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A brief review of variational perturbation theory and some its applications is presented.

1 Introduction

In theoretical consideration of many physical problems one often uses an approxima-
tion of a quantity under consideration by a finite number of terms of a certain series.
In quantum field theory this is conventionally an expansion into a perturbative series.
This approach combined with the renormalization procedure is now a basic method for
computations. As is well-known, perturbative series for many interesting models includ-
ing realistic models are not convergent. Nevertheless, at small values of the coupling
constant these series may be considered as asymptotic series and could provide a useful
information. However, even in the theories with a small coupling constant, for instance, in
quantum electrodynamics there exist problems which cannot be resolved by perturbative
methods. In quantum chromodynamics there are many problems whose solution requires
nonperturbative approaches.

Many approaches have been devoted to the development of nonperturbative methods.
Among them is the summation of a perturbative series (see reviews {1} and monograph [2]).
The difficulty is that the procedure of summation of asymptotic series is not unique as it
contains a functional arbitrariness. A correct formulation of the problem of summation is
ensured by further information on the sum of a series [3]. At present information of that
kind is known only for the simplest field-theoretical models [4]. Moreover, in many cases
of physical interest, the series of perturbative theory is not Borel summable.

There have been approaches that are not directly based on the perturbative series or
used some other expansions to get an approximation of a quantity under consideration
[5. 6. 7, 8]. Many of nonperturbative approaches make use of a variational procedure for
finding the leading contribution. However, in this case there is no always an algorithm of
calculating corrections to the value found by a variational procedure, and this makes diffi-
cult to answer the question how adequate is the so-called main contribution to the object
under investigation and what is the range of applicability of the obtained estimations.

To the study of the nonperturbative structure of quantum field theory there are meth-
ods that combine an expansion of a given quaitity in a series that defines the algorithin of
calculating the correction with an optimizing procedure. The nonperturbative Gaussian
eflective potential for a quantum system has been constructed by an approach of that sort
in [9, 10, 11, 12]. There exist the various optimizing procedures. In (13. 14], for exam-
ple. the principle of minimal sensitivity has been applied to the third-order calculation of
the e*e~ annihilation ratio. Different ways of constructing the variational procedures for
scalar models of quantum field theories are discussed in [15, 16, 17). However, even if the
algorithm of calculating corrections, i.e. terms of a certain approximating series, exists,
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it is not still sufficient. Here of fundamental importance are the properties of convergence
of a series. Indeed, unlike the case when even a divergent perturbative series in the weak
coupling constant approximates a given object as an asymptotic series, the approximating
series in the absence of a small parameter should obey more strict requirements.

In this paper we consider the method of variational perturbation theory (VPT). In
spite of the term “perturbation” the VPT approach does not use the coupling constant
as a small expansion parameter and can be used to go beyond the weak-coupling regime.
This method allows one to systematically determine the low energy structure in quantum
chromodynamics. In this case, we shall construct the expansion which is based on a new
small parameter and apply this method to the nonperturbative renormalization group
analysis in quantum chromodynamics. Applications to the definition of the QCD running
coupling in the timelike domain and to the semileptonic decay of the 7 lepton will be
considered. The main results concerning the method of variational theory and some its
applications can be found in the papers [9, 14, 15, 16, 17] and (18, 19, 20, 21, 22, 23, 24]
(see also references therein). We shall consider the method of the VPT series construction
by using variational procedures of an harmonic and anharmonic types. In the case of the
harmonic variational probe, it has been observed empirically [25] that the results seem to
converge if the variational parameter is chosen, in each order, according to the principle
of minimal sensitivity. This induced-convergence phenomenon is discussed in detail in
[26]. In [27, 28] the proof of convergence of an optimized d—expansion is given in the cases
of zero and one dimensions. The proof of convergence of variational series in the case of
anharmonic procedure is given in [16].

2 Anharmonic oscillator
Let us consider a quantum-mechanical anharmonic oscillator (AO) as an example of

exploiting the VPT method. The AQ from a point of view of the continual integral
formalism is a one-dimensional p*-model. The Euclidean action looks as follows

m?
Sle] = Sole] + 5-Sale] + gS4le], (1)

where )
Solel = 5 [dr(@pP, Silel= [dee?, Siol= [doot. )
Green functions. The Green functions are expressed in terms of the functional integral
Ga = [ Do{e*}exp(~Slyl) 3

where {?"} denotes the product of fields ¢(z)- - - ¢(z,).

