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Quantization of solitons in coset space
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The perturbation theory around the soliton fields of the sin-Gordon model is devel-
oped in the coset space. It is shown by explicit calculations that all corrections to
the topological soliton contribution are canceled exactly. © 200! American Insti-
tute of Physics. [DOIL 10.1063/1.1337613]

I. INTRODUCTION

The problem of quantization of the extended objects was formulated mainly in the middle of
the 1970s, see the review paper' and references cited therein. One starts from the classical
Lagrange equation:

68 (u) _
du(x,t) M

where, for simplicity, u(x,t) is the real scalar field.? If this equation has nontrivial solution u(x,t)
then the problem of its quantization will arise. One of the first attempts to construct the perturba-
tion theory was based on the WKB expansion in the vicinity of u,.>*

The Bom-—Oppenhc.im‘erAmethod was adopted also.>S First of all, to construct the quantum
mechanics, the structure of Hilbert space H is postulated. So, it is assumed that the Fock column
consists from the vacuum state |0) and from the multiple meson states |p,,p,,...,p a0, n=1. The
ordinary perturbation theory operates just with this meson sector only. The anzats
|Py,Py, ... ,P))° for the I-soliton state, =1, is introduced also.

It is postulated that the quantum excitations in the soliton sector are described by the excita-
tion of the meson field.’ Therefore, to construct the perturbation theory, there should also be the
mixed states:

IP],...,PHP],...,[),,), 121, n>], (2)
but, at the same time,
(Pl,...,P,;pl,...,p,,lpl,...,p,,,)EO, =1, n+n'=0, 3)

i.e., it is assumed that the solitons are the absolutely stable field configurations. !

The present paper in a definite sense completes the picture in Refs. 5 and 6, The
(1+1)-dimensional exactly integrable sin-Gordon model will be considered to illustrate our re-
sult. We will investigate the multiple production of mesons by soliton and the truth of (3) will be
shown at the end of explicit calculations. In other words, it will be shown that the postulate in
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Refs. 5 and 6 concerning orthogonality of the meson H,, and soliton ‘H, Hilbert. spaces can be
proved. We will see that this conclusion follows from exactness of the semiclassical approxima-
tion for the sin-Gordon model.

It should be noted that the exactness of the semiclassical approximation in the topological
soliton sector of the sin-Gordon model is not beyond the realm.” It is well known also that the
integrable Coulomb problem is exactly serniclassical. We have the same for the quantum rigid
rotator,’ which is the isomorphic to the Poshle-Teller model. The general discussion of the
exactness of the semiclassical approximation from a geometrical point of view was given in
Ref. 8.

It will be crucial for us in many respects to follow the WKB ideology. So, we will consider
the meson production amplitudes

anm(piq)=<p]"'-’pnlql"'"qm>c’ n’m=1’2""' (4)

The index ¢ means that the calculations are performed in the soliton sector and pi and g; are the
meson momenta. By definition, o

pi=gi=m )
since the quantum uncertainty principle leads to the impossibility of mass-shell observation of the
field.? The ordinary reduction formalism will be used to calculate a,,, . This means that we will
construct the phenomenological S-matrix of the meson interaction through the soliton fields, i.e.,
we will start from the assumption that the states (2) exist, and it will be shown at the end of the
calculations that such S-matrix is trivial:

anm(p,q')EO, n+m>0. ' ) : (6)

The formalism allows to prove (6). For this purpose we will build the perturbation theory
expansion over 1/g, where g is the interaction constant.'® This perturbation theory'is dual to the
theory described in Ref. 1, over g, i.e., one cannot decompose the definite order over g contribu-
tion in terms of the 1/g expansion, and vice versa. So, only the sumimary results of both expansion
may be compared. :

Following to WKB ideology, to find theé corrections to the semiclassical approximation in the
vicinity of the extremum u.(x,t), one should find the solution of the equation for the Green
function:’ ‘ ‘ ’

(2+u"(u))G{x,t;x' t')=8(x—x")6(t—1t"),

where v”(u) is the second derivative of the potential function v(u). This Green function describes
propagation of a particle in the time dependent inhomogeneous and anisotropic external field
uc(x,t). Generally, this problem has no closed solution. So, for instance, the attempt to solve the
problem using the momentum decomposition'! leads to the hardly handling double-parametric
perturbation theory. To avoid this problem we will build a new petturbation theory over 1/g.

Imagining particle coordinates as the elements of the Lee group, the classical particle motion
may be described mapping ‘the trajectory on group manifold. Roughly speaking, this means that
the group combination law creates the particles classical trajectory.'?

