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Yang-Mills field quantization in the factor space
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The perturbation theory over inverse interaction constant 1/g is constructed for
Yang-Mills theory. It is shown that the new perturbation theory is free from the
gauge ghosts and Gribov’s ambiguities, and each order over 1/g presents the gauge-
invariant quantity. It is remarkable that offered perturbation theory did not contain
divergences, at least in the vector fields sector, and no renormalization procedure is
necessary for it. © 200! American Institute of Physics.

[DoOI: 10.1063/1.1380251]

I. INTRODUCTION

The perturbation theory for (3 + 1)-dimensional Yang-Mills field theory in the vicinity of the
extremum uf‘(x) of the action will be described. It is our first publication in this field and it seems
reasonable to define from the very beginning the level of its completeness. Namely, we would like
to show that, contrary to the ordinary perturbative QCD (PQCD), the offered theory may be used
at arbitrary distances. Accordingly, the theory is free from divergences at least in the vector fields
sector. Besides the perturbation theory is operated with transparently gauge invariant quantities
and no ghosts and Gribov ambiguities would hinder the computations.

We will realize the perturbation theory in the factor space GIM, where G is the symmetry
group of theory and H is the symmetry of uZ(x). Introductory notes for this formalism were given
in Ref. 2.

The usefulness of such choice follows from homogeneity and isotropy of G/H in the semi-
classical approximation. The developed perturbation theory is formulated to describe the violation
of these property quantum excitations. One may note that we offer the realization of perturbation
theor); in terms of the action-angle type variables. As an example one may have in mind the factor
space

WG=0(4,2)><G/0(4)><0(2), 1)
where G is the non-Abelian gauge group.
The formalism will be demonstrated for simplest Quantity—the vacuum-into-vacuum transj-
tion amplitude

Z(u)={(vac;u|vac;u),

along the path uZ(x). Moreover, following the idea that the calculation should be adjusted to the
experiment’s ability,2 we will restrict ourselves to calculating only the modulo squire

Mau)=|(vac;ulvac;u)|?=| 2(u)]2,
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since, being the unmeasurable quantity, the phase of Z(u) is not important from a physical point
of view* (it is the principle of “minimal necessity” in our terminology).

This quantity M(#) would normalize the observables and is equal to squire of the volume of
G/, see Ref. 5. So, it defines a number of expected on the trajectory u ua(X) degrees of freedom,
ie. (InMu))/2 is proportional to the dimension of G/H. In the example (1):

dim Wg=dim G +8 V)

since the O(4)X O(2)-invariant solution u ua(x) breaks both the gauge and the spatial symme-
tries. Last one includes the translational and spatial conformal transformations.’

Having in consideration the probabilitylike quantity A(u), one can include into formalism the
total probabilities conservation principle (see Ref. 2, where the role of unitarity condition in the
formation of quantum dynamics is described in detail). So, one may prove that if we postulate the
path-integral representation for Z(u), see (13) for the scalar field case, and take into account the
S-matrix unitarity condition then, if the canonical perturbation series exist (at least in Borel sense),
N has the following strict path-integral representation:

N=e“"’c(je)f DM (A)e™2UAe), 3)

In this expression X(je) acts as the differential operator of the auxiliary variables j,, pand e, at
Jap=€4,=0, see (15) and (84), and the expansion of exp{—iK’} generates the perturbation series.
The functional U(A,e) defines interaction. It may be expressed through the input classical action,
see (16) and (85). The main point of our consideration is the differential measure DM ; since it is
d-like:

DM A)=]] II da#(x)4|

apu x

( 55(4) o )) @
J ),

OA5(x)

where S(A) is the classical Yang—Mills action. Notice that using the Fourier transform of func-

tional &-function in (4), one may easily find from (3) that M{(u)= | Z(uw)|?.

The structure of representation (3) did not depend on the dimension of the system, concrete
form of the Lagrangian, and other “local” properties of the theory. We will not repeat for this
reason the derivation of (3) since it is the same as in Ref. 2 [and Ref. 6, where the
(1+1)-dimensional exactly integrable field theory was considered].

Following the definitions of &-function and operator K(je), one should start from the equa-
tion:

0S(A)

"

So, having a theory on the &like measure, we must consider? only the strict solution of Lagrange
equation. Notice that Eq. (5) also has the “trivial” solution AZ(x)=0, with the corresponding
factor space Wy, dimW,=dimG, where G is the gauge group. The pQCD presents expansion
around just this “trivial” solution.

Then, if the general position concerning initial data is analyzed, we should neglect this
“trivial” solution since we will assume that our solution uZ(x) is live in the factor space of
dim(G/H)>dimW,. This is a formal reason why the expansion in vicinity of u ua(X) ¥ const
would be considered. Corresponding realization of the Yang—-Mills theory would be the topologi-
cal QCD (tQCD).

This selection rule? is our definition of the ground state. Its importance should be stressed. It
says that first of all one should consider such solution of the Lagrange equation in the Minkowski
space which is live in the factor space G/H of highest dimension since, generally speaking, other
orbits are realized on zero measure.
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The extraordinary role of the factor space has specific explanation. At first glance &likeness of
measure (4) solves the problem of path integral calculation. But actually, to calculate the remain-
ing integral in (3), measure (4) forces us to search new forms of perturbation theory. The formal
reason is hidden in inhomogeneity of our Lagrange equation, see (4),°

saagoy = M), (6)

So, the exact solutions of this equation are unknown even in the expansion over j*(x) form if the
corresponding homogeneous equation (5) has nontrivial solution u, u(x)# const.

Nevertheless one may try to solve this equation in the form of some perturbation series,
expanding solution over j®#(x). This will lead to the theory which may have a near resemblance
of the canonical one, see, e.g., Ref. 9, where the “straight pass” approximation was considered.

But the canonical perturbation theory for non-Abelian gauge theories have additional prob-
lems. First of all, the method of Faddeev—Popov, ? introduced for separation of dynamical degrees
of freedom from pure gauge ones, in most cases leads to the cumbersome perturbation theory with
nonunitary ghost fields Lagrangian." In the quantum gravity this, at first glance, technical com-
plication, rises up to a fundamental one, see, e.g., Ref. 12.

Then, it was noted that it is impossible to fix the Coulomb gauge unambiguously for the
Yang-Mills potentials of nontrivial topology.'* Moreover, it was shown later that this conclusion
did not depend on the chosen gauge, and is general for non-Abelian gauge theories'* if the
expansion is built around the nontrivial topology gauge orbits.'?

We will realize another approach to the problem. Namely, we will consider the mapping into
the corresponding to u,, =u,,(x;£,1,\,) factor space. Formally the mapping can be performed
since the &like measure (4) defines the necessary and sufficient set of contributions into the
functional integral. We will find the explicit form of K, U, and DM ; in the G/H space. This is our
first quantitative result.

