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Abstract

The DELPHI detector at LEP has collected 54 pb~! of data at a centre-of-mass energy around 183 GeV during 1997, 158
pb~* around 189 GeV during 1998, and 187 pb~* between 192 and 200 GeV during 1999. These data were used to measure
the average charged particle multiplicity in e"e™— bb events, {(n)pp, and the difference §,, between {n)yp and the

multiplicity, {n) i, in generic light quark (u,d,s) events:
5, (183GeV) = 4.55 + 1.31(stat) + 0.73(syst) ,
5,(189GeV) = 4.43 + 0.85(stat) + 0.61(syst),
8,,(200GeV) = 3.39 + 0.89(stat) + 1.01(syst) .

This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity
accompanying the decay of a heavy quark is independent of the mass of the quark itself. © 2000 Elsevier Science B.V. All

rights reserved.

1. Introduction

The study of the properties of the fragmentation
of heavy quarks compared to light quarks offers new
insights in perturbative QCD. Particularly important
is the difference in charged particle multiplicity be-
tween light quark and heavy quark initiated eventsin
ete™ annihilations.

In afirst approximation one could expect that the
multiplicity of hadrons produced in addition to the
possible decay products of the primary quark-anti-
quark is a universal function of the available invari-
ant mass, this would give a difference in charged
particle multiplicity between light quark and heavy
quark initiated events decreasing with the centre-of-
mass energy E., [1]. QCD predicts, somehow
counter-intuitively, that this difference is energy in-
dependent; this is motivated by mass effects on the
gluon radiation (see [2-4] and [5] for a recent re-
view).

! Now at DESY-Zeuthen, Platanenallee 6, D-15735 Zeuthen,
Germany.

The existing experimental tests were not conclu-
sive (see [2] and references therein, [6-9]). At LEP 2
energies, however, the difference between the QCD
prediction and the model ignoring mass effects is
large, and the experimental measurement can firmly
distinguish between the two hypotheses.

2. Analysis and results

A description of the DELPHI detector can be
found in [10Q]; its performance is discussed in [11].

Data corresponding to a luminosity of 54 pb~*!
collected by DELPHI at centre-of-mass (c.m.) ener-
gies around 183 GeV during 1997, to 158 pb~?
collected around 189 GeV during 1998, and to 187
pb~! collected between 192 and 200 GeV during
1999, were analysed.

The 1999 data were taken at different energies:
25.8 pb~! at 192 GeV, 77.4 pb~! at 196 GeV and
83.8 pb~! at 200 GeV. Each energy was analyzed
separately and the results were then combined as
described later and attributed to a c.m. energy of 200
GeV.
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A preselection of hadronic events was made, re-
quiring at least 10 charged particles with momentum
p above 100 MeV /c and less than 1.5 times the
beam energy, with an angle 0 with respect to the
beam direction between 20° and 160°, a track length
of at least 30 cm, a distance of closest approach to
the interaction point less than 4 cm in the plane
perpendicular to the beam axis and less than (4/sin)
cm aong the beam axis, a relative error on the
momentum measurement Ap/p<1, and a tota
transverse energy of the charged particles above
0.2E,,

The influence of the detector on the analysis was
studied with the full DELPHI simulation program,
DELSIM [11]. Events were generated with PYTHIA
5.7 and JETSET 7.4 [12], with parameters tuned to
fit LEP1 data from DELPHI [13]. The Parton Shower
(PS) model was used. The particles were followed
through the detailed geometry of DELPHI giving
simulated digitisations in each subdetector. These
data were processed with the same reconstruction
and analysis programs as the rea data.

The hadronic cross-section for e*e™ interactions
above the Z peak is dominated by radiative qay
events; the initial state radiated photons (ISR pho-
tons) are generally aligned along the beam direction
and not detected. In order to compute the hadronic
c.m. energy, the procedure described in [14] was
used. In this procedure particles are clustered into
jets and the effective centre-of-mass energy of the
hadronic system, Vs, is computed as being the
invariant mass of the system recoiling against an ISR
photon, possibly unseen.

