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Abstract

By use of nonperturbative procedure it is shown that effect of dimensional re-
duction from four.dimensions to three dimensions arises in quantum field theory at
high temperature. High temperature limit of QCD is considered. It is shown that
the effective theory is not just Euclidean QC D, with a new coupling constant gv/T,
but the term with chemical potential g = 27T, corresponding to the large fermion
density, arises in the effective action. Due to this gluon acquires the "electric” mass
proportional to the chemical potential and the phenomenon of quark deconfinement
occurs.

One of the most remarkable and amazing future of finite-temperature field theory
(FTFT) discovered long time ago {1-5] is its so-called "dimensional reduction” in high
(infinite) temperature limit into 3-dimensional Euclidean field theory. The usual, pure
perturbative, consideration gives rise to conclusion that at T — oo fermions completely
decouple and only bosons with nontrivial selfinteraction survive composing the three-
dimensional theory. Let us remind these arguments.

In the imaginary time formalism of FTFT, the four-momentum P is replaced by
(wn, P), where w, = (r/ —if)x even (odd) integer for bosons (fermions). The zero
temperature integration measure [ d*k/(2r)%s replaced by %Z;‘;_w J (—gi')‘—,. The usual
basis for the assertion that T — oo limit of a field theory is equivalent to a dimensional
reduction is the following: a one-loop graph with a boson in the loop is proportional to

i Bk :
2
ig'T 3 / (27)3 —4n2n2T? — 52 — m?’

n=-0oo

which is suppressed at high temperature unless we pick n = 0 mode in the sum. The last
expression then becomes
T / Sk 1
(273 P + m?’
and with the definition A> = g?T', we obtain effectively the integral we would have written
for an Euclidean theory in three dimensions with a dimensionful coupling constant gv/T.
The case of fermions, however, is different in that no mode in the sum survives at large
T. Thus, we make conclusion that fermions decouple. In the case of gauge fields, the
temporal component Ag acquires an (electric) mass {3] g27" which screens it from the low
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energy sector. Thus the T — oo limit of a 4D theory of fermions interacting with gauge
fields appears to be a 3D theory of gauge fields only:

Sej! = %‘/daxtrFijF;j.

While all these arguments are quick and simple they may be physically inadequate.
Indeed, such "naive” diagram into diagram reduction does not account for initial four-
dimensional divergences at all? and it is absolutely unclear how initial renormalizable
theory transforms into superrenormalizable at dimensional reduction. The attempts to
start with renormalized up to some order theory and account for appropriate counterterms
[6] destroy this simple picture of dimensional reduction and make it vague and obscure.
On the other hand, there exist indications that fermions do not entirely decouple and
contribute in the effective action if we consider essentially nonperturbative by their nature
effects such as, for example, topological Chern-Simons term generation at finite density
and temperature {7,8].

All these circumstances inspire us to look for some trustful nonperturbative procedure
to study such subtle phenomenon as dimensional reduction.

Let us first consider the simplest example of a thermal system described by a field
theory-thermodynamics of a scalar field theory with the Hamiltonian

_ l 2, 1= 5, m,
H= [ Ealon® + 5(T0) + S0 + V(o)) (1)

Consider the partition function which, by definition, is
Z=trePH, (2)

To calculate trace we choose as the basis states the eigenfunctions of Schrodinder-
picture field operator $(Z) = @(Z,0) : @3(Z)|p) = »(Z)|p). Then the partition function
looks as

z = [T1de(@)el i), (3)
z

where the integration measure [] dp(Z) is a product® over the fields ¢ at all spatial coor-
#

dinates Z.

If B is not restricted and takes arbitrary values we would fulfill familiar procedure
of splitting interval [0, 3] .into N(N — o0) small intervals 8/N and then, performing
the famous "Feynman trick” (see, for example [9]) would derive the usual path integral
representation for the partition function

]
. . —fdt[ﬂb-—H(r,w)]
Z= / [Tide(t, £)ldn(t,5) e ° , (4)
w(0)=¢(0) %

Let us remind that temperature (as well as chemical potential) does not influence the divergences
and they are the same in FTFT as in the ordinary four-dimensional field theory.