Moreover, this program was realized for description of the particle quantum motion.'* It was
shown for essentially nonlinear Lagrangian L=14g w(X)x#%” that the semiclassical approximation
is exact on the (semi)simple Lee group manifold. But this slender solution of quantum problems
is destructed in presence of the interaction potential v(x)=O(x"), n>2, since the last one breaks
the isotropy and homogeneity of the Lee group manifolds.'® The developed perturbation theory
will describe the quantum perturbations breaking isotropy and homogeneity of the group manifold.

Developed formalism contains the following steps.m’14 (i) We will introduce the manifold W
of trajectories u,, solving the Eq. (1). The manifold W will be labeled by the local coordinates
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(£,m), ie., we will consider u,=u.(x;£,7) since u. should belong to W completely. (ii) The
numbers (£, 7) are interpreted as the generalized coordinates of the particle. Then u.(x; £, 7) will
define the external potential for it. The quantum motion of the particle may be described noting
‘that W; is the homogeneous and 1sotroplc manifold, smce this case is a rather quantum mechani-
cal problem in the flat space.

- It was shown in Ref. 14 that the WKB model,’ whete the field excitations in vicinity of u, are
decomposed over the meson states, and our model quantum mechanics of the particle in the
external potential defined by u., are isomorphic. In other words, we know that the quantum
trajectory of the particle covers the phase space (£, 7) € W densely. But it should be noted also
that the model described in Ref. 5 presents the expansion over the interaction constant A and our
perturbation theory describes expansion over the (1/X). '

In the classical limit (labeled by the index 0) the motion of our particle must be free 1e., its
velocity should be a constant,

§o=const, 7=0. ™

This may be achieved expressing the set { %7} through the set of generators of the subgroup broken
by u,.'> It is evident, such choice of the particles coordinate gives the same effect as in the above
discussed transformation to the homogeneous and isotropic (semi)simple Lee group manifold, '
see also Ref. 16. Moreover, we will see that even in the case of nontrivial potential function, one
can get to the free particles motion, rescaling the quantum sources.'®!'*

Thus, the necessary invariant subspace W would be chosen equal to the coset space G/G, :

Ws=GIG,, ®)

where G is the symmetry group and G.CG is the classical solutions #, symmetry group. The
problem of quantization of the coset space have a reach history, see, e.g., Ref. 17. As described in
Refs. 10 and 14, the formalism presents one possible realization of the coset spaces quantization
scheme.

The last one means that we will realize the transformation generated by the classical
trajectory:'*

ue: (u,p)(x.0)— (& 7). ©)

Such construction of perturbation theory in the W space requires the additional effort noting that
the dimension of the original phase space (u,p) € T*V is infinite. Therefore, Eq. (9) assumes the
infinite reduction since the dimension of coset space W; is ﬁmte The crucial reduction scheme
was formulated in Ref. 14.

In other words, quantlzmg the sin-Gordon soliton fields, the space coordinate would be an
irrelevant variable. This is the well-known fact, e.g., Ref. 4, and it leads to the Lorentz noncova-
riant perturbatron theory. It is the consequence of the solitary profile of considered field configu-
rations and its absolute stability, i.e., of conservation of the topological charge The necessary
information concerning this question will be given in Sec. III

Having the complete theory, one can analyze the perturbations. The crucial point of the new
perturbation theory is the statement'? that the quantum corrections are accumulated strictly on the
boundaries dW (bifurcation manifolds'®*1%) of the W; space. Therefore if Ct

SN oW =2, Ce . (10)

then the problem is exactly semiclassical. On other hand, Eq. (10) means conservation of the
topological charge: du. is the flow induced by the quantum perturbations in W¢ and if (10) is not
satisfied, then one should exist a flow into the forbidden, separated by the bifurcation boundary,
domain with other topological charge. So, Eq. (10) is the topological charge conservation.
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On the other hand, Eq. (10) leads to (6) since particle production is the pure quantum effect.
This will be shown in Sec. IV. v

The paper is organized as follows. In Sec. II we will (i) formulate the necessary boundary
conditions to derive the LSZ reduction formula, (ii) find the explicit expression for a,,,, (iii)
formulate the mapping into the coset space W . In Sec. III we (i) consider the sin-Gordon model,
(ii) discuss the coset space boundary condition, (iii) remind the structure of the new perturbation
theory,'* (iv) describe meson multiple production to show (6).

il. DENSITY MATRIX ON THE DIRAC MEASURE

The main point of this section is the attempt to generalize the ordinary for field theory
boundary condition

u(xeo,)=0,

where o, is the remote hypersurface. This boundary condition is used to remove the surface term,
and it is necessary to formulate the reduction formalism. We would like to introduce the new
boundary condition to have a possibility to include the nonvanishing on o, field configurations
and, at the same time, throw off the surface term.

2"1I’he (n+m)-point Green functions G,,, are introduced through the generating functional
Z g .

