substitution Sαj
= −1

αj = 0, 1 in the general formula (2.7), where αi = α, β, γ gives us two versions of the
T -coefficients. Using several times the formula for the hypergeometric function 4F3 [19]

4F3

{−n, c, d, b;
e, f, g

∣∣∣∣1
}

= (f − b)n(g − b)n

(f )n(g)n
4F3

{ −n, b, e − c, e − d;
e, 1 + b − n − f, 1 + b − n − g

∣∣∣∣1
}

−n + b + c + d = −1 + e + f + g (A.1)

one can show that these two variants can be united into one formula. We mention here that
some formulae for the T -coefficients [5, 7] must be prepared for contractions by using (A.1).
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Let us list seven formulae for the T -coefficients adapted to the contractions.

Open end α. (See figure 3(b).) Putting Sα = −1 and α = 0, 1 in formula (2.7) and using the
transformation (A.1), we obtain

T
βγ

J lm = [
1
2 (1 + (−1)J−l+m−β)

] 2l−β+ 1
2 Sγ

�(β + 1
2Sβ + 1)

×
√

(2l + Sβ + Sγ + 2)(2m + Sβ + 1)(J − l)!

�( 1
2 (J + m + γ + Sβ + Sγ + 3))�( 1

2 (J + m − γ + Sβ + 3))

×
{[

( 1
2 (J − m − γ ))!(m + β + Sβ)!�( 1

2 (J − m + γ + Sγ ) + 1)

×�( 1
2 (l + β + γ + Sβ + Sγ ) + 1)�( 1

2 (l + β − γ + Sβ) + 1)
]

×[
�( 1

2 (l − β + γ + Sγ ) + 1)( 1
2 (l − β − γ ))!(m − β)!

×(J + l + Sβ + Sγ + 2)!
]−1

}1/2 �( 1
2 (J + m + l − β + Sβ + Sγ + 3))

�( 1
2 (J − l − m + β) + 1)

×4F3

(
− 1

2 (m − β), − 1
2 (m − β − 1), − 1

2 (l − β + γ + Sγ ), − 1
2 (l − β − γ );

β + 1
2Sβ + 1, − 1

2 (J + l + m − β + Sβ + Sγ + 1), 1
2 (J − l − m + β) + 1

∣∣∣∣∣1
)

.

(A.2)

Open end β. (See figure 3(c).) Choosing the parameters Sβ = −1 and β = 0, 1 in formula
(2.7), we arrive at the following form of the coefficients T

αγ

J lm:

T
αγ

J lm = [1 + (−1)l−γ +m−α]

4
√

π
(−1)

1
2 (m−α)

√
(2m + Sα + 1)(2l + Sγ + 1)

×
{[

�( 1
2 (J − m − γ ) + 1)�( 1

2 (J + α + l + Sα + Sγ + 3))

×�( 1
2 (J + α − l + Sα) + 1)�( 1

2 (J + m − γ + Sα + 3))
]

×[
�( 1

2 (J − m + γ + Sγ ) + 1)�( 1
2 (J − α − l) + 1)

×�( 1
2 (J − α + l + Sγ + 3))�( 1

2 (J + m + γ + Sα + Sγ + 3))
]−1

}1/2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A · 4F3

⎛
⎜⎜⎝

− 1
2 (m − α), 1

2 (m + α + Sα + 1),
1
2 (l − γ + 1), − 1

2 (l + γ + Sγ );
1
2 , 1

2 (J + α − γ + Sα + 3),

− 1
2 (J − α + γ + Sγ )

∣∣∣∣∣1
⎞
⎟⎟⎠ (m − α) even

−2iB · 4F3

⎛
⎜⎜⎝

− 1
2 (m − α − 1), 1

2 (m + α + Sα) + 1,
1
2 (l − γ ) + 1, − 1

2 (l + γ + Sγ − 1);
3
2 , 1

2 (J + α − γ + Sα) + 2,

− 1
2 (J − α + γ + Sγ − 1)

∣∣∣∣∣1
⎞
⎟⎟⎠ (m − α) odd

(A.3)

where

A = �
(

1
2 (J − α + γ + Sγ ) + 1

)
�

(
1
2 (J + α − γ + Sα + 3)

){[�( 1
2 (l + γ + Sγ + 1))�( 1

2 (l − γ + 1))
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×�( 1
2 (m + α + Sα + 1)�( 1