It is convenient to pass to dimensionless variables: ¢ — g~1/6p,z — g~1/3z, then
the functional of action reads
w?
Slel = Sole] + 5-5alel + Salel, (4)

where w? = m2g~2/3. The dimensionless Green functions G2, will be represented through

(3) with the action (4).
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) Like the ordinary perturbation theory, the VPT method uses only Gaussian quadra-
tures:

/Dgpexp{—[% <pKp>+ <ol >]} =
= (det _—azli_m—i)_llz exp(% <JK'J >) . (5)

Possible polynomial in the integrand of (5) can be obtained as usually by the corresponding
number of differentiations of the exponential with respect to the source J(x).
The variational probe of the system can be constructed by using the functional

Alg) = 0Saly] + 5 Sale] (6)

where 8 and x are variational-type parameters.
We shall first consider the harmonic variational procedure. In this case the action
functional splits as follows

Sle) = Sglie) + Siulel (7
where ) _ .
Ssl) = Sole} + %Szlwl +Alpl,  Shulel = Simle] — Ale]. (8)

The expansion in the VPT series reads
Gy = Z Gavnl(0,x), (9)
Gaunltix) = 2L [ Dip {2 (Shalil) exp(~S2Ele) (10)

The functional integral in (10) is Gaussian. It is convenient to use the ordinary coefficients
of a perturbative series when it is calculated. For this aim. let us rewrite (10) as

, n ] a\"* Ny W
Gan = gﬁ(n——_k_)' (—%‘) /D¢{¢’ }(—54)"9XP[—(50+%52+0A)]’ (11)

where the parameter a is to be set to 1 after differentiation. Keeping in mind the inter-
mediate dimensional regularization and making the change v — ¢/V1 + af we obtain

4 _ - 1 __?_ n-k g2u,k(32)
Gun = g:% (n - k)!( aa) (14 af)+2x’ (12)
where . )
g(2%) = 35 [ Do {e™}=50)* exp[~ (S0 + 5 52)] (13)

are the ordinary perturbative expansion coefficients for the Green functions (3). To cal-
culate them, the standard Feynman diagrams, for example, can he used. The quantity =2
in (13) looks as follows

(14)
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Properties of the series (9) are determined by the asymptotics of the functional integral

S ] Do(Side) = Aol exo (Sl + 4 1l + )] "

at large n.

The investigation of the asymptotic behaviour of expression (15) in the leading order
in n is, in fact, equivalent to finding the ordinary perturbative series coefficients. The
series (9) turns out to be asymptotic like the ordinary one. Actually, its behaviour may be
influenced by the 6 and x parameters, to attain the greater stability of results as compared
with standard perturbation theory. However, one compelled to remain in the region of the
weak coupling constant, mainly, as it turns out to be impossible for arbitrary values of the
dimensionless coupling constant g/m3 to gain, within the harmonic variational procedure,
the stable results with respect to corrections. The latter is explained by the fact that at
large n a sensible contribution to ( 15) comes from such field configurations at which the
quantity |(x)| is large. In this case the compensation by the harmonic addition Afp] of
large Sin[y] containing the fourth power of the field proves to be not sufficient.

Under the anharmonic variational procedure the action functional is represented as
follows

Slel = Salel + Sielee] s (16)

Slel = Solel + SSalel + el Sulel = Sulel ~ 4. ()

Now, the field power in the variational probe is the same as in the interaction action
Sint[¢]. Keeping in mind that we have also the variational parameters at our disposal, we
may anticipate that the convergence of the VPT series will be improved. As a concrete
example, we shall consider the ground state energy for the anharmonic oscillator which
is connected with the four-point Green function G4(0,0,0.0).

Ground state energy. We will proceed from the partition function represented by the
path integral

exp(~TE) = [ Dy exp(~Se), (18)

where the integration in (18) runs over ©(t) with condition: ¢(—~T/2) = e(T/2) , the
functional of action is given by (1) and integration runs over ¢ from ~T/2 to T/2.

The ground state energy E, follows from (18) in the limit T — oo. It is convenient
to pass from the functional integrals typical of the statistical mechanics to the functional
integrals of the Euclidean field theory. To this end consider the quantity dEy/dg that
is exprassed in terms of the four-point Euclidean Green function. So, passing to the
dimensionless variables from (18) we obtain

dE,

Lo -3
" G4(0), (19)
where
2 -~
G4(0) = N? / D‘pl,O"(O) exp[—(So + w? S2 + Sq)] , (20)

2
I

/qu exp[—(So + w? § + Sr)}. (21)
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The VPT expansion for the Green function (20) has the following form

d

3 __<1+'"Al+"' [r<1+m/2)r(1+3m/2)] '(E)M Fu(8,x,0), (22)

n=0 m=0 (n

Fu(8,%,0) = [ dzz™?exp(~a) [ dyy*/ exp[ oty — (1= a) - (af +yx)].  (23)
0 0o

In the strong coupling limit we can set w? = 0 in (23). However, it is to be noticed
that expanding exp(—w?y) in powers of w? we can determine corrections to the main
contribution.