Following the idea formulated in Ref. 2, we will formulate the transformation in such a way
that u,,=u,,(x;€,7,M,) would be the generator of transformation:

Uay Agu(x) = (6(), (1), A o(x)), ™

where the set (£,7,\,) € G/H will coincide at j*#(x)=0 with integration parameters of Eq. (5),
A,(x) is the gauge phase and the variables £ and 7 are the consequence of the spatial symmetry
breaking. For example (1), dim(£+ 5)=8. So, the combination of generators violated by u,,
subgroup will be taken as the new quantum variables, instead of the Yang-Mills potentials A ,, .
In other words, just the variables extracted by the Faddeev—Popov ansatz as the “nonphysical”
ones would be the dynamical variables of the tQCD.

The problem of definition and farther quantization of the factor space was solved in Ref. 2.
The method consists in formal mapping into the symplectic phase space W of the arbitrary high
dimension, considering all dynamical variables of extended space as the g-numbers. It is the first
step of calculations. Notice that the transformation always may be done canonically and the
Jacobian of transformation would be equal to one. For this reason no ghost fields will appear.

Then the formalism allows to reduce W:

W=(G/IH)XR*. 8)

This reduction of W up to G/H is the second step of calculations. The realized transformation is
singular since dim(G/H)<dimW. Nevertheless we will be able to extract corresponding artifact
infinity equal to the volume of R* and cancel it by the normalization.

The proof that the set of g-numbers extracted this way is necessary and sufficient for quanti-
zation of the factor space G/H will be crucial for our formalism. We will find that:

GIH=T*VXR, 9
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where the quantum degrees of freedom only belong to the cotangent symplectic manifold 7*V'6
and R is the c-number parameter’s subspace. The direct product (9) means that we will be able to
isolate the quantum degrees of freedom from classical ones, So, it will be shown that A, e R.

We will find that each order of the tQCD perturbation theory is transparently gauge invariant.
This result seems natural since the gauge invariant quantity, the “probability” AM{u), is calculated.
Therefore, there will not be a necessity to fix the gauge and, therefore, no “copies” of Gribov'?
would arise. Moreover, it will be shown that no unphysical singularities connected to the Gribov’s
ambiguity'” would occur in the formalism. This is our second quantitative result.

It is not hard to show, see also Ref. 2, that developed perturbation theory in the G/H space
presents expansion over 1/g, where g is the interaction constant, and does not contain the terms
~g", with n>0. Such type of perturbation theory, over 1/g, presents a definite problem from
ordinary renormalization procedures point of view.

Indeed, the ordinary quantum field theory scheme assumes the multiplicative renormalization
of the interaction constant: the renormalized constant 8r=2Z""g < and the renormalization factor
Z =00 because of the ultraviolet divergences. Then, having the expansion over 1/g, we come to an
evident contradiction: It is impossible to have the infinite multiplicative renormalizations in ex-
pansions over g and over 1/g simultaneously. For this reason this question would be considered in
more detail in our approach. We will show that our perturbation theory would not contain the
divergences and the problem with renormalization would not arise. This is our third result.

It should be noted here that these results have been proposed to be obtained in Ref. 18 to
distinguish the quantization on the factor space, but now this is done for complete perturbation
theory. However it is noteworthy that quantitative progress was achieved taking into account the
unitarity condition.

It was mentioned in Ref. 2 that our perturbation theory, over 1/g, is dual to ordinary one, over
8. So, we may realize the expansion over g, or over 1/g, and the choice is defined only by
convenience. If the states counted by the expansion over g and over 1/g belong to orthogonal
Hilbert spaces” then there should not be any connection among terms of both expansions,? only
the result of summation of series should coincide. For this reason our formalism did not hide the
contradiction: The expansion over g may contain divergences and it needs the renormalization, but
the expansion over 1/g may be divergence free and no renormalizations would be necessary in it.%!

In the chosen way of calculations even the notion of interacting gluons in the Yang—Mills
theory would disappear (as well as the pQCD Feynman diagrams). Yet, we cannot exclude the real
(mass-shell) particle (gluon) emission*? on the to-day level of understanding of abilities of our
formalism and, therefore, we cannot prove that the states counted in the expansion over g and over
1/g belong to the orthogonal Hilbert space. So, we will leave unsolved the problem of colored
quanta emission since the question of confinement demands more careful analysis.

The paper is organized as follows. Considering the solutions of Yang—Mills equation, one may
use the ansarz: > ’

AL(x)=175,0"In ¢(x), (10)

where 17;’“, are the real matrices. This ansatz reduces the Yang-Mills equation to the form:?
(92<p+mp3=0, (11)
where « is the integration constant. So, in Sec. II we will formulate the ideology of mapping into

the simpler factor space W=0(4,2)/0(4) X O(2) for scalar 0(4,2)-invariant field theory with the
action:

1
S(¢)=fd4x(§(0u<p)2—§¢“). (12)

In Sec. III we will formulate the tQCD in the G/H factor space.
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Il. SCALAR CONFORMALLY INVARIANT FIELD THEORY

A. Definitions

We concentrate our attention in the present section on the calculation of | Z(u)|?, where

Z=fD<peis($) (13)

and S(¢) is the action defined in (12).

As was explained, the integral

N=|2]2=e™ikUe) f DM (p,m)e " 2U(s:0) (14)

will be analyzed instead of (13). Here
2K(je)=R dx > 9 Rf dx j(x)é(x) (15)

=Re ——<———<=Re x)é(x).
7T ), o se e e,

At the very end of calculations one should take the auxiliary variables j and e equal to zero. The
interactions are introduced by the functional

5(9)
S¢

Cy

—2U(p,e)=Sc (pt+e)—Sc_(p—e)—2 Ref d* xe

=2k Re fc dx p(x)e3(x)+O0(e). (16)

The complex time formalism of Mills** was used and S¢. is the action defined on the complex
time contour C. . For sake of definiteness, we will use the complex time contours

C.:t—trie, €—+0, |t|<soo. an

Let . be the fields on the C. branches of the Mills time contour and let dC. be the
boundary of these branches. It was assumed the “periodic” (closed-path®) boundary condition:

¢+(tedCi)=¢_(tedC.), (18)

when the representation (14) was derived. This boundary condition should be maintained in the
factor space.

Notice that considering the theory with Lagrangian (12), one may write U(¢,e) in the fol-
lowing equivalent form [with O(¢€) accuracy]:

31U( )=—fd4 e(x)? & S( )=—jd4x e(x)——a—- 3S( ) (19)
e T Se(x)P 0 se(x)| 2%

This representation is useful for investigation of the perturbation theory symmetry properties. The
indication that the contribution belongs to the Mills time contour was not shown in (19) since it
was assumed that, for instance,

0j(teC,) , .
S eCy) wO(t—t'), ab=+,—. (20)

For this reason it is sufficient to indicate the branch of the Mills contour only in the definition of
the operator (15).
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We will consider the “phase space” motion:

DM =]1 de(x)dm(x) 4| ¢ OH; ) of ) + 2 21
jom =11 de@an(x)8| ¢~ 5L 8| i)+ o). @
It is important that the formalism involves the fotal Hamiltonian
1 1 K
= a3 o2y 2,2 4.
H; fdx[z'n' +2(V<p) +4(p _](p} (22)

and the last term ~j¢ may be interpreted as the time-dependent energy of random quantum
excitations. It is evident that we may find the measure (9) if the first &function in (21) is used to
calculate the integral over . Thus, the representation (14), with the measure (21), may be con-
sidered as the “first-order” formalism.