2 (m − α + 1))
][

�( 1
2 (l + γ + Sγ ) + 1)

×�( 1
2 (l − γ ) + 1)�( 1

2 (m + α + Sα) + 1)�( 1
2 (m − α) + 1)

]−1
}1/2

B = �
(

1
2 (J − α + γ + Sγ + 1)

)
�

(
1
2 (J + α − γ + Sα) + 2

){[�( 1
2 (l + γ + Sγ ) + 1)�( 1

2 (l − γ ) + 1)

×�( 1
2 (m + α + Sα) + 1)�( 1

2 (m − α) + 1)
][

�( 1
2 (l + γ + Sγ + 1))

×�( 1
2 (l − γ + 1))�( 1

2 (m + α + Sα + 1))�( 1
2 (m − α + 1))

]−1
}1/2

.

Open end γ . (See figure 3(d).) In this case, the coefficient T
αβ

J lm differs from the coefficient
T

β,γ

J lm in (A.2) by the substitutions: m ⇐⇒ l, γ → α, Sγ → Sα and by the phase factor
(−1)

1
2 (J−|m|−l+β):

T
αβ

J lm = [
1
2 (1 + (−1)J−m+l−β)

]
(−1)

1
2 (J−|m|−l+β)

×2m−β+
1
2 Sα+1

�( 1
2 (J + l + m − β + Sα + Sβ + 3))

�(β + 1
2Sβ + 1)�( 1

2 (J − l − m + β) + 1)

×
{[

�( 1
2 (m + β + α + Sα + Sβ) + 1)�( 1

2 (m + β − α + Sβ) + 1)(J − m)!

×( 1
2 (J − l − α))!(l + β + Sβ)!�( 1

2 (J − l + α + Sα) + 1)
]

×[
�( 1

2 (J + l − α + Sβ + 3))�( 1
2 (m − β + α + Sα) + 1)

×( 1
2 (m − β − α))!(l − β)!(J + m + Sα + Sβ + 2)!

]−1
}1/2

×
√

(m + 1
2 (Sα + Sβ) + 1)(l + 1

2 (Sβ + 1))

�( 1
2 (J + l + α + Sα + Sβ + 3))

×4F3

(
− 1

2 (l − β), − 1
2 (l − β − 1), − 1

2 (m − β + α + Sα), − 1
2 (m − α − β);

β + 1
2Sβ + 1, − 1

2 (J + l + m − β + Sβ + Sα + 1), 1
2 (J − l − m + β) + 1

∣∣∣∣∣1
)

.

(A.4)

Ends α and β are open. (See figure 3(e).) The corresponding T
γ

J lm coefficient has the following
form [7]:

T
γ

J lm = (i)l−γ (−1)
1
2 (J−l−γ )C

l+ 1
2 Sγ ,γ + 1

2 Sγ

1
2 J+ 1

4 Sγ , 1
2 (γ +m)+ 1

4 Sγ ; 1
2 J+ 1

4 Sγ , 1
2 (γ−m)+ 1

4 Sγ

= (−i)l−γ
{[

�( 1
2 (J + γ − m) + 1

2Sγ + 1)( 1
2 (J − γ + m))!

×(l + γ + Sγ )!(2l + Sγ + 1)
][

�( 1
2 (J + γ + m) + 1

2Sγ + 1)( 1
2 (J − γ − m))!

×(J − l)!(J + l + Sγ + 1)!(l − γ )!
]−1

}1/2 �(J + 1
2Sγ + 1)

�(γ + 1
2Sγ + 1)

× 3F2

(
− 1

2 (J − m − γ ), −l − 1
2Sγ , l + 1

2Sγ + 1;
−J − 1

2Sγ , γ + 1
2Sγ + 1

∣∣∣∣∣1
)

(A.5)
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where C
l,γ

a,α;b,β are the Clebsch–Gordan coefficients for the SU(1, 1) group, if Sγ is odd, and
SU(2) group for even Sγ .