Gnm<x,y)=(—i)"+mg=]1 j(xokll Jo0Z;, (11)

where j(x)=8/8j(x) and the generating functional

Z;= f Du 'S/, (12)
The action
Sj(u)=S(u)—V(u)+J dx dt j(x,1)u(x,8), (13)
where
S(u)=f dx dt($(u)?—m?u?), mZB“O, (14)

is the free part and V(u) describes the interactions. At the end of the calculations one should put
j=0.

To provide convergence, the integral (12) will be defined on the Mills complex time contour
C, .2 For example, '

C.: t—t+ig,e—+0, —o<t<+o ‘ (15)
and after all calculations, one should return the time contour on the real axis putting =0.

In a ‘meson’ sector the integration in (12) is performed over all field configurations with
standard vacuum boundary condition:

J dzxan(uc?f‘u)= J; do, ud*u=0. (16)

It follows from this conditions that
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u(xe 0x)=0, payu(xeady,)=0. 17

It excludes a contribution from the surface term, since it assumes that field disappeared on the
remote hypersurface o.,. Considering the soliton sector this boundary condition requires the
modification since there is in the {(x—t) space such direction along which the soliton field does not
disappear. The integral (12) would have a formal meaning until this boundary condition will not
be specified.

Let us introduce now the field ¢ through the equation

o5( ) .
) =j(x.1). (18)

It is assumed that we can formulate such boundary condition that the surface term may be
neglected calculating the variational derivative in (18). Then we perform the ordinary shift u
—u+ ¢ in integral (12). Considering ¢ as the probe field created by the source:

<p(x)=f d%x’ Go(x—x")j(x"), (I+m*)Go(x—x")=8(x—x'), (19)

the connected Green function G}, will only be interesting for us,

G;m<x,y)=<—i)"+"'kI=Il j<xk>kljl JOOZ(e), (20)
where
Z(‘P)=f Du eiS(u)—iV(u+<p) ‘ (21)

is the new generating functional.

To calculate the nontrivial elements of the S matrix we must put the external particles on the
mass shell. Formally this procedure means amputation of the external legs of G,,, and further
multiplication on the free particle wave functions. In result the amplitude of n into m particle
transition a,, in the momentum representation has the form

n m
aun(g:p)=(="*"[1 e(an 11 6*(p0Z(e). (22)
Here the particles creation operator

¢*(q)= f dx e d(x), d(x)= 5¢(x) (23)

was introduced. The Eq. (22) is the ordinary LSZ reduction formulas. But one should remember
that the boundary condition (16) should be generalized to have permission for inclusion of the
soliton contributions calculating Z(¢).

Describing the particles multiple production it is enough to consider the generating functional

'p(a,z)=eXp["f dQ,(p)(¢%(p)d-_(p)e'®+Pz.(p)

+ 6 (P) @4 (p)e P2 (p)) | Z(9+)Z*(0-), (24)

where



646 J. Math. Phys., Vol. 42, No. 2, February 2001 J. Manjavidze and A. Sissakian

n

dl
d0,(p) =T —2

k=1 m;(p—,J:kl;Il dQ,(po), €p)=(p*+mH)2

Let us calculate

Pa, d’a . “
—iPa, ~ _,—iPa_ a,z =y =0-
Trsc i L | 6z+<pk 1% (q yPladlle, ==

Inserting here the definition (24), one can find that this expression gives

5(1’—;1 pk) 5(P—k§=:l qk)la..m(p,q)lz.

where the & functions are the result of integration over a.. . So, the factors e’*=” in (24) permit to
introduce the energy-momentum shell and the & function defines the restriction on the shell. Both
restrictions

are compatible since the amplitude a,,,, is translationally invariant. The integration over P gives
energy-momentum conservation law.
Notice now that p(a,z) is defined through the generating functional

PP =Z(0.)Z* (- p_) = f Du, Du_ S+ =i8- 0™V lus +ou)+iV-tu=p-)  (35)

Then, we can consider the closed-path boundary condition

da“u+3"u+='f doju_o"u_, (26)

instead of (16) and (17). The natural solution of this boundary condition is
U(x€0x)=u_(xe0,)=u(xecoy). 27)

It provides cancellation of the surface term on the remote hypersurface o, independently on the
value of the field u(x € 0.,).

Considering the system with the large number of particles, we can simplify calculations

choosing the center-of-mass (c.m.) frame P= (Py=E ,6). It is useful also® to rotate the contours
of integration over

ao'kl ao'k="iﬂk, Imﬂk=0, k=1,2

Then p(B,z) have a meaning of the density matrix, where B would have, in the some definite
case,2 meaning of the inverse temperature and z is the activity.?