This ends the definition of the field theory on the Dirac measure.

B. Mapping into the factor space

Having a theory defined on the &like measure, arbitrary transformations are easily available.
We will start from the general situation introducing N fields {£(x), 7(x)}y, where N is arbitrary.
To perform the transformation:

(e(x), m(x))—={&(x), n(x)}n (23)
one should insert

1
A(e,m)

f D-.fDnI;[ 5(F§(<P,7T;§,77))I;[ 8(F (@, m;€,7m)) 4

into the integral (14). The functional &function I1,6 has following properties:

f X[ sx(x))=1,
(25)
f DXI;[ 83,X(x))= f H dX(x) 8(9,X(x))= f LI dX (%)

Here X(,,)(x) is the solution of equation 9,X(x)=0, ie., is the arbitrary, including constant, x
independent function.
Having the measure (21) and inserting the unit (24) into (14) the integrals of type

1 . _6H;\ [ &H;
f DeD DDA (@, m)]] NF (@, m & 1) (F (@,m;€,7)) 0 = 5|9 ﬂ+§

(26)

would appear. Notice that the (dim £+dim %) =N was chosen arbitrary.

It is important that both measures in (26), over (£, ) and over (¢, ), are &like. This allows
one to change order of integration and integrate first over ¢ and . It is natural, at first glance, to
use for this purpose the last two &-functions. Then the first ones will define the constraint. This
scheme may restore the Wentzel-Kramers—Brillouin perturbation theory, if the unit (24) is re-
duced to the Faddeev—Popov ansatz.? But if the first two &-functions of (26) are used to calculate
the integrals over ¢ and 7, we perform transformation to the new dynamical variables (£, 7). Then
the last two &functions will give the dynamical equations for (£, 7). Both ways of computation
would give the same result since one may use arbitrary é-functions.
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Thus, we wish to use the fact that the &like measure defines a complete set of contributions.
Moreover, as follows from (14) and (15), the quantum perturbations, both in the (p,m)eV and
(€, ) € W spaces, would be generated by the same operator exp{—iK(je)} and the interactions in
both above-mentioned cases are described by the same functional U(u,e). This circumstance
allows one to describe the quantum dynamics in terms of new variables.

Then, if the “phase space flow” (u,p) belongs to the manifold G/H completely, we should be
able to “restore” it through the (u,p) flow. This is our key idea. We will see that this order of
computation, inverse to the ordinary one,25 is mostly natural for us since it allows one to start
transformation from mostly general variables (£,7) e W.

Following space—time local realization of the algebraic equations was offered in®

Felo,m & m)= o(x)—u(x;£(x), n(x))=0,
(27)
Fn(‘P97T;§7 77)= w(x)—p(x;f(x), ﬂ(X))=O,

where u=u(x;£(x), 7(x)), p=p(x;£&(x), p(x)) are some compound functions. We will assume
that this functions would be defined in accordance with our choice of G/H. The equalities (27) can
be satisfied for arbitrary given u(x;£(x), 9(x)),p(x;€(x), 7(x)) and arbitrary N since integration
over all ¢(x) and w(x) is assumed.

Therefore, the integral in (24) is not equal to zero since, generally speaking, it always exist.
The result of integration in (24) is denoted by A(yp, ) and in this sense the equality (24) is
satisfied identically. The additional constraints for u(x;£, ) and p(x; €&, 1) will be offered later,

We will specify (27) adding the condition that the time dependence is hidden in &(y,t) and
7(y,t), x=(y,t), dim(y)=3. Thus, we would use, instead of (27), the equations:

e(y,0)=u(y;€(y.0),n(y,1)), 7w(y,0)=p(y;:&(y,1), 5(y,1)). (28)

In other aspects the functions u(y; ¢, %),p(y; €, n) for the time being are arbitrary. Notice that the
offered additional condition is evident since (u,p) would belong to G/H completely. But, never-
theless, we will examine it.2® Notice also the noncovariantness of equalities (28). This is a con-
sequence of necessity of using the Hamiltonian formalism.?

The integration measures in (26) over £(y,t) and 7(y,t) are defined on the total Mills time

contour C=C,+C_:
fdt=f dt=f dt+f ds, (29)
c C.+C_ c., c_

and the integration should be performed with boundary condition (18):
u(:6(,;tedCy),m(;te dC.))=u(;£(,te 9C_),n(,t e IC_)). (30)

Depending on the topology of the trajectory u(;£,7), this boundary condition may lead to non-
trivial consequences.
The mapping (28) is generated by the function u:

u:(e,m)—(£,7) @31

since the “first-order” formalism is considered. It is important also to note that this transformation
did not conserve the dimension:

dim(@,m)(y,t) #dim(¢, )(y,t) (32)

since (£,7) e G/'H and (@, m) e V.
Proposition I: The Jacobian of transformation of the &-like measure always can be done equal
to one.



J. Math. Phys., Vol. 42, No. 9, September 2001 Yang-Mills field quantization in the factor space 4165

Using first two &functions in (26) to perform integration over (¢, 7) the Jacobian of the
transformation (31) takes the form:

H—(u,p)) ( 6H ;(u,p)

8 —21 8| p(yi&, )+ ——], 33
A(u,p) R 1] (“(y S St AP EDT S E ) =
where definitions (27) and (28) were used. Notice that A=A (u,p), as a result of integration over

¢ and 7.
We should dlagonahze arguments of remaining &functions. For this purpose the following
trick will be used.? So, for instance,

sl OH =5 iy ) 5Hj)
u _5p =0l ug € U, 7 —6p

Sh; . Oh;
vl 1+

where ux=du/dX, X=¢, nand hj=h;(& n) is the auxiliary functional. Let us choose it by the
equality:

L, Oy ow H,
“ I S B

Oy, Ohi OH; ou Oh; ou Oh; OH; . . 5”_0 (34)
U M7 SE Bp 98 B an ok op Wkt =0

where {,} is the Poisson bracket. The scalar product means that the sets {£} and {7} were ordered
in such a way that the Poisson bracket would be well defined. This ordering is always possible iff
W is the symplectic manifold.