From (22) and (23) we obtain for the ground state energy in the Nth VPT order in
the strong coupling limit

: [3+m/
EV = 3413 Z g Lt m)Aren + "‘)AH"- ( 3 .9)l TP+ w2 + 3m/2)] Rum(0),

n=0m=0 m)'
(24)

where
Ram(8) = [ dea™exp(~z) [ dyy*™/*8z +y/" ™ expl~(0 +y)].  (25)
0 0

Optimal value of the parameter 4 in different versions of the optimization procedure turns
out to be small, therefore, in the first VPT order we get from (24) and (25)

E{) = g'eo + 1), (26)

where

' 4T(! 16 1/6
o= gAl \/7_1'-1'2, &y = %Al \/7_l'1?2+ I“(/57?/4) ."2.1‘5. r = (?0) . (27)

Finding the vanatlonal parameter £ by using the principle of minimal sensitivity
(PMS) we get Eo (.’l‘g) = 0.660¢g'/3. The corresponding numerical result is E§** =
0.663g'/® [29]. The stability of the VPT series with respect of the order N for values of
] close to the optimal one is indicated in Table 1.

To find corrections to the strong coupling calculations one has to perform the w?2-
expansion. As a result we get (below we do not use the condition 8,,, <« 1)

E = ¢'/3(0.676 + 0.1407w?® — 0.0085w® + ---). (28)
The corresponding numerical result is [29]
ES™ = ¢'/3(0.668 + 0.1437w? — 0.0088w* + ---). (29)

Propagator. Let us calculate the parameter u? which is connected with the two-point
Green function, u=2 = Gy(p = 0), where

Gap=0) = [dt [ Dpolt/2)w(—t/2) exp(=Slel)- (30)
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Table 1: The behaviour E§"’ JES™t vs. N

Ej()ﬁ/Esxnct
N 0 = 0.020 0 = 0.028 8 = 0.032 8 = 0.036
0 0.956 1.063 1.107 1.144
1 0.981 1.006 1.011 1.013
2 0.995 1.005 1.006 1.006
3 1.000 1.004 1.004 1.004
4 1.001 1.003 1.002 1.002
] 1.001 1.002 1.201 1.001
6 1.000 1.000 1.000 1.000

The VPT series for the function G2(0) is as follows

1
G0 =933 3

2 n=0 m=0

F'n+1/2 - m/4) B, 243m
(n—-m)l  TQA+3m/2)

(1)

where B,, are dimensionless coefficients of the standard perturbation theory. For the
considered first nontrivial VPT order we need the two values, By = 1 and B; = —6. In
the first VPT order we get from (31) :

G = g7*(Gao + G),

where

Gzo=g-’l'2, G21=-\({E—.’62-—4F(§) z°
The PMS optimization (8G§”/6m = 0) leads to the value p? = 3.078¢%*>. The corre-
sponding numerical result is g2, , = 3.009¢%/3.}
Effective potential. Consider the generating functional for the Green function (we em-
ploy the pseudo-Euclidean signature in the n-dimensional space, keeping in mind appli-
cations in field theory)

W‘[J] = /Dgp exp{z'[S[tp]+ <Jg >]} , (32)

where

<J<p>=/dtJ(t)-<p(t) and Slp] = So —m?§ —gS;. (33)

The effective potential is usually constructed in the quasiclassical approximation based
on the expansion in powers of the number of loops. In our case this method gives the

one-loop potential of the form V.%'°® = /m? + 12g¢2 /2 that is completely unfit for the
description of the nonperturbative region.

1Some other details connected with consideration of the anharmonic oscillator in the framework of the
VPT method can be found in {30].
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We will compute the effective potential by the VPT method.To this end, we introduce
variational parameter a? rewriting the action to the form

S[qp]=[So—ng—%zgz]-[g&—-;—féz]. (34)

The effective potential is obtained from the effective action when the field configurations
are constant and, in this case, the variational parameter introduced in the form a?/T will

be independent of the “volume” T of z-space. X
Expanding the exponential of (32) in powers of g S; — a? §2/T we get

WJ] = exp(—i7r/4)Tl/2/%exp(—iTvz/ti) (35)

x Y Z n-k),('d )y = [ Dol=gS*exp{i[So - M?5+ < Jp 5]},

n=0

where M? = m?+,/eav. Completing differentiations with respect to £ we have to set ¢ = 1.
Denoting the perturbative expansion coefficients for the functional W/[J] by wy[J, M?):

wilJ, M?) = zy) [/‘”aﬂ(t ]A exp[) <JAJT>], (36)

where A(p) = (p? — M? +10)~'. In the Nth VPT order we obtain

wM = exp(—i1r/4)Tl/2/ _)c\l;.’? exp(—i T v?/4)

N n n—k 2 2
) d \n—k P+ M y-172 -
; g ( ) . [det m] Wk[-]. M2] (3()

The functional determinant in (37) is calculated by the relation det(---) = exp[Trin(- - )]
and the result is

[ det sz—Mz]"” = exp { i ;[(M’)'/’ = (m?)'7)}. (38)

In the leading VPT order we get

W] = exp(—im/4)T/? / 2\;7_'_ exp(—va2/4)[1 + (— - ;l—-lnwo)] (39)
where
2
S(v)) = % A.{[_Qz +— 2 [(Mz)ln — (m?)!7?) (40)
2

Go = exp{zT[Q‘llvﬂ %((M?)*/2 - (m*)'/z)]}, (41)

Wi J2 .]4
= ] (42)

@ “’gT[ZWJ”;(M?)S/z“L(M?)* '
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In these expressions we take constant sources, J = co:ist, which is required for construct-
ing the effective potential.