It was shown in Ref. 14 that the unitarity. condition unambiguously determmes contributions
in the path integrals for p. Exist the statement:

S1. The density matrix p(a,z) has the following representation:

P( a,z) = e—ikUe)j DIM(u)ei.S’a(u)—iU(u,e)eN(ar.z;u)E O(u)eN(a,z;u). (28)
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It should be underlined that this representation is strict and is valid for arbitrary Lagrange theory
of arbitrary dimensions. The derivation of (28) is given in the Appendix.
Expansion over the operator

é é

k(je)_ —Ref ddt =y 8j(x,t) 5e(x t) 2

Rejc dx dt j(x,0)é(x,t) (29)

generates the perturbation series. We will assume that this series exist (at least in the Borel sense).
The variational derivatives in (29) are defined as follows:

BPLIEC) _
5¢(x',t’eCj)_ ij (x X) (t t) '1J_+s—¢_

where C; is the Mills time contour. The auxiliary variables (j,e) must be taken equal to zero at the

very end of the calculations.
The functionals U(u,e) and S,(u) are defined by the equalities

So(u)=(S(u+e)—S(u—e))+2Re IC dx dr e(x,1)(3* + m*P)u(x,1), 30)

U(u,e)=V(u+e)—V(u—e)—2Re J; dedre(x,t)v’(u), (31)

where S(u) is the free part of the Lagrangian and V(u) descnbes interactions. The phase So(u) is
not equal to zero if u have the nontrivial topological charge.!* We will discuss carefully this
question later.

~ The measure DM (u,p) has the form

&S 1%
DM(u)=g du(x,t) a( ( (;l)(x t)(u)) +j(x ,)) (32)

The functional & function in the measure means that the necessary and sufficient set of contribu-
tions in the integral over u(x,r) is defined by the classical equation

8(S(u)=V(u))

- '—&‘(’;,t)—-—j(x,t). (33)

disturbed by the quantum source j(x,?).
For further calculation another representation will be useful. If we insert into the integral (28)

1=f H dp(x,1) 8(p(x,t) —(x,1))

then the measure DM takes the form

SH (u,p)\ SH (u,
DpM(u,p)=11 du(x,t)dp(x,r)a(u(x,t)— —5,’((7"52) a( Px0)+ #((:,5_)) (4

with the total Hamiltonian

Hj(u,p)= J

2+—(Vu)2+v(u) ju} (39)
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The last one includes the energy ju of quantum fluctuations. The measure (34) describes motion

in the symplectic space (u,p)-€ V. But it should be underlined that the used expansion is not the

Lagrange transformation. So, generally, it is quite possible, considering x as the index of the space

shell, that not all of p(x,t) are the independent variables. For this reason the measure (34) has

mostly a Lagrange meaning. ‘
The measure (34) contains the following information.
(a) Only the strict solutions of equations

10,14

8H (u,p) 8H (u3p)
- ———= y o+ ——— = 36
i o 0, p » 0 (36)
at j=0 should be taken into account. This rigidness means absence in the formalism of the
pseudo-solution (similar to multi-instanton, or multikink) contributions.

(b) p(a.z) is described by the sum of all solutions of Eq. (36), independently from their
nearness in the functional space.

(c) The field disturbed by.j(x) belongs to the same manifold (topology class) as the classical
field defined by (36).'°

(d) The consequence of properties b. and c. is the selection rule: quantum dynamics is
realized in the coset space of highest dimension.'® This, excluding from consideration the pure
meson sector.

The particle density

N(a,z;u)=N (a4 ,z4;u)+N_(a-,z_-u), (37

where

N.(as ,z:;u)=f dQ,(g)e'*=92. ()T (g;w)|>. - (38)

The vertex I'(g;u) is the function of the external particle momentum g and is the linear functional
of u(x):

OS(u
Su(x

I"(q',u)=—fdxe‘i"’r )=J dxeiqx(r62+m2)u(x), qg*=m?, (39)

for the mass m field. This parameter presents the momentum distribution of the interacting field
u(x) on the remote hypersurface o, if u(x) is the regular function. Notice, the operator cancels
the mass-shell states of u(x).

Generally I'(g;u) is connected directly with external particles properties and sensitive to the
symmetry of the interacting fields system.26

The construction (39) means, because of the operator (*+m?) and remembering that the
external states should be mass shell by definition,” the solution p(a,z)=0 is actually possible for
particular topology (compactness and analytic properties) of quantum field u(x). So, I'(g;u) carry
remarkable properties: (i) it directly defines the observables, (ii) is defined by the topology of
u(x). Notice that the space-time topology of u(x,?) becomes important calculating integral (39)
by parts. This procedure is available if u(x,t) is the regular function. But the quantum fields are
always singular. Therefore, the solution I'(g;u)=0 is valid iff the semiclassical approximation is
exact, i.e., the particle production is the pure quantum effect. Just this situation is realized in the
soliton sector of the sin-Gordon model. -

Let G be the symmetry of the problem and let G be the symmetry of the solution u,.. Then

S2. The measure (34) admits the transformation:

u.: (u,p)—(£,1)eW=GIG, (40)
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and transformed measure has the form

_ Shy(&,m)\ [ Shi(&m)
pM(up)=11 df(r)dn(t)a(f- 5 )6(n+ 5 ) @1)
where hi(§,m)=H(u.,p.) is the transformed Hamiltonian

hj(f,ﬂ:t)=h(77)—f dx j(x,Nu(x;§,7) 42)

and u(x;€,m) is the soliton solution parametrized by & 7n).