Then, if (34) is satisfied,

, 5H]-)_3( . on,
u—g =0\ ug f—a—ﬂ +u,)

The analogous expression one may find for the second &-function:

“Anle- Syl v 3}

and h; and p should obey additional to (34) equality:

4|

Lo 8H;
p ou

oH,
{p.h;}+ 50 =0 (35)

On this stage two equalities (34) and (35) are the equations for functions u(;£,7), p(;£,7) and
h;(§,m). Thus, being vague, this mechanism of mapping is able to endure more constraints.
Using the ordinary property of the &function:

5(a—b)=f dc 6(c—a)&(c—b),

we can write that

1
1(5,7/)=me§'077'1:[ ug-&' +u,n')0(pe &' +pyn')

feele Ble-f 2
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Let us assume that the functional integral A(u,p) may be written in the form:
A(u.p)=f D§’Dv’u 8(@(y,t)—u(y; £+ & 9+ ') 8(w(y,t)—p(y;: €+ &, 9+ 7'))
¥,

- DE'Dy [ luct'+uy1)8pit+py7)%0. 37

This is possible since the functions ¢(y,t) and #(y,t) were chosen in such a way that the
equalities (27) are satisfied. The inequality (37) excludes the degeneracy. For this reason only
£'=75'=0 are essential in the integral (37).

As a result the determinant A(u,p) is canceled identically:

pM & =11 d&(y,0) n(y ,),;(g(y P )5(77@ 0+ o ) (38)
ST ’ ’ T n(y.) T SE(y,t)

since one may leave an arbitrary pair of & functions in (36) and £’ = 7' =0 are essential. There-
fore, because of cancellation of the functional determinants our perturbation theory would be free
from the ghost fields. This considerably simplifies the described formalism. Notice that equalities
(34), (35), and (37) should be satisfied to have this result.

The transformed measure (38) depends on the auxiliary functional h;=h;(§, ), defined by
equalities (34) and (35). So, choosing arbitrary u(;£,7) and p(;€,7) with the property (37), one
may find h; from (34) and (35), and then (38) would be the transformed measure.

Therefore mapping (31) based on Egs. (34) and (35) admits one more equation for u(;£,7),
pGE,m), and h(€, 7). We will consider the following example in the present paper. One may note
from (38) that h has a meaning of transformed Hamiltonian of new equations:

Shi(km) . Shi(&)
m’ 77(}’,1)—" . (39)

= 5¢(y.1)

Proposition II: If

then the Poisson equations (34), (35) would deﬁne the “phase space flow” (u,p).
Indeed, having in mind (28),

u=utu,n=u —6h—j-u ﬂ={u h-}=£1-1—i 41)
§ 7 55,7 7 5¢ o op°

where (39) and then (34) were used. The same equation one may find for p:

o, _ Sh;  Oh; 8H;
p=pg§+p,,ﬂ=pg§;—1),,5—§={p,h,~}= i 42)

Therefore, having (40), Egs. (34) and (35), simultaneously with (39), are equal to the Hamiltonian
equations (41) and (42). Notice also that in this case the time dependence actually shouid be
hidden into £ and 7.

It should be stressed also that as follows (41) and (42) fixed by (34), (35) and completed by
(40) and (37) transformations are unique in those respects that other “types” of mapping would
lead to “unnatural,” much more complicated, formalism.

Having (34), (35), (40) and taking into account (37), we get to the “overdetermined” system
of constraints, which may be inconsistent. The Coulomb problem gives a quantum mechanical
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example of such a system.2 At all evidence, the O(4) X O(2)-invariant solution did not also obey
(37). On the other hand, if we reject (37) then the determinant A(u,p) is not canceled and the
formalism would contain the ghosts.

C. Structure of dual perturbation theory

The problem of mapping for the degenerate case was solved in Ref. 2. It was assumed that one
may “softly” take off the degeneracy, i.e., that there exist some parameter € —0 which regulates
the strength of degeneracy breaking and at e =0 we have the degenerate limit.2” The following
proposition will be important in this connection.

Proposition III: The quantum perturbation conserves the topology of phase space flow.

Indeed, notice that Eqs. (34) and (35) should be satisfied for arbitrary j(y,?). Let us consider
the consequence of this proposition. Remembering (22), and using definition (40), we find that
(34) at j=0 gives equality:

) SoH _ JH H=H
{uep,—u,pe }5p(y,t)—{u77u§ “6“71}3“(),’,)’ = i|i=0'

Here u and p are the compound functions of £=§(y,t) and = 7(y,t). This equality is identically
satisfied if the space—time local Poisson brackets:

{u(y.0).p(y.00}=1, {u(y.t),u(y,0)}=0 (43)
are satisfied. Equation (35) at j=0 adds the following conditions:
{u(y.00.p(y.0}=1, {p(y.).p(y,)}=0. (44)

It is not hard to see that the higher orders over j did not give new conditions, i.e., the Poison
algebra, completed by (40), is closed. In other words, the quantum perturbations conserve the
topology®® of the phase space flow.

Proposition III means that the quantum perturbations would not alter the structure of u
=u(;€,7) and p=p(;£,n) and they are solutions of classical (homogeneous) equations:

5H(u,p) . _ 6H(u7p)

The j dependence is defined by Eq. (39) and is confined completely in £ and 7 only.
So, we may start from a theory with generalized Hamiltonian:

{u(y;€&,m).h(€,n)}=

h](f, 7/)=H;(u,P)+3F1,(u,P)a (46)

where the additive term ~¢&—0. This proposition means that the ‘“‘direct” mechanism of degen-
eracy breaking is considered”’ and the Hamiltonian (€, 1) may be chosen in such a way that
some of the derivatives over auxiliary (artificial) fields £ and 7’ have a property:

Uup~uy~pe~py~e—0, (&,n')eR*. 47)

This is enough to formulate conserving the phase space volume transformation of quantum theory.

Thus, we start from the variables (£,7)e W and scalar functions u=u(y;£,7n), p
=p(y;&€ n). They should obey the inequality (37) and define the functional k;(§, 77) through the
equations (34) and (35). This allows one to cancel the determinant A(u,p). Then we extract the
auxiliary variables £’ and %' assuming (47). This will allow one to exclude the auxiliary variables
and should reduce the system to a physical one. The physical content of this procedure was
described in Ref. 2.
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The following property of the perturbation theory in W space will be used to realize this
program of reduction. As a result of our mapping the integral N takes the form:

Mu)=e~ KU f DM (¢ m)e ™20, (48)

where DM ;(£,7) is defined in (38). Notice that in this expression U depends on u=u(y;§, 7).

It was shown in Ref. 2 that the mapped representation (48) allows one to split the “quantum
force” j(y,t) and corresponding “virtual field” e(y,t) on the projection on the axes of W. It is
easy to find the result of this procedure:

2K(je)=Re L Ex dt{f(y,0)-84y,0)+] ,(3:1) - € ,(¥.0)} (49)

and

_ du du 50
e=e; 37 e, P (50)
The caret symbol in (49) means the derivative over the corresponding quantity. At the very end of
the calculation one should take jy=ex=0, X=(&,7). The scalar product means summation over
all components of £ and 7.

Inserting (50) into (19) one can find that

3 ou 6 du 6
—3!U(u,e)=fdxdt 85'0_1754_‘,"' Py B S(u)
3 du d du 4
=fdxdt eE-EE—e,’- aga £( ), (51)

where £(u) is the Lagrangian density. This shows that the interaction functional U(u,e) has the
symmetry properties of the Lagrangian density.