Events with reconstructed hadronic c.m. energy
(VS above 0.9E,, were used. The selected 1997
(1998, 1999) data sample consisted of 1699 (4583,
4881) hadronic events.

For each year's data, two samples enriched in (1)
b-events and in (2) uds-events were selected from
the b tagging variable y defined as in Ref. [11]; this
variable represents essentially the probability that
none of the tracks in the event comes from a vertex
separated from the primary one. To select the sam-
ples of the type (2), it was required in addition that
the narrow jet broadening By, is smaller than 0.065,
to reduce the background due to WW and ZZ events.
B, IS defined as follows. The event is separated
into two hemispheres H, and H, with respect to the

thrust axis, defined by the thrust unit vector f. Then,
caling p, the momentum vector of the k-th particle,

Y Ipex il
. ke H;
Bmin:mlni:LZ 22|p |
k
k

The contamination from non-qg events in the
samples of type (1) was 7% (8%, 15%), while it was
13% (17%, 20%) in the samples of type (2). After
applying the event selection criteria and the cuts to
reduce the WW and ZZ background, the purities
were approximately 91% (90%, 90%) (b-events) over
the total g in sample (1), and 79% (79%, 79%)
(uds-events) over the total qg in sample (2). The
fractions of g-type quarks in the (i)-th sample, f",
were determined from the simulation. The sample (1)
consisted of 103 (326, 416) events; the sample (2) of
590 (1450, 1652) events.

The average charge multiplicity was measured in
the samples (1) and (2), after subtracting the back-
ground bin-by-bin by means of the simulation. It
should be noted that the average multiplicity for a
given flavour q in each sample is equal to C{" x
(N)qq, With C{"#1 in general. The factors Cg')
account for blases introduced by the application of
the b probability and the jet broadening cuts, as well
as for detector effects; these factors were computed
by means of the simulation.

A third sample (3) was taken into account by
considering the measurement of multiplicity de-
scribed in [15]. This measurement was performed
from a sample of 1297 (3444, 3648) hadronic events,
with a contamination of 11% (14%, 18%) after
applying al the selection criteria; the remaining
background mostly comes from the hadronic decay
of W and Z pairs. The values {n)® shown in Table
1 are fully corrected for these backgrounds and for
detector effects with their statistical errors; hence the
nominal quark flavour ratios appear in the Eq. (3)
below. The systematic errors are reported as the last
contribution in Table 3.

The measured mean multiplicities together with
the event probability cuts and the factors f{" and
C{ are shown in Table 1. For the 1999 data, the
values only at v/s = 200 GeV are tabulated.

In each of the three samples, the average multi-
plicity {n) is a linear combination of the unknowns
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Table 1

Mean multiplicities, {n), in three event samples of different flavour content, fq, and correction factors C,. The errors quoted on (n) are
statistical only. The last dataset contains only the data at 200 GeV from 1999

Sample b-tag prob. £ cg £, cils £ ch (ny®

Data at 183 GeV

(€8] Pe < 0.00001 0.914 0.921 0.017 1.24 0.069 0.903 2743 +0.83
(%3] 02<Pg<10 0.019 0.912 0.786 0.899 0.195 0.901 2353+ 0.33
()] no cut 0.162 - 0.582 - 0.256 - 27.05+0.27
Data at 189 GeV

(8] Pe < 0.00001 0.899 0.912 0.016 1.15 0.085 0.919 27.75+0.48
(@3] 02<Pg<10 0.016 0.896 0.789 0.893 0.195 0.913 2393+ 0.24
(€)] no cut 0.161 — 0.580 - 0.259 - 2747 +0.18
Data at 200 GeV

(8] Pe < 0.00001 0.880 0.928 0.026 111 0.094 0.881 27.31+0.71
(%3] 02<Pg<10 0.017 0.867 0.785 0.900 0.199 0.921 23.64 + 0.37
(€)] no cut 0.159 — 0.579 - 0.262 - 2752 +0.29