The proof of Eq. (41) is the same as for the Coulomb problem considered in Ref. 14. But the
case of the (1+ 1)-dimensional model needs the additional explanations. First of all, one must
introduce the functional

A(u,p)= f H d”i(t)d"’n(t)l;ll S(u(x,t) = u(x:&m)8(p(x,0)—p(x:E,m)).  (43)

The equalities

u(x,)=u(x:€n), px.)=px;€mn) (44)

assume that for given u(x,t) and p(x,t) one can hide the ¢ dependence into the N functions §
=¢(t) and 5=n(r). It is assumed that this procedure can be done for arbitrary x. In other
respects, functions u(x,t) and p(x,t), and therefore, u.(x;£,7) and p(x;€,7), are arbitrary.

For more confidence, one may divide the space onto the N cells and to each (u,p), we may
adjust (&, 7), . It is possible that (£,7) are x independent. In this degenerate case A~(8(0)*,
where k<N is the degree of the degeneracy. We will omit the index x considering (&, %), as the
vector of the necessary dimension.

If (¢,7m) are the solutions of (44), then

A(u,p)=f H dg' (Ndn' (1) 8(use' +uln')S(ptE +pln')=AL(&m)#0, @5)

where, for instance, uf = du(x;£,m)/3X, X=E§,7. Notice the importance of the last condition. If
it is fulfilled, then one may insert into (28), with measure (41),

_ A(u,p)
Ac(g’ 7’)

and integrate over u(x,t) and p(x,?). Notice that the possible infinite factor (8(0))* would be
canceled in the ratio (46).
The Jacobian of transformation

_ [ DuDp __ SH(u.p) ( 5H,~(u,p))
"fA,(f,n)[.[, 5(” 5 )‘“’* 5u
X 8(u(x,t) —u(x;€,m) 8(p(x,1) —p(x;: €M), 47N

is proportional to functional &-functions again. To have the transformation, we should use the last
two & functions. Notice, if the first two & functions are used to calculate J, then the last two &
functions realize the constraints. In result,

_ 1 . 5Hj(uc ’pc) . 5Hj(uc ’pc))
vl 5(‘“ 3. )5(”°+ s, )" (48)

(46)
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It should be underlined that u. and p, are arbitrary functions of £ and 7, i.e., on this stage we
make the transformation of arbitrary functions u(x,?) and p(x,t) on the new arbitrary functions
u.(x;€,7) and p.(x;€, 1), where, generally speaking, &= &(x,t) and %= n(x,?). Then A, is the
corresponding determinant.
The expression (48) can be rewritten identically to the form

, 5h,-(§,77;t))) ( ,_(‘ 5h,(§,71;t)))
J= c(fn) Hdﬁ(t)dn(t)S(c’ (& >t L A KA T

6H; SH ;
§§ +uln +{uwh,} '5;—(—;—,)) ( S +pln' —{p..hj}+ > (J )) (49)

where {,} is the Poisson bracket.
Let us assume now that the auxiliary function /;(£,7;t) is chosen so that the equalities

OH;

_ 6H, 50
ek ey Pemt=" 5 Gn o0

are satisfied identically. Then, taking into account the condition (45), one can find
Shi(&, N\ . 6hi(E )
TS AL BRI ST in(é— o7 6“17+ o¢ o (51)

This ends the ;trans{prmation. vNotice that the deterxﬁinant A, was canceled identically.

The transformation specify by the Eqgs. (50) the function & . It assumes that one can find such
functions u.=u.(x;£,n) and p,=p.(x;€ 1), with property (45), that (50) has unique solution
hi(€ m:t).

Let us convert the problem dssummg that just k; is known. It is natural to assume that

hi(¢&, 77;t)=Hj(uc Pe)s (52)
‘then u, and p, are defined by Egs. (50) and

Shi(§mt)  Shi(&m)

It is not hard to see that (50) together with (53) are equivalent to incident equations (36). This is
séen from the following chain of equalities:

&= (53)

PO ety L3 & m;
| st AT g )
_oeH,
ek e

and the same we have for p_.. Therefore (u.;p.) is the classical phase space flow and the space
W, labeled by (&, 7), is the coset space G/G, .
In result, the new measure takes the form (41), i.e., £ and 7 should obey the equations (53):