3As usual, we correctly define with product on a finite spatial lattice considered as a regularization.
Then this product involves a finite number of spatial coordinates and mathematically well defined.
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which, after integration over momentum and analytic continuation of fields ¢ from interval
0 <t < B:¢(0) = ¢(B) to periodic in "time” ¢ functions ¢(t + nf, T) = (¢, T), reads

Z=N(@) / Tlide(t, )] 'fdtfd:LE(lf)' 5)

periodic t,Z

where Lg is four-dimensional Euclidean lagrangian

Lg(t,7) = utpamp + —2—¢ +Viel, (6)

N(B) is S-dependent normalization factor which is relevant only for ideal gas contribution
[3,9].

Namely Eq.(5) which already contains the whole four-dimensional divergences and
requires the respective renormalizations is the starting point for described above stan-
dard perturbative exploring of dimensional reduction phenomenon at high temperature.
However, remember that the basic definition of partition function is Eq.(2), not (5) !
To obtain secondary Eq.(5) we have to split interval {0, 0], regarding as an arbitrary
one, into the set of infinitely small intervals and then to perform the Feyuman trick.
The question arises what for we must do it when the value 3 we are interested about
is infinitely small from the very beginning? Indeed, it seems to be rather illogical to
construct at first the functional integral over “time” variable, containing needless for
our high temperature task information and then, when we already unlucky have earned
on the way the divergences (which, as we will see below, just absent in original, pure
three-dimensional by its nature, high temperature task) to descent back to the small 8
interval and to struggle with that needless divergences. Thus, our main statement is that
in the case when # = 1/T is the (infinitely) small value we need not split interval
[0, 8] at all, regarding (2), (3) as the starting point. One gets immediately*

(v] e PHED0) = (n|1 - BH(#,5) + O(B%)|p) = PHoHi[Exx@eld 4 o(p?). ()

To derive (7) we have used the expression

(plm) = exp [i [ fom(@)p(a)] ®)
for the overlap of eigenstates |7) and |p)
(D)) = plz)lp); #(T)|m) = n(Z)|), (9)

where the Schrodinger-picture field operator ¢(Z) and its conjugate momentum (%)
satisfy the (equal to zero time) commutation relations

[6(2), #(Z)] = i6®NF - ).

Now, inserting once the full set of states |r)

[ Hien(@imyn = 1 (10)

4This is the main element in the Feynman trick leading to (5), where infinitely small value ¢ =
3N (N = ) plays the role of 3 in our case.
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in (3) and using (8)—(10)we easily find in the leading in 3 order
Z= / [[ide(Z)dn(£)] e #HIml, (11)
i

where Hamiltonian H[m,)] is given by Eq.(1), in which operators # and ¢ are replaced
with c-number variables of integration.

To proceed let as note that majority of physical measurable quantities are expressed
in terms of thermal expectation values (O) = Tr e -pH O/ Tr ePH, where O is any
operator and therefore do not depend upon the extra measure factors because they are
canceled between numerator and denominator. On the other hand, nontrivial, arising from
interaction part of thermodynamic potential, does not depend on these measure factors
too. Indeed, if we divide thermodynamic potential @ = —(1/8V)In Z in two parts =
Qo+ Qy, where € is an ideal gas contribution and §; is a part arising due to interaction,
then the expression for interaction part reads e™#V®¥ = Z/Z, = tr( e PH)/ tr( e=FHo)
and does not depend on measure factors (like N(B) in (5)). So, now and then we will
not pay any attention to such measure factors and will use, where it is necessary, symbol
~ instead of exact equality symbol, implying equality up to unessential normalization
multiple.

Returning to Eq.(11) we choose, for definiteness, potential V[y] in the form®

Viel = go". (12)
Performing Gaussian integration over momentum in (11) and by rescaling field ¢(Z):
P(2) = »7%0() (13)

we get eventually
. _gld=3)
zx [Tlde(@) e Lo, (14)
where

. 2
SE=e) = [ Ealy(Ge) + et + (g8 13)

is three-dimensional Euclidean action for Ap"V-theory with a new coupling constant A =
gB'*~N/2 In particular, when we study high temperature limit of gyp*-theory with di-
mensionless coupling constant g we have A = gv/T which coincide with ¢ prediction of
"naive” perturbative arguments given above. However, our nonperturbative analysis does
not suffer of questions which arise in perturbative consideration, in particular, what to do
with four-dimensional divergences. Our procedure clearly shows that high-temperature
task is three-dimensional from the very beginning.