{NYpp, {n;; and {n)ce. One can thus formulate a set
of three simultaneous equations to compute these
unknowns;

(P = fOCHNypp + FRCHL M

+fICHNDes, (1)
(M@ =fAC@{nyps + FACAL i

+12CA (), (2
(P = £()pp + FZLi + 13 M. (3)

Solving the above equations gave the following mean
charge multiplicities at 183 GeV:

{n)yp(183GeV) =29.79 + 1.1,
(n)e:(183GeV) = 29.41 + 4.05,
{(n)(183GeV) = 25.25 + 1.35,
8, (183GeV) = 4.55 + 1.31,

with correlation coefficient of — 0.45 between {n)g
and {n);, and at 189 GeV:

{n)y5(189GeV) = 30.53 + 0.70,
(n)e:(189GeV) = 28.63 + 2.81,
{n)(189GeV) = 26.10 + 0.97,
8, (189GeV) = 4.43 + 0.85,

with correlation coefficient of — 0.52 between {n)ug
and {n)i.

From the 1999 data, the results obtained for each
energy are tabulated in Table 2. The values were
scaled to 200 GeV using JETSET and then aweighted
average was calculated using the inverse of the
square of the statistical error as weight. One obtains

{(nYpp(200GeV) = 29.38 + 0.65,
{Nn).:(200GeV) = 29.89 + 2.92,
{n);(200GeV) = 25.99 + 1.03,
8,/(200GeV) = 3.39 + 0.89,

with average correlation coefficient of —0.52 be-
tween {n),s and {n),;. The difference between the
average of the values rescaled to 200 GeV and the
average of the values without the scaling was added
in quadrature to the final systematic error. This
difference is anyway small (0.16 units for {n),p and
less than 0.01 units for §,,).

The relatively large uncertainty of the measured
mean multiplicities for charm stems from the inabil-
ity of the Pz variable to extract a c-enriched sample
of events.

It should be noted that the transition between
particle and detector level measurements in Egs. (1)

Table 2
Multiplicities measured for each energy during 1999
Ecm {Mup (Nee Ui 8y

192 GeV 2757+1.56 30.63+7.70 2554+275 2.03+2.36
196 GeV 29.58+0.97 26.75+4.45 27.12+1.58 2.46+1.37
200 GeV 2955+1.06 32.42+4.43 2475+154 4.79+1.34
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Fig. 1. Stability of §,, = {n)pp — <N with respect to variations
of the cut on the b-tagging variable, y. Notice that the errors in
the plot are correlated (see text). The arrow indicates the vaue
used in the analyses.

and (2) is done via multiplicative factors C applied
to the mean value of the distributions. The validity of
this procedure requires that the simulation used to
compute the C values reproduces the real data well;

the x?/DF at centre of mass energies of 183, 189
and 200 GeV are respectively 0.81, 1.17 and 0.67 for
the sample (1) and 0.93, 1.44 and 1.36 for the
sample (2).

The analysis was repeated with different cuts
applied to the b-tag probability, Pz, and the results
for the 8, were found to be quite stable (see Fig. 1).
A systematic error was evaluated as half of the
difference between the greatest and the smallest mul-
tiplicity values obtained from varying the cut on Pg
from 0.5x 107° to 1.5 1075,

The uncertainty due to the event selection in
sample (2) was investigated by repeating the analysis
after variation of the narrow jet broadening cut, from
0.05 to 0.08. Half of the differences between the
greatest and the smallest multiplicities were added in
quadrature to the systematic error previously calcu-
lated. The propagated systematic error in the total
multiplicity in Eq. (3) from [15] was adso added in
quadrature to the systematic error. Uncertainties aris-
ing from the modelling of short-lived particles in the
simulation were considered. The main physics
sources of these uncertainties come from the as-
sumed lifetime of B-hadrons (75 = 1.564 + 0.014
ps) [16], and the D*, D° lifetimes and production
rates [16]. Also a variation in the modelling of the b
fragmentation was investigated, by allowing the av-
erage fractional energy of a B hadron to vary by
1.5%. The same relative uncertainty was assumed as
in [6].