~(x £ 77) fdx (x, un(g 7)

where w(7)=dh(n)/dn. Hence the source of quantum perturbations are proportional to the
time-local tangent vectors

E=w(n) - f dr j(xr) (54)
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f dx dupn(x; €, 1) dn, f dx dun(x; &, 1)/ 3¢
to the soliton configurations. It suggests the idea in Ref. 14 to split the Lagrange sources

j(xJ)_'(jf’jn)(t)-

The mechanism of splitting was described in Ref. 10. The resulting operator O(«,), defined in
(28), has the same structure. But new perturbations of the generating operator

Rlegiepiigin=iRe | dt{je(n)-e)+]j,(0)-é,(0} (55)
C+

The measure takes the form

pm(g =TT dean)sE- (M =ig8r=js). (58

The effective potential U= U(u,;e_.) with

celmny=egn ZUZED _ ) ZHET) 57)
Notice that the space degree of freedom is disappeared from our consideration.
1il. MULTIPLE PRODUCTION IN SIN-GORDON MODEL
We would consider the theory with the Lagrangian
L=l(a u)2+ T;—[cos()\u)-—l]. (58)
20 A

It is well known that this field model possesses the soliton excitations in the (1 + 1) dimension.
Formally nothing prevents to linearize partly our problem considering the Lagrangian

2

Loy 2,21, ™ ’
L=E[(¢9Mu) —am‘y ]+v

M(Ku)~1+a%—u2 =S(u)—v(u). (55)

The last term v(u) =0 (u*) describes interactions. The corresponding vertex function is
l"(q;u)=f dx dt e'9*(3* + m®)u(x,t), q*=m?. (60)

It should be noted here that the division chosen in (59) onto the free and interaction parts did not

affect the equation of motion, see (33), and effective potential, see (31), i.e., in this sense a may

be chosen arbitrary. But a will arise in the definition of the mass: one should change m?— am? in

{(60). This means that our S-matrix approach requires additional, external, normalization condition

for the mass shell. We will choose =1 assuming that m is the measured mass of the meson.
We assume that u(x,?) belongs to Schwarz space:

| 2
u(x.t)||x|;m=0(modTw). 61)

This means that «(x,t) tends to zero {mod (27/\)] at |x|—co faster then any power of 1/]x|.
The wv-soliton classical Hamiltonian 4, is the sum
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h,,(r))=f dr a'(r)\/r2+m7+i§1 h(n;), (62)

where o(r) is the continuous spectrum and h(#%) is the soliton energy. Notice absence of the
energy of soliton interactions.

The v-soliton solution u, depends on the 2 v parameters. Half of the v can be considered as
the position of the solitons and the other v as the solitons momentum. Generally, at |¢|— o the u,,
solution decomposed on the single solitons u, and on the double soliton bound states u,,:

uv(x,z)=21 us.,-(x,t)+k21 up i (x,2) +O(e™ M), (63)
P -

For this reason the one soliton u, and two-soliton bound state u, would be the main elements of
our formalism. Its (£, #) parametrizations, i.e., the solution of Eq. (50), has the form:?’

4 2

us(x;€,77)=— - arctan{exp(mx cosh B9~ £)}, B=% (64)
and

m s‘nhgﬂcosg—ﬁ—f

(xsbm)=— o T2 T2 R (65)
up(x;€,m)=— —arctan§ tan .
A 2
mxcoshé-zzl—sin%-fl

The (£, 77) parametrization of soliton individual energies h( %) takes the form

m 2m
h(np)= —Ecosh Bn, hy(n)= --ﬁ—-cosh-'[i:—]sin%zo.

The bound-state energy h, depends on 7, amd 7,. First one defines the inner motion of two
bounded solitons and the second one defines the bound states center of mass motion. Correspond-
ingly we will call these parameters as the internal and external ones. Note that the inner motion is
periodic, see (65).

Following the definition of the Dirac measure one should sum over all solutions of the
Lagrange equation, see the property (b). In Sec. II. As follows from the equality:

; = f déo dmoa(u; €9, 7o),
U} Wg

we should define the density o(u;£;,7,) of states in the element of the coset space W;. The
Faddeev—Popov ansatz is used for this purpose.*

In our approach, performing the transformation into the coset space W;, we define the
density a(u;&,, 7). Indeed, using the definition

f Dx:ﬂ a(x)=fdx(0)=fdxo

the functional integrals with measure (56) are reduced to the ordinary ones over the initial data

(f) 77)0
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But it is important here to trace on the followmg question. One can note that, at first glance,
integration over (£, %), may only give p~V0, where V; is the zero modes volume, i.e., is a
volume of the W space. On other hand, as follows from definition of p~|a,,,,|, one may expect
that p~ Vo This discrepancy should have an explanation.