To construct the effective potential introduce the generating functional of the con-
nected Green functions Z[J] = (iT)~'ln W[J]. For the effective potential we obtain

Verlipol = J 00 - 2]J], (43)

where J is derived from the equation o = dZ [J])/dJ.

The integrand in Eq. (39) contains a large parameter, T, in the exponential and thus
that integral may be computed by the asymptotic method of a stationary phase. Then
in the first VPT order in the strong coupling limit (m? = 0) we get

Z(l)[J] = Zo[J]+ Z;J],

3J 3

ZolJ] = Zm—g(Mz)m, (44)
1J2 1. 500 31 J? J1

AN = G+ 3 -9 [am + St + o)

where we introduced a new variational parameter, M?, which is computed by an opti-
mization procedure.

To compare with numerical results for Eo and p?, we should know the expansion of
Vess(wo) near the extremum. Solving the equation of optimization, Z; = 0 we get

3 J?

12 _ aq2 o
M* = M, [1+4 (Mg)a/z

+0(JY),
where MZ = (6 g)*/3.
The effective potential reads

2
r
Vi(wo) = B + %1 vt + O(pd),

where 3
E = 5(69)°=0681g"°, 2 = MZ=33024%3.

3  ¢{y-model

In this section, we apply the VPT approach to derive the nonperturbative B-function
for the @*-model in four dimensions (18]. The corresponding Euclidean action has the
form

Slel = Sole] + Sile], (45)
where

2
Sole] = -;—/dz (=0 0,  Silp)= (—4:!—) y/dx @t (46)

The series of perturbation theory for the generating functional of the Green functions

WlJ] = /Dgo exp{-—S[<p] + /d;t J-ga} (47)
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diverges. A formal argument consists in a meaningless functional integral for the negative
coupling constant. The function W[J] as a function of g is not analytic at g = 0. The
concrete asymptotic behavior of higher-order terms of perturbation theory can be deter-
mined by the functional saddle-point method [31] In this case, the main contribution to
the functional integral comes from the configurations of fields ¢ which are proportional
to a positive power of the large saddle-point parameter n, and, therefore, the functional
St in Eq. (46) cannot be considered as the perturbative term in the comparison with
expression Sp.

The idea of the VPT method consists in the construction of a new effective functional
interaction S7. We expect that this functional can be considered as a small value when
compared with a new functional Sj. In realization of this idea we should ensure the
possibility of the calculations. Practically, we must use only the Gaussian functional
integrals, i.e. the form of S[y] should be such that the functional integral in (47) can be
reduced to Gaussian quadratures.

Let us take the VPT functional in the following form

Sle] = 6*S3le) (48)

which has the same degree of the field as the functional S;. Consider a new splitting of
the total action (45)

S[e] = Soliel + n Sile], (49)
where

olwe) = Solwe) + Sle),  Stle) = Silel - Sle]. (50)

In this case, the expansion of expression (47) is carried out in powers of n. After
all calculations we should put n = 1. The parameter 62 in Eq. (48) is a parameter of
variational type. The initial functional (47) certainly does not depend on this parameter.
We may take 6 so as to provide the best approximation with a finite number of VPT
series terms.

It is convenient to define the new parameter by the relation

2
- 4Cs (41r)

g-t. (51)

Here Cs = 4!/(167)? is a constant entering into the Soholev inequality (see, for exam-
ple. [32, 33] and [2])

/dr @' < Cs [/dw(—(?’)w]z-

The parameter t is fixed if we require the contribution of higher order terms of the VPT se-
ries to be minimal. This way of determining a variational parameter called the asymptotic
optimization of VPT series gives the value t = 1.

After expansion in powers of n we obtain that the remainder contains the S[¢] in the
exponential and, consequently, we have a non-Gaussian form of the functional integral.
However, the problem is easily solved by implementing the Fourier transformation. As a
result, the Green function G, in Nth order of VPT takes the following form

G = d _ 20) 2n (02)"—' 9, o
/ a o’ ! exp(—a — 0%a "Z_%r; a Z Tk T7) (52)
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where the functions g5, are ordinary perturbative coefficients for the Green function Gs,.
To calculate them, the standard Feynman diagrams can be used.

It should be stressed that the expansion of expression (52) in powers of the coupling
constant g contains all powers of g. The first N terms of this expansion coincide with N
terms of a perturbative series.