The effect of a variation of 1% in the fraction R,
of bb events and of 3% in the fraction R, of ¢t
events was found to be negligible. Since the multi-
plicity difference, 8,,, was found to be independent
of energy within errors, the effect of the modelling

Table 3
Contributions to the systematic errors on {n)pp and Jy,
Source 183 GeV 189 GeV 200 GeV

{NYpp Oy {N)ub Op) {NYpp Oy
b-tag probability cut 0.14 0.10 0.16 0.11 0.25 0.17
narrow jet broadening cut 0.06 0.32 0.05 0.18 0.15 0.63
modelling in the simulation 0.10 0.33 0.10 0.32 0.09 0.23
E., rescaling - - - - 0.16 0.00
systematic error on {n)® 0.21 0.56 0.27 0.47 0.36 0.74
total 0.28 0.73 0.34 0.61 0.50 1.01
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of the initial state radiation is also expected to be
negligible.

The contributions to the systematic error are sum-
marized in Table 3.

The final mean values of the event multiplicity in
b events are { n),(183GeV) = 29.79 + 1.11(stat)
+ 0.28(syst), { n),p(189 GeV) = 30.53 +
0.70(stat) + 0.34(syst), and < n),E(200GeV) =
29.38 + 0.65(stat) + 0.50(syst). The multiplicity dif-
ference between bb and light quark-antiquark events
measured at the different energies is:

5,1 (183GeV) = 4.55 + 1.31(stat) + 0.73(syst)
5(189GeV) = 4.43 + 0.85(stat) + 0.61(syst)

5(200GeV) = 3.39 + 0.89(stat) + 1.01(Syst) .
(4)

These values include the products of Kg and A
decays. The uncertainties on the modelling of the
detector largely cancel out in the difference.

Our results on 8, are plotted in Fig. 2 and
compared with previous results in the literature.

<
[t
K\/ 7
- A DELCO + Mark Il + TPC :
3 0 TASSO ‘
ANh o TOPAZ ‘
N ¥ Mark II + DELPHI + OPAL + SLD }
K77 = DELPHI 183—200 GeV
LY
SENNSNNN AN \\
///

> QCD (MLLA)

//
W
*/. Flavour independent //////////////

. P L P | PRI BRI
20 40 60 80 100 120 140 160 180 200
Eem (GeV)

Fig. 2. The present measurement of &, compared to previous
measurements as a function of the centre-of-mass energy, to the
QCD prediction (taken as the average of the values up to the Z
included, see the text), and to the expectation from flavour-inde-
pendent fragmentation. The inner error bars represent the statisti-
cal error; the full bars show the sum in quadrature of the stetistical
and systematic errors.

3. Comparison with models and QCD predictions

3.1. Flavour-independent fragmentation

In amodel in which the hadronization is indepen-
dent of the mass of the quarks, one can assume that
the non-leading multiplicity in an event, i.e., the light
quark multiplicity which accompanies the decay
products of the primary hadrons, is governed by the
effective energy available to the fragmentation sys-
tem following the production of the primary hadrons
[1]. One can thus write:

Sbl( Ecm) =2 n(Bdecay)>

1 1
+_/;) dxg fe ( XB)];) dxzfe, (Xg)

Xg + Xg
Xn”'((l— > )Ecm)

- nlf( Ecm) J (5)

where (n{d®®)) is the average number of charged
particles coming from the decay of a B hadron, Xg
(xg) is the fraction of the beam energy taken by the
B (B) hadron, and fe_(xg) is the b fragmentation
function.