Remembering definition of p as the square of the amplitudes, we should define the contribu-
tions on the whole time contour C=C, +C_, see (15), to take into account the input condition
that the trajectories u,(te C.) and u_(te C_.) are absolutely independent in the frame of the
closed-path boundary condition (27):

ux,tedC.)=ux,tedC_), (66)

where dC . is the boundary of C. . Other directions to the ojinfty are not important here.
Then, if we introduce (&, 7)(t € C+)|o=(&y, 7o)« , one should have in mind that, generally
speaking, (&g, 79) + ¥ (£g, M) - and the integration over them should be performed independently.
This may explain the above discrepancy and one should have p~ V(z,.
It is not hard to see that for our topological solitons the condition (66) leads to the equalities

(€05 70) + = (€0, m0) - = (£0.m0)- (67)

To see this it is enough to insert (64), or (65), into (66) and take into account that at 1€ dC.. the
estimation (63) is right.
Solution (67) means that, for arbitrary functional F(&,7),

I asansdonren= [ dodno, [ dtodmoFtom). (@)

teC+C_

Therefore, p~ V(Z,. We will put out the integrals over inessential variables &, and 74 .

It should be underlined that (67) is the consequence of the conservation of the topological
charge: the solitons by this reason are the stable formation and, therefore, to satisfy the closed path
boundary condition, one should have (67).

Performing the shifts

E()—=&(n)+ f dr’ g(t—1")je,(r")=E(1)+ & (2),

()= mi(1) + f at' g(t=1)j (1) = M)+ mlC2),

we can get the Green function g(z—¢') into the operator exponent

R 1 .
K(ej)=5fdtdt’®(t—t’){§'(t')-ég(t)+ "(¢')-é,(n} (69)

since the Green function g(#—1t") of the transformed theory is the step function'®
g(t—=t'y=0@~1"). (70)

Such Green function allows to shift C. on the real-time axis. This, noting (67), excludes doubling

of the degrees of freedom.
Notice the Lorentz noncovariantness of our perturbation theory with Green function (70).

The measure takes the form

D*M(¢, 77)=1:[I H d&(Ndn(1) 8(¢;— w(n+ ")) 8( ). ()
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The interactions are described by

2m?
U(u,,;ec)=——)\7—f dx desinhu,(sinhe.—\e,) (72)
with
u,=u(x;§+¢&' 7+ 7') (73)

and e, was defined in (57).
The equation

L=w(n+n)) (74)

-

is trivially integrable. In the quantum case 7; #0 this equation describes motion in the nonhomo-
geneous and anisotropic manifold. So, the expansion over (£, & ¢» 7', €,) generates the local in
time fluctuations of W manifold. The weight of these fluctuations is defined by U(u,;e,).

Expansion of exp{K(je)} gives the strong coupling perturbation series. The analyses show
that'*

83. Action of the integro-differential operator O leads to the Jollowing representation:

o Ré (@) +dn(0): s—=R"(a,2){. (75)

_ 3
p(a,z)—f dé(o)- 37(0)

05(0)

This means that the contributions into p are accumulated strictly on the boundary bifurcation
manifold W . The proof of this important result was given in Refs. 10 and 14 and we will use
it without comments.

We would divide calculations on two parts. First of all, we would consider the semiclassical
approximation and then we will show that this approximation is exact.

Performing the last integration we find

v

pla,z)= | TT {d&, dno}ieKeiSowne=iluyier) Naziu,) (76)
i=1
where
u,=uy(no+n &t w(t)+E") a7
and
o= [ & 0-t)atm+ 7). (78)

In the semiclassical approximation £’ = 7' =0 we have

uy= (X3 79,60+ w(10)1). (79)

Notice that the surface term

j dx* 3,(e'u,)=0. | (80)

Then
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f d2xei"x(¢92+m2)u,,(x,t)=—(qz—mz)f dzxeiqxuy(x,t)—;O, | (8L

since ¢ belongs to the mass shell by definition. The condition (80) is satisfied for all q,%0 since
u, belongs to the Schwarz space. Therefore, in the semiclassical approximation R¢(a,z) is the
trivial function of z: dR(a,z)/9z=0.

Expending the operator exponent in (76), we find that action of the operators &', #’ create the
terms

~j d2x eiq"ﬁ(t—t’)(¢92+mz)u,,(x,t)a#O. o “(82)

So, generally R(a,z) is the nontrivial function of z.