Formally the new perturbation generating operator (49) gives the same perturbation series, but
with the rearranged sequence of terms, i.e., the splitting of j did not change the “convergence” of
the perturbation series (over 1/« since u~1/ \/— k). At the same time, this splitting of the source j is
useful since it allows one to analyze the excitation of each degree of freedom, i.e., of components
of the phase space flow along the axis of W, independently.

Noting that ey, X=¢,7, is conjugate to j, it is easy to conclude that the action of the
operator (49) leads to the operator

8]5 andu &8j, Jfdu AX}-

This operator is the invariant of canonical transformations. If by some reason dw,z( =jyaX=0,
then the motion along the Xth axis will be classical. This is the mechanism of reduction of the
quantum degrees of freedom. The important properties of our formalism were described in Ref. 2.
We will continue this question in Sec. IID.

Proposition IV: New fields £ and 7 cannot depend on the coordinate y if the scalar theory is
considered, i.e.,

E=£(1), n=n(1), _ (52)

for scalar theory (12).
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This conclusion follows from Proposition HI. The reason is that the dynamical problem was
divided into two parts. The first part of the problem consists in the solution of the classical
equations (45). It defines a structure of the compound functions u(y;£,7) and p(y;€,m). The
second part consists in the definition of the rime dependence of (£ 7) through Egs. (39) and (40).
Finally, if (£,7) in zero order over j(y,t) are the y independent parameters, the quantum pertur-
bations are unable to change this property.

It is noticeable that if £=£(¢) and 7= 7(r) then we will find from (34) and (35), instead of
(43) and (44), the canonical equal-time commutator relations:

{u(y;:€0), n(1).p(y"; E(), p())} =8y —y'). (53)

Thus, our quantization scheme would restore the canonical one in the factor space W. In this sense
the independence of ¢ and # from y is natural.

Nevertheless it seems useful to demonstrate Proposition IV explicitly. The elements (49) and
(38) are used in the Appendix to demonstrate the reduction:

(& 7). — (& n)(0). | (54)

This involves reduction of the operators:
Ux-e0)(r,0—=Ux.e0(1), X=£7. (55)

The structure of the corresponding perturbation theory is described in Sec. IID.

D. Reduction

Therefore, for considered scalar theory,

2K(je)=Re L dt{jg(t)-éf(t)+j,,(t)-e,,(t)} (56)
and
Ju(y;&(t), du(y;&(1),
e, 7(1)) =e 1)- u(yai(’z)ﬂ(t)) (1) u(ng((t:)ﬂ(t)). (57)

The result of the disappearance of y dependencies in & and 7 is a reduction of the field-
theoretical problem to the quantum mechanical one. So, L(u)= V(£,7) here play the role of the
mechanical potential for a particle with the phase space coordinate (£, 7).

The measure takes the form:

DM,(§, 77)=I:I dé(D)dn(0) (1) — w (£, 7) —j (1)) (i) + ol £,m)—j (1)), (58)

where the “velocity”

oh(§,m)

wx(gm)=—>". (59)
Let us remember now the definition (47):
u=u(y;§(1),n(1);e€'(t),en' (1)), £—0, (60)

where

dimé=n, dimp=m, dim({+¢')=dim(np+9')=N. (61)
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Inserting (60) into Lagrangian, we find that

L) = [ PxLutyiéw), n0)+0(e). 6
We are now able to define the dimension of T*V taking
N=dim(G/H). (63)

So, N=8 for example (1).
Proposition V: If we have (60) and (61) then

dim 7*V=min{n,m}. (64)
Let us consider the following three possibilities to demonstrate this proposition.

(@) n=m, N=2n.
In this case the interaction functional U(u,e) takes the form:

d d d 9 3
—3!U(u,e)=fdt e,,-;;)——e,,-a—g + e,:-a—”,—e,,v-a—g, s (65)
n N—n

where (62) was used. The index n means that the scalar products include n terms, and N may be
chosen equal to n. The measure

DMj(f,v)=H d"E()d" (1) 8™ (= w,—j ) 6"+ we—j,).

) n>m, N=n+m.
In this case

~ é d , 9 3
—3!U(u,e)=fdt[ € Gy 5F +(e’7'¢9_§ V(& ), (66)

since 7’ is absent in V(§&, 7). Therefore, e’” has only the (n—m) components.
The measure takes the form:

(n—m)

DM (¢, n)=ﬂ A& dm p(1)d" " g’ (1) ™ (E— w1~ j ) 6™ ( 9+ wg—j )
X8 =i 60 + g )

since N=(n+m). Notice that %' is contained only in the argument of the last &function. For this
reason we always can perform the shift: 7' — 7’ — wetj,r . As a result:

DM (&, m)=I1 d"&(t)7"(1) 6™ (E= w,— j) 6™ (ip+ wg— ;) 8nm(E—j &M q')

t

and the j,» dependence disappears. For this reason the j,,, dependence in the operator K may be
omitted. As a result,
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2’C(je)=Re J'C dt{(jg'ég)m'*' (jn'ér))m+(j§'é§)(n—m)}'

. - . -~
There is not an operator é’, and, for this reason, one should take e, equal to zero. Therefore,
7 7

9 CAR
—3!U(u,e)=j dt[ex- b—n—e,,- 52] V(¢ n) 67)

and the (n—m) components of e; and j, may be taken equal to zero everywhere:

2K(je)=Re fc+dtﬂ§-é£+jﬂ-é”}m. (68)
Accordingly,
DM (¢, n)=dRH d"E(0)d" (1) 8™ (E— w,— j) 8™ (7t wg— ), (69)
where
dR=dV~2mg(0) (70

is the element of R. The trivial auxiliary elements were omitted.
The same analyses may be done for the case n<m.
As a result, assuming that % is the “action” variable,

w,=o(n)=0h(n)/dn, =0,

we can write:

min{m,n}

DM;(¢,7)=dR 11;[1 Hdfi(’)ﬂi(’)&fi‘wi(’l)'fig)&’}i"jm)- (71)

Therefore,
W=T*VXR (72)
and dR is the differential measure of the subspace R.
This ends the proof of Proposition V.
So, the equation for ¢ and % take the form:
N =w(m)+jde), H)=j,(0). (73)
The second equation is simply integrable:

7I(t)=770+f dr’ g(t—1")j,(t")=no+ 7,(2). (74)

Inserting this solution into the first equation in (73) one may find:

E(t)=§o+fdt’g(t—t’)w(no+ 17,~(t’))+fdt’g(t—t’)jg(t’)E§o+a‘),-(t)t+§,~(t), (75)

where the abbreviation
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ar= | @ gu=1)alm+ 7' (76)
was used. The Green function g(r—1t') was defined in®
gt—1")=0(-1'), a7
where @ (1—1') is the step function with boundary property:
0(0)=1. (78)
As a result,
u=u(y;§o+aj(t)t+§;,m+ ;) (79

and the term
1 ] m 1
~ {2, j)}"=0| =
gives the nth order of our perturbation theory over 1/« since u=0(1/ VK.