Let us consider the procedure of renormalization. Instead of the field ¢ and coupling
constant g we introduce the bare field ¢o and bare coupling constant go. The field
is connected. with the renormalized field by the relation: @y = Z'/%p. The divergent
constants Z and go are obtained from the VPT expansion. The constant Z can be
calculated by using the propagator G;. We will employ the constant Z in the first order
of the VPT series. From Eq. (52) we find

ZM = I(1) J1(63) + n 65 T(3) Ja(63) , (53)

where we defined

J (8% = [‘(u)/ do o'~ ! exp(—a — a?6?). (54)

The function J,(6?) is normalized by the condition J,(0) = 1. The connected part of the
" four-point Green function in the second order of VPT has the form

65 L'(6)

o T o) - 3 2 us(62) ln— (55)

—GP(u?) = ngo Ju(62) + nz[go

In this expression we wrote out only the divergent part, we need in the following. We
use the renormalization scheme with a symmetric normalization point u? . For the bare
coupling constant go we write down the VPT expansion ¢go = g(1+na+...). The
VPT expansions for 82 and J,(8?) are introduced in a similar manner. The divergent
coefficient « is defined by expressions (53), (55) and the requirement for the function
—Z%G4(p?) being finite. If we change the normalization point 4 — ' and use the
bare coupling constant being independent of u we find the connection between g and ¢’
g = g+ nPB(g)In(u?/u?), where the B-function is expressed as

Jo(6%)/Ja(6?)
1 - 62{[1(6) Jo(67)/(4) Ju(62)] — 2[[(3) J5(67)/I(1) o (62)]}

Bg) =5 4" (36)

Here the parameter 62 is connected with the renormalized couplmg constant g by Eq. (51)
with the optimal value t = 1.

The expansion of B-function (56) in the perturbation series contains all powers of
the coupling constant g. It is interesting to compare the first coefficients of the VPT
3-function (56) with the well-known coefficients of perturbation theory. From Eq. (56)
we get

B(g) =15¢*—2.25¢° + 14.63g* — 134.44° + ... . (57)

In the considered massless case, we use counterterins containing only divergent parts.

In the framework of the dimensional regularization this conforms only to the pole part

for counterterms. Corresponding S-function in the four-loop approximation looks as fol-
lows [34]

Bpert(g) = 1.5g° ~2.83¢° +16.27g* — 135.80¢° + - -- . (58)
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Note that in constructing the S-function (56) we used only the lowest order of VPT.
For this approximation the expressions (57) and (58) are in agreement.

As follows from expression (56), the S-function is monotonously increasing and has
no the ultraviolet stable point. For a large coupling constant, the B-function has the
asymptotic behaviour

3 VT i

A9~ 15 3775 -1

The degree of g in Eq. (59) is larger than the linear increase of the 8-function obtained
in [35], and is smaller than the square increase found in [36].

(59)

4 Quantum chromodynamics

In the case of QCD we will apply the harmonic variational procedure which leads to
a new small expansion parameter. To represent a simple explanation of the basic idea of
the method, let us first make a start with very transparent example.

Toy model. Consider the following integral

W(g) = /_‘: dz exp( - Sz]). (60)

The expression (60) can be considered as the zero-dimensional analog of the ¢*-model.
The function S[z] plays the role of “the action functional”

Slz] = Sofz] + Silz) = 2® + g2*. (61)

In the quantum field theory we can calculate the Gaussian functional integrals. Let us
imagine that in this simple case we have to operate with Gaussian integrals as well. Thus.
we can try to evaluate the quantity (60) by using the Gaussian integrals of the sort

/d:c P(z) exp( —az?) (62)

with some polynomial P(z) of z.

The standard method of calculations is the expansion of the expression exp(—S[z]) in
the power series of the “coupling constant” g. Indeed, in this case, one uses the Gaussian
integrals (62) and obtains the standard asymptotic perturbative series

Wig) = ) w (63)
k=0
with the coefficients
1 [= : .
we = o [ da(~ga")* exp(- Solz]). (64)

Whereas the expansion of the function (60) in the series (63) with coefficient (64) is
unique, the inverse procedure of finding the sum of the series (63) without using additional
information about the function (60) is nonunique. For example, the same series (63) has
also the function W(g) + exp(—1/g) that has different from W(g) asymptotic behavior at
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large values of the coupling constant g. The reason for the incorrectness of the summation
procedure is the asymptotic nature of the perturbative expansion (63). Therefore, the
perturbation series by itself without any additional information about its sum cannot be
used to evaluate the function (60) for sufficiently large values of the coupling constant. Of
course, in this simple case, we know the needed additional information about W(g) and
can apply to the series (63) some method of summation, for example, the Borel method.
But, in the real field theory models, we do not know this information about function that
is represented by functional integral and the problem requires special attention.

The variational perturbation theory approach makes it possible to construct different
expansion for the function (60) and for quantum field models using the Gaussian quadra-
tures. In this section we will demonstrate how the VPT idea allows one to construct a
nonperturbative expansion which is based on a new small expansion parameter. By using
a new split of the action let us rewrite Eq. (61) in the form

S[z] = Solz] + Sils], (65)

where we have introduced a new free action Sy[z] = (~!z? and an action of interaction
Si[z] = gz — (¢! —1)z%. Here ( is an auxiliary parameter of a variational type. Actually,
the original quantity W(g) does not depend on this parameter, therefore, when studying
a finite number of the terms of the series it is possible to choose the variational parameter
on the basis of some principle of optimization [16, 30).