Now we will show that the semiclassical approximation is exact in the soliton sector of the
sin-Gordon model. The structure of the perturbation theory is readily seen in the normal-product
form

N .
R(a,z)=z f]:[ {d§0d170},-:e'iU(“v;jlz")e"SO(“')eN("'z‘"")!, (83)
v i=1
where
- au,, N du,, —; du, A
and
jx=j dt' O(t—1")R(") (85)

with the 2N-dimensional vector X=(¢£, 7). In Eq. (84) () is the ordinary symplectic matrix.
The colons in (83) mean that the operator j should stay to the left of all functions. The
structure (84) shows that each order over J x, is proportional at least to the first order derivative of
u, over conjugate to X; variable.
The expansion of (83) over Jx can be written using the form

2y

d
plad)=2 H{dgodno}{z o Px(“u)] (86)

where P X.-(u") is the infinite sum of the time-ordered polynomial over u, and its derivatives.'*
The explicit form of Px,.(“v) is unimportant, it is enough to know, see (84), that

Py (u,)~ =~ (87)

i ¢9X

(9 (
32 ( ’ )

since (i) each term in (86) is the total derivative, (ii) we have (87), and (iii) u belongs to Schwarz
space.
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{V. CONCLUSION

We would like to conclude this paper noting the role of the coset space G/G,. topology. It was
shown that if

i) We=GIG .+,

(i) Wg=T*V is the simplectic manifold,

(iliy du, is the phase space flow [see (87)],

(iv) du .NoWz=0,
then the semiclassical approximation is exact.

For this reason, being absolutely stable, topological solitons are unable to describe the mul-
tiple production processes. This property of the exactly integrable models was formulated also as
the absence of stochastization in the integrable systems.28 The O(4) X O(2)-invariant solution of
0(4,2)-invariant theories® is noticeably more interesting from this point of view.*°
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APPENDIX: DERIVATION OF EQ. (29)

The generating functional (24) can be written in the form

p(B.2)=e "B p (o), (A1)
where the particles number operator
a(s)(B,z;0) =a(s)(B+ .2+ :0) T A(s)*(B- .2 ;9) (A2)

and

A($) (B v2s 104) = f 40,(9)6%(9)6-()e P+, (q) (A3)

is the produced particle number operator.
The functional p, was introduced in (25):

Po(@)=Z(@ ) Z*(—-)

=f Du+Du_eiS+(u+)fiS_(u_)e’.-iV.,.(u,,,+¢+)+iV_(u_—lp_)‘ (A4)

So, the integration over . and u_ is not performed independently: one should take into account
the boundary condition (27). We can perform in this integral the linear transformation

s (x)=u(x)* (x). (AS)
Then the boundary condition (27) leads to the equality
P(x€0,)=0, (A6)

leaving u(x € 0, arbitrary. Last one means that the integration over this turning-point field u(x
€ 0,) should be performed, see Sec. III.

Let us extract in the exponents (A4) the linear term over (¢+ ¢):



J. Math. Phys., Vol. 42, No. 2, February 2001 Quantization of solitons in coset space 657
Vi(ut(d+e))=V_(u—(¢+¢))
= U8+ 9)+2Re [ ax(8(:)+ ox)v’ (1) (&)
and

Si(ut+@)—S_(u—¢)=So(u)—2iRe fc dx <p(x)(02+m2)u(x), (AB)

e =) 1.

Notice that generally speaking, S,(u)#0, if the topology of the field u(x) is nontrivial, see Sec.
I11.

The expansion over (¢+ ¢) can be written in the form

where

e~V e+ @) = (120 Re [ dx j(1)97(x) oi2 Re [ dx dt j(x)($(x)+ p(x)) p ~iU(u.0") (A9)

where J(x), ¢ (x) are the variational derivatives. The auxiliary variables (j,') must be taken
equal to zero at the very end of the calculations.
In result,

pol ) =e(V2IRe S &5 j2)6(2) J Du €000 ¢ ~iU(.8) 5i2 Re f ¢ ds(i(x) =0’ () $(x)

XH 5(6iu+m2u+v'(u)-j), (A10)
where the functional & function was defined by the equality
H 5(6iu+m2u+u :(u)_j)= j Dr¢e—2i Re fc+dx(ﬂiu+m2u+u'(u)—j)tp(x), (All)

where the prime means that D' ¢ does not includes the integration over ¢(x € o). This condition
is not seen in the functional & function because of the definition

f H du(x) &(3,u(x))= j du(x, € 0).
X
Equation (A10) can be rewritten in the equivalent form
Po( ¢) =e—-if((j.¢)f DM(u)eiso(u)—iU(u.¢)ei2 Rejc+dx ¢(.r)(ﬁi+m2)u(x) (A12)
because of the & functional measure
DM(u)=H du(x)&(aiu+m2u+v’(u)—j), (A13)
with
.o 1 .
K(jo)=5Re | dxj(x)p(x). (A14)
2 c.

Notice at the end that the contour C. in (A14) cannot be shifted on the real time axis since the
Green function of the equation
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ﬂf‘u+m2u‘+v"(u)=j

is singular on the light cone.

The action of operator N(/,z; @) maps the interacting fields system on the physical states.
Last ones are marked by z. and B. . The operator exponent is the linear functional over ¢ and
this allows easily find (28).
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