Ends α and γ are open. (See figure 3(f ).) Putting Sγ = −1 and γ = 0, 1 in formula (A.4),
we obtain two values for the coefficient T

β

J lm depending on the parity of (m − β). Using the
transformation (A.1) several times, we obtain

T
β

J lm = [
1
2 (1 + (−1)J−l+m−β)

]
(−1)

1
2 (J−m−l+β)2l+m−2β

√
(2l + Sβ + 1)(2m + Sβ + 1)

�( 1
2 (J − l − m + β) + 1)

×�( 1
2 (J + l + m − β + Sβ) + 1)

�(β + 1
2Sβ + 1)

×
{

(l + β + Sβ)!(J − l)!(J − m)!(m + β + Sβ)!

(m − β)!(l − β)!(J + l + Sβ + 1)!(J + m + Sβ + 1)!

}1/2

× 4F3

(
− 1

2 (m − β), − 1
2 (m − β − 1), − 1

2 (l − β), − 1
2 (l − β − 1);

β + 1
2Sβ + 1, − 1

2 (J + l + m − β + Sβ), 1
2 (J − l − m + β) + 1

∣∣∣∣∣1
)

.

(A.6)

Ends β and γ are open. (See figure 3(g).) The corresponding T α
J lm coefficient has the form

T α
J lm = (−i)m−α+l(−1)

1
2 (|l|−l)C

m+ 1
2 Sα,α+ 1

2 Sα

1
2 J+ 1

4 Sα, 1
2 (α+l)+ 1

4 Sα; 1
2 J+ 1

4 Sα, 1
2 (α−l)+ 1

4 Sα
. (A.7)

The expression for the Clebsch–Gordan coefficients in terms of the 3F2 function is not
convenient for taking the contraction limit. Instead, we use the following integral representation
[24]:

C
J,M
j,m1;j,m2

= (i)J−M(−1)j−m1

{
(J + M)!(j − m1)!(j − m2)!

(J − M)!(j + m1)!(j + m2)!

}1/2

×
√

(2J + 1)(2j − J )!(2j + J + 1)!

2J+M+2�(2j + 3/2)

× 1√
π

∫ 2π

0
(sin φ)J−MP

(J+ 1
2 ,J+ 1

2 )

2j−J (cos φ) ei(m2−m1)φ dφ

and the formulae [19]

P (α,α)
n (cos φ) = �(α + n + 1)

�(α + 1)n!

×
{

2F1(− 1
2n, 1

2 (n + 1) + α; α + 1; sin2 φ) n even

cos φ 2F1(− 1
2 (n − 1), 1

2n + α + 1; α + 1; sin2 φ) n odd.

After integrating over φ, we obtain a representation of the Clebsch–Gordan coefficients in
terms of the hypergeometric function 4F3,

C
m+ 1

2 Sα,α+ 1
2 Sα

1
2 J+ 1

4 Sα, 1
2 (α+l)+ 1

4 Sα; 1
2 J, 1

4 Sα, 1
2 (α−l)+ 1

4 Sα,

= (i)m−α(−1)
1
2 (J−α)−|l|

√
2m + Sα + 1

22m+Sα+1

√
(m − α)!(m + α + Sα)!

×
√

(J + m + Sα + 1)!( 1
2 (J − α − |l|))!�( 1

2 (J + α − |l|) + 1
2Sα)

(J − m)!( 1
2 (J − α + |l|))!�( 1

2 (J + α + |l|) + 1
2Sα)
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×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(

1
2 (J − m + 1)

)
[�( 1

2 (J + m + Sα + 3))]−1

�(1 + 1
2 (m + α − |l| + Sα))�(1 + 1

2 (m − α − |l|))

× 4F3

(
− 1

2 |l|, − 1
2 (|l| − 1), 1

2 (J + m + Sα) + 1, − 1
2 (J − m);

1
2 , 1 + 1

2 (m − α − |l|), 1 + 1
2 (m + α − |l| + Sα)

∣∣∣∣∣1
)

(J − m) even

−i|l|� (
1
2 (J − m) + 1

)
[�( 1

2 (J + m + Sα + 2))]−1

�( 1
2 (m + α + Sα − |l| + 3))�( 1

2 (m − α − |l| + 3))

× 4F3

⎛
⎜⎝

− 1
2 (|l| − 1), − 1

2 (|l| − 2), 1
2 (J + m + Sα + 3),

− 1
2 (J − m − 1);

3
2 , 1

2 (m − α − |l| + 3), 1
2 (m + α − |l| + 3)

∣∣∣∣∣1
⎞
⎟⎠ (J − m) odd.

(A.8)
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