The VPT series for (60) can be written down as follows

- S W, (66)

where the terms of the VPT expansion have the form

= [ dz (=Sl exp(~ Sifa]) (67)

> m/dﬂ: —y:c‘) [( - )zz]"_kexp(—S{,[J;]),

k=0

W,

It is convenient to rewrite the free action as follows
Solel = ¢Mat = (14 k(¢ - 1)) 2? (68)

and set x = 1 after all calculations. In this case, any power of [((~! —1)z?] in Eq. (67) can
be obtained by differentiations with respect to x. The remaining polynomial (—g :c“)k has
the standard perturbative form, therefore, we have a possibility to apply to calculations
the standard diagram technique with modified propagator

1

Tl 4A(CT 1) (69)

For k = 1, one finds A = (.
The terms of the VPT expansion can be written down in the form

9 n-k
W Z1z-k!(“5£) P | (70)
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Table 2: The relative error D(g) = |Wineo(g)/ Wexper(g) — 1|

N 0 1 2 3 4 6 8
C 1.14 2.64 3.56 5.46 6.12 8.71 11.33
D(g=10) % 2.76 4.83 0.26 0.73 | 0.038 | 0.006 | 0.0012
D(g=1000) % | 5.01 6.52 0.56 1.13 | 0.089 | 0.017 | 0.0033

where the coefficients
l 4\ k -1
wy = E/d:c(—g:c ) exp(—:cA x) (71)

are given by the standard diagrams of perturbation theory with the propagator (69).
Consider a structure of the VPT term (70). First of all, note that the differentiation
with respect to parameter & gives the additional factor (1 — ()

m!

1 a\" " oAl
(‘&) Ak=1)=(1-¢" Ak =1). (72)

Secondly, it is easy to see that in this model the number of internal lines (L) in any
diagram (here, all diagrams are vacuum diagrams) equal to the double number of vertices
(V): L =2V. The internal line corresponds to propagator and leads to the factor ¢, and
the vertex gives the factor g. Thus, schematically, one can write down

Wan (g + Q=0 4+ + (1= (gD + 1=, (73)

From (73), we can see that if the value of (1 — ¢) will be proportional to (g(?), the
expression W, will contain the common factor (1 — ¢)". So, let the parameter ¢ obeys to
equation

1-(=Cgc? (74)

with some positive constant C. We see from (74) that for all values of the initial coupling
constant g the new expansion parameter a = 1 — ( obeys the inequality: 0 < ¢ < 1.
The remained parameter C is independent of the value of the coupling constant ¢ and
can be found by different ways. For example, if we consider the first non-trivial order
W (g) = Wo(g) + Wi(g) and use so-called “fastest apparent convergence”, from point
of view of which an absolute value of the last calculated term in the expansion should
be minimal or vanishes, and require that W, = 0, we find ¢ = 3/2. In this case. we
have the approximation W(g) by the expression WM)(g) (with W, = 0) with an accuracy
better than six percent for all interval of g. In particular, at g — 00, the relative error of
approximation is about 5.1%. Similar results can be obtained if one uses the principle of
minimum sensitivity, or a normalization at some “experimental” value W(gp) = Wesper-
If one includes to our consideration the next orders of the VPT expansion we will obtain
a best approximation of W(g).

In Table 2 we can see a dependence of the parameter C' on the order expansion and
the relative error D(g) = |Wineor.(g)/ Wexper.{g) — 1]. Here, to find the parameter C one
makes use of the normalization condition min|W(go) — Woxper.| = min|W (go) — Weyace(g0)]
at go = 1.
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Small expansion parameter in QCD. To explain the basic idea of the method in the case
of QCD, let us first consider the pure Yang-Mills theory. The Lagrangian density has the
form

1 1 1
Lym _Z(Fuu)2 - EgFAw [AM x AV] + Zgz [Al‘ X A")2 + L"!‘ +Lrp.

Lo(A) + g L3(A) + ¢° L(A), (75)

where F,, = 9,A, — 8,A,, Ly and Lpp. are gauge fixing and Faddeev-Popov terms.
The term L3(A) generates the three-gluon and ghost-gluon-ghost vertices. This inter-

action is the Yukawa type interaction. The term L(A) generates the four-gluon vertices.