We assumed 2 nd®®)) = 11.0 + 0.2 [2], consis-
tent with the average (n{d®)) =57+ 0.3 mea
sured at LEP [17]. For fEcm(xB), we assumed a
Peterson function with hardness parameter e, =
0.004723:35%9 [16], evolving with energy asin [12] to
take into account the effects of scaling violations.
The value of nj;(E) was computed from the fit to a
perturbative QCD formula [18] including the resum-
mation of leading (LLA) and next-to-leading (NLLA)
corrections, which reproduces well the measured
charged multiplicities [15], with appropriate correc-
tions to remove the effect of heavy quarks [19] and
leading particles.

The prediction of the model in which the
hadronization is independent of the quark mass is
plotted in Fig. 2. The reason for the drop with
collision energy is that the heavy quark system car-
ries away a large fraction of the available energy,
approximately (i.e.,, neglecting scaling violations)
linear with Vs, while the multiplicity growth
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with V/s is less than linear. There are several varia-
tions of this model in the literature, leading to
dightly different predictions (see [17] and refe-
rences therein). The result from subs-
titting in Eq. (5) n((1—-"3"°)E,,) with
nl,-( Egm) (1= Xg) (1 —X5) ) as in [7], or approxi-
mating the Peterson fragmentation function with a
Dirac delta function at { xg), are within the errors.
Also by using for n; the expression in [7] one stays
within the band in Fig. 2. The prediction as plotted
in Fig. 2 agrees with the one calculated in [5].

3.2. QCD calculation

The large mass of the b quark, in comparison to
the scale of the strong interaction, A =0.2 GeV,
results in a natural cut off for the emission of gluon
bremsstrahlung. Furthermore, where the c.m. energy
greatly exceeds the scale of the b quark mass, the
inclusive spectrum of heavy quark production is
expected to be well described by perturbative QCD
in the Modified Leading Logarithmic Approximation
(MLLA, [20].

The value of 6, has been calculated in perturba-
tive QCD [2,3]:

By = 200 — () (V5 = /2m,)
+O(as(mb))<n||'>(\/g =mb)- (6)

The reason for the appearance of the e'/? factor in
the above expression is discussed in detail in[3]. The
calculation of the actual value of &, in [2] on the
basis of the first two terms in (6) gives a value of
554 0.8. A different calculation of §,, gives 3.68
[3]. These two calculations assume m, =5 GeV /c?
and m,=4.8 GeV /c? respectively, and different
parametrizations for the function {n,;('s). The de-
pendence of the perturbative part in Eg. (6) on m, is
such that moving the m,, value from 5 GeV /c? to 4
GeV /c? induces a change of + 0.6 units of multi-
plicity.

The difference of the results in [2] and in [3]
demonstrates the importance of the contribution pro-
portional to a(m,). A less restrictive condition is
the calculation of upper limits: an upper limit §,, <
4.1 is given in [3], based on the maximization of the

nonperturbative term; 8., < 4 is obtained from phe-
nomenological arguments in Ref. [4].

Although the presence of the last term in the
equation limits the accuracy in the calculation of &y,
QCD tells that &, is fairly independent of Eg,. In
this article the average of the experimental values of
S,y up to m, included, (&) =296+ 0.20
(dominated by the LEP 1 data), is taken as the high
energy prediction from QCD. The accuracy of the
measurement at the Z is thus used to constrain the
theoretical prediction.

Our measurement of &, as seen in Fig. 2, is
consistent with the prediction of energy indepen-
dence based on perturbative QCD, and more than
three standard deviations larger than predicted by the
naive model presented in the beginning of this sec-
tion.

4. Conclusions

The difference §,, between the average charged
particle multiplicity {n),5 in e" e~ — bb events and
the multiplicity in generic light quark | =u,d,s
events has been measured at centre-of-mass energies
of 183, 189 and 200 GeV:

5,1(183GeV) = 4.55 + 1.31(stat) + 0.73(syst)
5,(189GeV) = 4.43 + 0.85(stat) + 0.61(syst)
5,1(200GeV) = 3.39 + 0.89(stat) + 1.01(syst) .

This difference is in agreement with QCD predic-
tions, while it is inconsistent with calculations as-
suming that the multiplicity accompanying the decay
of a heavy quark is independent of the mass of the
quark itself.
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