lll. NON-ABELIAN GAUGE FIELD THEORY
A. Yang—Mills theory on Dirac measure

The action of considered theory
S(A) = -—-1 f d*xF (A)FF”(A) (80)
2 g Hnva a

is the 0(4,2) invariant and the Yang—Mills fields
F;wa(A):ap,Ava—avAy.a_CZCA;LbAvc (81)

are the covariant of non-Abelian gauge transformations. The gauge group will not be specified.
We will consider the integral

N=e‘"c(j‘)f DMje_ZiU("‘), (82)

where the measure
DM,.(A)=E 1'[ dA%(x,0) 8(DLF b= J ua) (83)

is manifestly conformal and gauge invariant if j,,=0. The covariant derivative
Dib =8+ ChrAL.
The perturbations generating operator

) )
8jk(x,1) Be,q(x,t1)

2)C(je)=Ref d*x
C

+

=Re f d*xJ ua(x,1)e5(x,1). (84)
c, .

The auxiliary variables j,, and e} should be taken equal to zero at the very end of the calcula-
tions. The functional
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" 85(A)
_2U(A,e)=(SC+(A+e)—SC_(A—e))—2 Re fc d*xe’(x) AP +0(g) (85)

describes interactions. All the above-mentioned quantities are defined on the Mills time contours
Ciitotxie, €—+0, |t|<co. (86)

This gives the rule as to avoid the light-cone singularities solving the equation:
D F = ua- (87)

One can omit in (85) terms ~e— + 0. Therefore, U(A,e)=0(e?) and may contain only the odd
powers of e,,,. This means that we may write U(A,e) in the form:

3
U(A,e)=— f d4x[ eX(x) J S(A), (88)

A5 (x)

see (19).

B. First-order formalism
The noncovariant first-order formulation in terms of the “electric” field
E.=FW, (89)

presents an introduction into the necessary for us Hamiltonian description. The action in this term
has the form

1 . 1
Se..F)=~ d“x[ AcE+ 5 (E}+BY(A) - A, (DE), |, 00)
. ..

~ where the “magnetic” field
Big(A)=(rotA),,+3€,[A;,ALl, (1)

is not the independent quantity and was introduced to shorten the formulas. Notice that A, did not
contain the conjugate pair and the action § is linear over it.
The measure (83) may be written in the first-order formalism representation (dA,= IMdA,;,):
i

DM(AP)=]T II dA,(x)dP,,(x)s(DE-P,) 5( B.(x) 4 5H,(A,P)) &( i () AP

6A,(x) OP,(x) |’
(92)
where H;(A,P) is the total Hamiltonian:
1
=g f d’x(P2+BX(A)) + f dxj,A,, 93)

P,(x)=E,(x) is the conjugate to A,(x) momentum and B,(A) was defined in (91). We may
introduce into DM ; the additional &function:

II1I 5( Bf,—(rotA)f,—%s;k[Af,A"]a). (94)
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Then the Hamiltonian in (93) becomes symmetric over electric E, and magnetic B, fields.
Notice that the first 5-function in (92) is the consequence of linearity of the action over A, .
The time component A, has the meaning of Lagrange multiplier for the Gauss law:

D2-P,=0. (95)

It should be stressed that there is not an equation for the time component A, . Moreover, the A,
dependence completely disappeared from formalism since the interaction functional U(A,e) is
defined by the third derivative over A ,,, see (88).

C. Mapping into the factor space

The measure (92) is not physical since it contains three (for given a) vector potentials A,(x).
To exclude the unphysical degree of freedom, the gauge fixing Faddeev—Popov ansatz is often
used. But we will consider, as was described previously, another approach.

We will introduce the functional

A(A,P)=ID§DWU O(A(x) = uy(x:£(x), 7(x)) B(Py(x) = pa(x; £(x), (x))  (96)

to realize the transformation
u:(A,P)(x)—(&n)(x), 97

to the compound vector functions (u,p),(x;&(x),7(x)) of the space-time local parameters
(&, 7)(x). It is assumed that A#0.
Performing transformation (97), we find:

1 , 8H; \ | oH,
DMj(§,77)=m1:[ 1:[ dﬁdﬂdkad‘Ia&(Dz'Pb)ﬁ(lla(x)— 5pa(;))5(l’a(x)+ Ea'é")
(98)

Here the gauge phase A, and conjugate to it g, was extracted from the set of variables £ and 7.
Using the result of Sec. III B, one may diagnolize arguments of Jfunctions. As a results:

DMj(i,n,x,Q)=}:Ia 4€ dy dn dg8(DL()- B 8| Ko~ 5" | 8| dat 55
5(. 6hj)§( ) ahj)
X f’% 7’+¢9_§ . (99)

Equality (99) holds iff 4; is defined by Poisson equations (for the three vectors given u, and p,):

O, e OH)
{ua(x)’ j}_m’ {pa(x)’ j}'—_m (100)

considering (&, 7) and (\,q) in the Poisson brackets as the canonically conjugate pairs.
If we add to (100) one more equation:

hj(§9779)\7q)=Hj(ua ’pa.) (101)

then, as was shown in Sec. III B, u, and p, should be solution of incident equations, assuming that
(100) holds on the measure (99). Then

D5(u)-p,=0 (102)
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since p,, is the solution of Eq. (100) at arbitrary j,,, . This remarkable result is the consequence of
mapping into the invariant space G/H to which the classical flow belongs completely. Therefore,
the corresponding &-function in (111) gives identically

1:[ 8(0).

This infinite factor should be canceled by normalization and will not be mentioned later. Note that
the formalism contains one sources j, conjugate to the coordinates u, only, see (101) and (93).
So, the described mapping gives the measure:

We have taken into account here that (#,p), are q, independent. The Hamiltonian ; is defined by

Eq. (101):

DM (£,7,\,0)= [[ d\,dg,dEdnd(X,) 8|

28hj=f d3x(P§+B§(u))+f d>xju,=h+J, (104)

where h is the unperturbated by j, Hamiltonian.
Helping the Proposition V, we can exclude the g, dependence:

DM (£ 7N =dRI] d\,dedns(X,)8(é~w—jp)8(—j,), (105)
where the “velocity” w=dh/dn. The perturbations generating operator takes the form:
2IC(je)=f de{jeé e+ .8 ). (106)

At the same time one should replace in (85) e, on

du,(x;€,m,\) Jug(x;€,7,\)
O R 0)

As follows from (105) we should consider the time independent gauge transformations:

e (x)=eg(t) (107)

A (x)=0. (108)
To remove this constraint we should generalize Eq. (100). So, if we consider the equation:

OH; ou(x;¢,7.1)
5pa(x)_‘0’a(x) - N (109)

O\,
instead of the first equation in (100) then one should replace in (105)

{ua(X;g’ nv)\)’hj}=

IT an,(x) 5(Xa(X))—>lI AN o(x) (N 4(x) = 2(x)), (110)

where {3 ,(x) is the arbitrary function of y and ¢. This is the most general representation for gauge
measure in our formalism.