Let us introduce the x,, field and transform the term Ly(A) to the Yukawa type diagrams

2 .
9 2| _ / {_l 2 .9
exp {z 1 /d:c [A, x A)] } Dy exp 5 /dzx‘w + z\/.z./dzxu.,[A,, X A.,]} . (76)
The action functional can be written in the form

S = So(x) + S(A,x) + S¥ik(4), (77)

where
S(Ax) = 5 [ dzdy A3(@) [D(zy]") ALY) (78)
and the gluon propagator D(z,y|x) in the x—field is defined as
ab
[D7 (@ y1x)], = [~87gubes + 9V 2 ube X + gavge terms| Sz —y).  (79)

The Green functions can be written as

G(-+) = (Gruel- 1)) » (80)
where
Gru(-+Ix) = [ DAL+ exp{i [S(4,0 + ST} , (81)
and
() = [ Dxl+ expiSol)] - (82)

The Green functions Gy (- - - |x) contain only the Yukawa type diagrams appearing
inside the brackets (- - -) with the gluon propagator D(z,y|x). In Fig. 1 (a), the full gauge
propagator is shown. The expansion D(z,y|x) in perturbation theory generates the four-
gluon graphs [Fig. 1 (b)] that are added to the Yukawa diagrams, and in this case we
obtain the standard perturbation expansion {Fig. 1 (c)].

Let us rewrite the Lagrangian in the form

L(A,x) = Lo(A,x)+ Li(A x),
Lo(A,x) = ¢'L(AX) + €' L(x), (83)
Li(Ax) = n[gL¥ik(A) = (¢ - DLAX) - (€ - LK),

where ¢ and £ are the parameters of variational type. The original quantity L(A, x) does
not depend on ¢ and €. Therefore, the freedom in choosing ¢ and £ can be used to improve
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Figure 1: The perturbation expansion of the full gluon propagator by using the x-
transformation. The gluon line with a point corresponds to the function D(x)

the series properties . In the variational perturbation series a new action of interaction
is used for constructing the expansion. It is ciear that if the parameters 0 < { < 1 and
0 < £ < 1, we “strengthen” the new free Lagrangian and, at the same time, “weaken” the
Lagrangian of interaction. After all calculations we put 4 = 1. This parameter will be
also written in the propagator D{z,y|x) in the combination with the coupling constant.
The VPT series for the Green function is given by

G(--) = Y Gal
Ga(--) = ;1-, " /DxDA[---][iS,(A,x)]"exp [ So(A,Y)] (84)
F ) . 1 "uk.
= (in) gm/DXDA[“'][g»;'A}(A)]k

(¢ = 1)S(A,x) + (€ = 1S0]" exp [ Sol A1) -
We redefine the Lo A, x) for convenience of calculations as follows:
Lo(A x) = Lo(A,x) = [1+ &(C7 = DIL(A, x) + [1 + w(€7 - 1)]L(x). (85)
In this case, any power of [({~! — 1)S(A4,x) + (67! = 1)5(x)] in (84) can be obtained
by the corresponding number of differentiation of the expression expfiSy(A, x,x)] with

respect to x. After all calculations we set x = 1.
From Egs. (84) and (85) we have

n a n-k
= 2_: (n _ k)'( 0_u) (gk(ﬁ')) ) (86)
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where the functions

oule) = = [ DAL-[g Yt exp [iL 4wt - 1) [de LA} (8D)

correspond to the Yukawa diagrams of the Yang-Mills theory with gluon propagator

1

Ty D(z,y|x) = (D(z,ylx)

for k = 1. The propagator of x-field includes the factor [1 4 x(¢~! —1)]”" transformed
into £ for k = 1.

The operator of differentiation (—8/8x)'/I! leads to the factor (1 — () for the gluon
propagator and (1 — €)' for the propagator of the x-field.

It is easy to verify that the Nth order of the VPT series contains the Nth order of a
perturbation series with the correction O( g"*!), therefore, the VPT expansion does not
contradict the perturbative results obtained for the small coupling constant.

The diagrams corresponding to the new expansion of the full gluon propagator are
shown in Fig. 2. The gluon line with slash signifies the differentiation over x and contains
the factor (1 — ¢). If this line arises due to the x-field propagator, the corresponding
factor is (1 — €).

e m
+n2[+++—©—+—(:>—+—(L]
T PR g S g S
DO R ¢ SRV

Figure 2: The diagrams for the VPT expansion of the full gluon propagator

The outline of the VPT expansion structure can be written as

1490 =0+ 0 [(1 =0 + & + ¢%¢] (88)
+ P 0-O0*+FCU -0+ -+ g1 -]+
The construction of expansions for the Green functions corresponding to three-, four-
gluon, ghost-gluon-ghost vertices are introduced in similar manner.

If we choose ¢ = (3 and (1 — ¢)* = CA¢3, where C is a positive constant, we obtain that
the nth order term of our series contains the factor (1 — ¢)" and the expansion parameter
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a = (1 — () < 1 for all values of the initial coupling constant. Now, one can perform the
renormalization procedure and define the renormalization constants of a power series of
a [19, 20].