Let us now include the fermions into consideration. Most field theories with fermi-
ons contain both fermions and bosons. Though our procedure is suitable for any such

SN = 3,4,6 for the most popular scalar models.
SNote that in the contrary to our approach, the perturbative analysis makes sense only in this case,
when dimensionless expansion parameter exists in the theory.
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theory,” we concentrate our attention on Quantum Chromodynamics for its great physical
significance. Lagrangian has standard form

1 . A ;
= _ZF:"F:U + (40, — ng-A“)tb — My,
The partition function 2 )
Z= TrePH

may be written in the form

Z= sp{ tr [e"’(ﬁ"”(“o)*ﬁ"‘('zo))] (16)

]
physical stules}

where symbol tr denotes the trace operation over physical gauge field (gluon) states,
symbol sp denotes the trace over fermion (quark) states, H.,, is the _part of the whole
Hamiltonian corresponding to the quarks in external gluon field and Hy s is the part of
H containing only the gluon field operators and their conjugate momenta.

To proceed we must choose any appropriate gauge condition. The most convenient
for us occures the ghost free axial gauge

A% =0. (17)
Since the Gauss’s law constraint

D¥rt —p,=0 (i=1,2,3), (18)
where D% = §,,0, — fabe AL, pa = J§ = gd}yo%:z/), has the solution

1
7I':;l = b; (—Dj_bﬂ"i + Pa) (-L= 172), (lg)

the Hamiltonian, under gauge condition (17), may be expressed entirely in terms of inde-
pendent dynamical variables A, 7, as

Honye = By + HII, (20)
where
AP = Hol* 45 AL) = / Pdth(AL)d, (21)
with the notation
h(As) = —irwma (2, - igy-AL) + Mo (22)

"The only restriction is that the system must be isolated, i.e. its Hamiltonian must be independent
of time and one could regard field operators in the Hamiltonian as the Schrodinger picture operators.
Thus, we cannot, for example, just consider fermions in external classical gauge field as an independent
task and must deal with a full system.

8The proper space lattice regularization for the Schroéinger picture fermion and gauge field operators
is asumed.
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and

(23)

15t 45

thys = H A ’1} =/d3~[ Aa~a+ FaFu] .
YM[ L l] ’rg___aa—l(_Dib.”:,’_pa)

We can now to perform tr operation in (16). By use of the eigenstates |A}(Z)) = |Ay)
of Schrodinger-picture gauge field operators At 1 (Z) as the basis states, we get

Z = sp {/HdAi(f)(A.Ll e—B[HYM(AL,nHH.,,[Jﬁ,vi;,i;]|Al)} ) (24)
Z,a

9

Operating now as well as in the considered above scalar case ® we easily obtain

7 = /HdAa )dn3 (£) e=PHymlArmi) op [e—BHm(']I".J':AL)] . (25)

The only remaining procedure we have to do now is to evaluate the trace over fermion
states and one can see that we deal just with fermions in the stationary external gauge
field A3 (Z).

So, we deal with the Hamiltonian (21), in which the Schrédinger picture fermion field
operators 9, ¥* satisfy the anticommutation relations

[t/)a(f) ba(¥)] = 0 (26)
[d’a 1/’3’(5)] 6005(5 - g)’

where a denotes the full set of quark quantum numbers (coloures, flavours and spinor
indices).

We can, certainly, determine sp operation in (25) in the basis of the quark (antiquark)
occupation numbers:

p e et = {2;<{n}| e ?est| (n}). (27)

However, the occupation numbers basis represenation is not convenient for the practical
use. Much more convenient and natural in the fermion case is the coherent states rep-
resentation [9,10]. The coherent states are labeled by anticommuting!® ¢ numbers n and
are defined as

[{n}) = [T e ™@%@j0), ({*}] = <o1ne-%‘f’" 2@, (28)

o

The basic properties of the coherent states are

balE{n}) = ma(@HnY), {0 HH(E) = ({n*}Ind(2); (29)

9What concerns the term }#§n§ with #$ given by (19} in the Hamiltonian considered as the quantum
operator, we, as usual, must resolve uncertainty in the ordering of quanum operators at quantization
procedure and take this term in "normal form” (i.e. when the whole coordinate operators are placed on
the right to their conjugate momenta).

1%They anticommute also with quark fields operators.