As a result, the main elements of quantum Yang—Mills theory in the G/H space looks as
follows.

(i) The measure
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DM (¢, 77,)\)=ng dA dEd7E(N 4(x) — Qo(x)) (€~ w—j ) (7] ,). (111)
Using definition (25), one may note that
f IT d\ o8k o(x) - Q2,())

means integration over all functions A ,(y,?) of the arbitrary given time dependence. At the same
time

f Hx;adxa a(xa(x) - Qa(x))

M, dn, =0. (112)

Therefore our normalization on the gauge group volume differs from the ordinary one. But this
will not affect the result since all contributions will be gauge invariant.
(ii) The quantum perturbation’s generating operator

2K (je)= J dt{Jee;+]1,¢,}. (113)
(iii) The interactions functional U(u,&) depends on

du, du, 14
€, =€ 0777 e,,-—o,.?. ( )
Note the motion along A orbits is exactly classical and the dependence of nondynamical variables
has disappeared.

D. Gauge invariance

We wish to quantize the theory without gauge fixing ansatz and, therefore, the theory contains
three independent potential u;,, i=1,2,3 for each color index a. We may avoid this problem with
the unphysical degrees of freedom if the theory would depend only on the gauge-invariant ob-
servable quantities: the color electric, E,, and magnetic, B,, fields.

Proposition VI: Each order over 1/g is explicitly gauge invariant.

The interactions functional U has following explicit form:

—3'U(u,e)——fdxH ‘ Cas JF’“’“F,“,,,,

where ¢, was defined in (114). Using this definition, we find:

du, au,,]
e§~

IR

3
—3!U(u,e)=fdxkl:1' l

a
u ]F"“’"F#W,. (115)
a

The summation over repeated indices is assumed.
The last expression is manifestly gauge invariant since the operator is singlet of gauge trans-
formations and F***F ,,,, is the gauge invariant quantity.
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E. Divergences

Expression (115) may be written in the form:
3
-3'U(u e‘)=fdtH e -ﬂlf—e ilk i L(u) ' (116)
T =1 |1 ¢ o 7 af ’
where

L{u)= f d3xF’“"’F#,,a

is the Yang—Mills Lagrangian,
Result of action of the perturbation generating operator gives the expression:

N(u)=fDM(f,n):e'zi”(“’e’:, (117)
where the operator
31(20) Uu,e) fd ﬁ H 0 P 2 a““] 0,5 ) (118)
—3! ,e)=| dt TRy re el e )
! "¢ k=1 || Ojg 9n  dj, 0¢ |ou, (u
where u;, depends on the solution of equations:
E-w(m=j¢ 7=j, (119)

and the measure is jy, X= £,  independent:
DM=dRIT II DA.8(X,~ Q) 84~ w(n)) o(h).
a y,

Such “shift” is possible since Egs. (119) are linear over jy.
We can conclude that if u, u 18 not singular,

S ()| <, (120)

then the theory did not contain divergences since the differential operator in (118) cannot change
convergence of the time integrals. Notice that the O(4)X O(2) solution obeys this property.’

V. CONCLUSION

It was shown that there exists such formulation of the quantum Yang-Mills theory which is
(a) divergence free (at least in the vector fields sector), (b) did not contain the gauge ghosts, and
(c) is sufficiently consistent, i.e., the quantization scheme is free from the Gribov ambiguities.

It was shown in Ref. 2 that if AG/H) is the boundary then the quantum corrections are
accumulated on this boundary, i.e., the intersection du, xN(GIM), where du,, is the flow in the
G/ coordinate system, defines the value of quantum corrections. If Ou,,NI(G/IH)=0 then the
semiclassical approximation is exact. This is the crucial property of our topological QCD.

For this reason the tQCD seems attractive and the question of whether it takes the place of
pQCD seems important. The experimentally examined consequences of the tQCD would be ex-
tremely interesting and they will be investigated in the first place. _

Being convergent, the exactness of estimation of the measurables in tQCD should be higher
then in the “logarithmic” pQCD. Moreover, the convergence means that the main contributions
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are accumulated on the large distances. This property is typical for hadron physics. Therefore, the
main point of our future publications would be the prediction of the small-scale effects, where we
can compare our approach with pQCD.
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APPENDIX: REDUCTION OF THE SPACE DEGREES OF FREEDOM

Action of the operator exp{—iK} leads to

./\/(u)=fDMj(f,n):e_Zi“("'j):, (A1)
where
6 du, 6 odu,| 9
- N3 U(u,j)= | & _ e 2
3120 U(u,j) fdxdt 1 ”ajf T 3 au,,]“”) (A2)

and the colons in (A1) mean the “normal product,” when the variational derivatives over Jx in the
expansion of exp{—2ild(u,j)} stay to the left of all functions.
The measure

DM(¢, n)=ly1 dédnd(é—w,—j) S+ we—j,).

Then, to calculate the remaining integral in (A1), one should find solution of inhomogeneous
equations:

£, =0, (0 1EM=ie00), Ay +0dy.nEn)=],(y.1), (A3)
where

wX(y7t;§’ 77)= ‘Sh(g’ 77)/5X(y7t)

As follows from (A2), if some operators Jy: over the “auxiliary” variable X' were not contain
in U(u,j) then the auxiliary variables X’ should obey the homogeneous, classical, equations, with
Jx'=0 on the right-hand side.

The solutions of inhomogeneous equation (A3) will be searched expanding over jy:

é(y,t)=§°(y,t)+fd“x’éé(y,t;y’,t’)jg(y’,r’)+fd“x’§,‘.(y,t;y’,t’)j7,(y’,t’)+°~,
(A4)
n(y,t)=77°(y,t)+f d“x’n‘n(y,t;y’,t’)j,,(y’,t’)+f d*x" gy, 9"t )j ey 1)+

So, the equations:

E0.0=0,0.8.7%, PG.0=-wly.;& 7 (A5)

should be solved in the lowest order over jy. The function u( y:€(»,0), n(y,1)) should obey the
“boundary” property: .



J. Math. Phys., Vol. 42, No. 9, September 2001 Yang-Mills field quantization in the factor space 4179

u(y:603.0), 9(y,0)|j=0=u(y; &, 1) =u(y.t;&, 7,), (A6)

where £, and 7, are the integration constants of the Lagrange equation (11). The equality (A6)
defines the starting set of the necessary variables ¢ and . Notice that, as follows from Proposition
I, the quantum perturbations should not change this set.