Consider the connection between the perturbative and nonperturba.tnve regimes of the
running coupling constant a,(Q?). To fix the parameter C' we will use nonperturbative
information from meson spectroscopy and derive o,(Q?) in the perturbative region at
large Q%. In other words, we will find the connection between the universal tension ¢
in the linear part of the quark-antiquark static potential Vj,(r) = or, which can be
determined from meson spectroscopy, and the description of high energy physics. If,
as usual, we assume that the quark potential in momentum space can be written as
V(q®) = —16ma,(q?)/3¢%, where a,(q?) describes both large and small momentum, and
that a,(¢?) has the singular infrared asymptotics a,(g?) ~ ¢~2, we obtain, by taking
the three-dimensional Fourier transform, the large-distance linear potential in coordinate
space. The corresponding singular infrared behaviour of A = a,/(47) conforms to the
asymptotics of the S-function: B(A) — —A for a large coupling constant.

_In the framework of. this approach consider the functions ﬁ(Z) B, 3@ and 39 that
are obtained if we take into consideration the terms O(a?), O(a®), O(a*) and O(a®) in
the corresponding renormalization constant Zy. As has been shown [20], the values of
—B%(X)/ A as functions of the coupling constant for parameters C; = 0.977, C; = 4.1,
Cy = 104 and C5 = 21.5 go to 1 at sufficiently large A. The increase of C), with the order
of the expansion is explained by the necessity to compensate the high order contribution.
A similar situation takes place also in zero- and one-dimensional models. The behaviour of
the functions — B*}(1)/A gives evidence for the convergence of the results, in accordance
with the phenomenon of induced convergence. At large coupling, — 3*)(A)/X =~ 1, which
corresponds to a,(Q?) ~ @2 at small Q2.

The value of the.coefficient & in the linear part of the quark-antiquark static potential
Viin(r) = or is 0 =~ 0.15 + 0.20 GeV?. At a small value of Q? the corresponding behaviour
of a,(Q?) is a,(Q?) ~ 30/2Q*. Here we will use this equation at a certain normalization
point Qo and the value ¢ = 0.1768 GeV? which has been obtained in [37].

The renormalization group method gives an equation for the Q%evolution of the ex-
pansion parameter a = a(Q?) [19, 20]. In an appropriate region of the momentum, the
value of 0(Q?) = 2/3Q%a,(Q?) is almost independent of the choice of Qo and lies in the
interval 0.15 + 0.20 GeV2. This result agrees with the phenomenology of meson spec-
troscopy. Thus, we have found all the parameters and can now consider the behaviour of
the effective coupling constant at large Q?. For example, we find aeg(mz) = 0.126. It
should be stressed that we have obtained this result by evolution of the effective coupling
starting from a very low energy scale. Taking into account this fact the value of aeg(mz)
obtained in such a way seems to be quite reasonable.

5- Conclusion

We have considered an approach to quantum field theory - the method of variational
perturbation theory. The original action functional is rewritten using some variational
addition and an expansion in the effective interaction is made. Therefore. in contrast to
many nonperturbative approaches, in the VPT the quantity under consideration from the
very beginning is written in the form of a series which makes it possible to calculate the
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needed corrections. The VPT method thereby allows for the possibility of determining
the degree to which the principal contribution found variationally using some variational
principle adequately reflects the problem in question and determining the region of ap-
plicability of the results obtained.

The possibility of performing calculations using this approach is based on the fact that
the VPT, like standard perturbation theory, uses only Gaussian functional quadratures.
Here, of course, the VPT series possesses a different structure and, in addition, some
of the Feynman rules are modified at the level of the propagators and vertices. The
form of diagrams themselves does not change, which is very important technically. The
diagrams contributing to the Nth order of the VPT expansion are of the same form as
those contributing to the Nth order of ordinary perturbation theory.

The variational parameters arising in the VPT method allow the convergence proper-
ties of the VPT series to be controlled. In (12, 16] it has been shown that in the case of
the anharmonic variational procedure for the scalar ¢* model there is a finite region of
parameter values in which the VPT series converges for all positive values of the coupling
constant. For the harmonic variational procedure there are indications that VPT series
can be also converged on the sense of the so-called induced convergence, by fine-tuning the
variational parameters from order to order. Note also, that a possibility of constructing
Leibnitz series in field models is interesting, because, in this case, the first few terms of the
series can be used to obtain two-sided estimates of the sum of the series, and existence of
variational parameters makes it possible to narrow these estimates the maximum amount
in a given order of VPT (see [30}]).

Here, we have considered the application of the method to quantum chromodynamics,
where the VPT idea leads to an expansion with a new small expansion parameter. This
parameter obeys an equation whose solution is always smaller than unity for any value
of the coupling constant. Therefore, while remaining within the limits of applicability of
this expansion it is possible to deal with considerably lower energies than in the case of
perturbation theory. An important feature of this approach is the fact that for sufficiently
small value of the running coupling constant a, it reproduces perturbative predictions.
Therefore, all the high-energy physics is preserved in the VPT method. In going to lower
energies, where standard perturbation theory ceases to be valid, &, ~ 1, the VPT running
expansion parameter @ remains small and we do not find ourselves outside the region of
applicability of the method.

This work is supported in part by Russian Foundation for Basis Research, grant No.
99-02-17727.
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