Let us distinguish the variables ¢ € G/H by the equality:

2H =0 (A7)
e,

Jx=
This assumes that the set 7 can be expressed through the set conserved generators. In example (1),
they are the generators of translation and special conformal transformation. Notice that Proposi-

tion III means that the quantum perturbations did not alter this definition.
Inserting (A7) into (AS5) we find at j,=0 the equations:

Er.n=w ()=, 7°(y,r)=0. (A8)

The functions with arbitrary y dependence may satisfy this equations. Using solution of this
equation:

D=0+, 7°y.0)= 7, (A9)

where &, and 7, are the integration constants, we will see that the dependence on y in (A6) did not
play any role because of the degeneracy over y. For this reason we will put out the y dependence
in £ and 7°.

It is not hard to show that the degeneracy over y will be conserved in arbitrary order over jy.
Indeed, inserting the expansions (A4) into Eq. (A3), we find in the first order Oover jg:

h(&,7m)

e | Lo
7Iy9 Y }617(}’,,’,)56(-},”)'1':0

0,5)1,(y,t;y',t')_fé()’»t;ylyt’}af(y' 1) 0E(y,1)

im0
=8(y—y")o(t—t').
Notice that

Sh(ém)| 8 )
(.0 |, BE(y.1) {h(&,m)];=0}=0,

where (A7) was used. Therefore, the equation for §2 has a structure:
£y 1y t")=8y—y")8(t—1"), (A10)

where the boundary conditions (A9) were applied. Notice that this equation is linear.
Inserting the solution of Eq. (A10): '

§}(y,t;y’,t’)=5(y—y')g(t—t’), (A11)

where g(t—1t") is the Green function defined in Ref. 2, into (A4), we find the term

~f dr’ g(t—1")jely.t').
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So, the y dependence is contained in the auxiliary source J¢ only. For this reason it cannot play a
dynamical role. The same phenomena one can observe considering other terms in the decompo-
sition (A4).

Therefore, admitting that the quantum perturbations switched on adiabatically, i.e., may be
taken into account perturbatively, and for this reason are unable to change the topology of the
classical trajectory u(y;&,7), Proposition III, one may conclude that it is enough to take &
=§¢(t) and 5= 5(t) in the considered scalar theory.

"It is assumed that the interaction with matter fields may be included perturbatively. For this reason the quark degrees of
freedom will not be taken into account in present paper.

2. Manjavidze and A. Sissakian, Theor. Math. Phys. 123, 776 (2000), J. Manjavidze and A. Sissakian, J. Math. Phys. 41,
5710 (2000). We will assume that these papers are known to the reader.

3See, e.g., A. Actor, Rev. Mod. Phys. 51, 461 (1979), and references cited therein.

“Actually, we are able to calculate the phase of nontrivial S-matrix elements also if the quantum perturbations are
switched on adiabatically. For this purpose the dispersion relation should be used, see J. Manjavidze and A. Sissakian,
hep-th/9811160.

3See the discussion of this question in the earliest paper: J. Manjavidze, Sov. J. Nucl. Phys. 45, 442 (1987).

8J. Manjavidze and A. Sissakian, J. Math. Phys. 42, 641 (2001); see also Appendix K in the review paper: J. Manjavidze
and A. Sissakian, Phys. Rep. (to be published).

?Following this selection rule, one should consider the factor space of highest dimension and we are not sure that the
dimension offered in (1) factor space is the highest one. Nevertheless it is not entirely impossible that the 0(4)
X 0O(2) contribution is necessary and sufficient. In connection with discussed selection rule there is also the interesting
question concerning the place of the KAM-theorem (Ref. 8) in quantum field theories.

8V. 1. Amold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).

9B. M. Barbashov, S. P, Kuleshov, V. A. Matveev, V. N. Pervushin and A. N. Sissakian, Theor. Math. Phys. 10, 11 (1972).

19C. Itzikson and J. B. Zuber, Quantum Field Theory (McGraw—-Hill, New York, 1980).

"'The number of Feynman diagrams of the pQCD in the given order of interaction constant g depends on the chosen gauge.

12B. DeWitt and C. Molina-Paris, hep-th/9808163.

13V, N. Gribov, Nucl. Phys. B 139, 246 (1978).

!4See I M. Singer, Commun. Math. Phys. 60, 7 (1978), M. F. Atiyah and J. D. S. Jones, ibid. 61, 97 (1978).

15S. V. Shabanov, Phys. Rep. 326, 1 (2000).

'$This conclusion would be in accordance with the canonical formalism, where existence of the canonical commutator is
the necessary and sufficient condition of quantization.

"To avoid the Gribov’s copying of the gauge nonsinglet variables one may “glue” together theirs gauge copies (this is
possible since they correspond to the same physical state), the details one may find in Ref. 15. But this eventually leads
to deformation of the “physical” phase space of the gauge nonsinglet variables and the quantization of such spaces
presents definite problem. Otherwise the dynamical variables would contain unphysical singularities (because of pres-
ence of bifurcation on the gauge copies).

18R, Jackiw, C. Nohl and C. Rebbi, Particles and Fields, Proceedings, Banff, Canada, 25 August-3 September 1977,
edited by D. H. Boal and A. N. Kamal (Plenum, New York, 1978).

YHere the analogy of the interaction constant and the temperature is used. Then the g and 1/g decompositions mean,
accordingly, the “‘high-" and “low-temperature” expansions.

DThis property usually is postulated, see, e.g., R. Jackiw, Rev. Mod. Phys. 49, 681 (1977), but it can be proved explicitly
if the topological solitons are considered (Ref. 6).

U The intriguing question concerning “‘asymptotic freedom” in our perturbation theory will be considered in subsequent
publications.

22The standard phenomenological reduction formalism may be used for this purpose (Ref. 6).

BE, Corrigan and D. Fairlie, Phys. Lett. B 67, 69 (1977); F. Wilczek, in Quark Confinement and Field Theory, edited by
D. Stump and D. Weingarten (Wiley, New York, 1977).

2R. Mills, Propagators for Many-Particle Systems (Gordon & Breach, New York, 1970).

2 'We would like to note here that the method of canonical transformation, used for definition of the classical phase flow
(g.,k), suppose (see Refs. 8 and 26) that the manifold W+ is known. This means that the necessary complete set of
first integrals in involution J=J(q,k) is known. But wishing to perform the arbitrary transformation, when we did not
know if the considered (infinite dimensional) system (12) is integrable or not, i.e., having no complete information about
the necessary set of integrals, this approach seems noneffective.

?%S. Smale, Invent. Math. 11, 45 (1970); R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin/Cummings,
Reading, MA, 1978).

77In the case of Coulomb problem the degeneracy is connected with the conserved Runge-Lentz vector n and it may be

destroyed by an external magnetic field. The last one induces precession of the vector n.

Indeed, let us remind that in the result of the canonical momentum mapping J:(q,k)—(Q,K) we find g(Q,K) and

k(Q,K). This function completed by Hamiltonian equations for Q and K solves the dynamical problem. Therefore, the

time dependence is contained only in Q and K. But, as was mentioned in Ref. 25, the structure of W is ad hoc unknown

for the field theory case. For this reason we later check this assumption.
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