(nt Hin}) = e (30)
and the completeness relation
[ Br* Do el {nhEn*H = 1, (31)
where we have used the short notation
¥ [ fana(@nd(#) =m*, [dna(#) = Dn. (32)
a o

We need also in two auxiliary identities!'!:

{nH At HHn}) = (=7 H{nD{nl{n}) = (A H{nD{n}{-2})  (33)

and
[ Dt Dt Ni-nd) €™ F ({0} 7)) = F ({0} {=n}) (34)
By use of (31),(33) and the completeness relation

Y Hnh{n} =1
)

we easily obtain instead of (27) the equation
spe~tor = [ Byt By e { [ B Bact Hi-nh) € (¥} e Peiiah) ). (39)

Using now the identity (34) we get eventually the expression for sp e~PHest i the coherent
states representation

sp e™PHert = /1377*1371 e ({5t} e ewt| {=7}). (36)

Notice that the appearance of minus sign in r.h.s. of Eq.(36) is the crucial circumstance.
Namely this gives rise to the antiperiodicity in imaginary time of the fermion variables
in the standard functional integral for an arbitrary temperatures [9,10). As we will see
below, the appearance of €™ in r.h.s. of (36) is also very important for us.

Now we are ready to repeat the trick we have performed in the case of the scalar field
theory. Expanding e™#Hest in powers of § and using Egs. (21), (29) and (30) we obtain
in the leading order in 3

({n*}] e PHesdS" Sl {—n})

Y= 8 [ & d*ha b+ OB (=n})

= fHenlntmdi}-nta (37)
Substituting this in Eq.(36) we get the final expression for sp e Bl

sp e-aﬂcu = / 577+ 57] e[’"ud’ﬁ 2 i ALl¥ 2t . (38)

11The detailed proof of Eqs.(29)-(34) one can find in review article {9]
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Returning now to Eq.(25) for the partition function, we can rewrite it as
Z= / (Dy* Dy)[DA, Do)

exp { -8 [Hm(Al, ™) = Hea(W*, 95 A1) - 267" [ &2 ¢+¢]} : (39)

where Hyp(Ay,7.) andH,.o(%,4; A,) are given by Egs. (21), (23) with the replace-
ment of the operators by the respective ¢ numbers and anticommuting ¢ numbers.

By use of the functional é-functions: §[Ag] = 1z, 6(A43()), 8[ns — 85 (- D21 + p,)]
corresponding to the axial gauge (17) and Gauss’s law constraint (18), using the identity

Dini — pa)(£)
om3(7)

8lm3 — 051 (=D} + pa)) 8[D5*m; ~ pa]

Ag =0

= det ’ IJ(
A3=0

Ag=0

and omitting the irrelevant constant

§(Di°m — pa)(E)
om3(4)

we can rewrite Eq.(39) in the form

det = det

A%=0

0
5Bz _
56"6135 (.‘L‘ -'7)”’

Z= / [Dy* Dy)[DAL DAy D, Drs]8[ D xb — p,]6[A2] exp{ -8 / &Pz [%w.’-’w}‘
FIFSEL+ (@ = io 4D — s - 257wy] L (o)
We now represent §[D#*r? — p,] in the functional integral form
5[Ds*n — pu] = [ BAgexp [—i [ &z a3 (Dstat - p,,)]
and perform the Gaussian integration over momenta. Then, upon identifying Euclidean

gauge variables as A3 = —;42M) AYE) = — A2M) (m = 1,2,3) and the Euclidean ~
matrixes as 1& = iy}, so that

¥ =9ty = —ig*f = —ipty,
we easily obtain
Z = [Dabebasiien-g [ &z (30450 + ot a5
+ Z(BANE) - BA%E) + oL D AR +
D@0 - i A2E) - M + g0y 43(2) - w-‘]w(f)] } (41)
where

Dy =[] va(#), DA = [] A%a).
o r

wa
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By the fields rescailing
AY(E) = BRAL(E), ¥(2) (B(F)) — B/*%(2) ($(2))

we get eventually

Z= / Dy Dy DASAY) exp{ - / Pz [ZF;,(z)F;u(f) +

o [  am1/2 A% oy A ar cop=tlgs
B3 [i1u(8, — § 87 L ANE)) - M+ gr07 AY(E) — i28 ‘]¢(z)] } (42)
where

Fi,(F) = 8,A3(F) — 0,ALE) + g87” furc AL(D)AL(E). .

Let us now discuss the obtained result. First, one can see that we get in high temper-

ature limit the effective three-dimensional Euclidean theory with a new coupling constant
) = gVT and the fermions do not decouple in the partition function.'? However, this is
not just standard Euclidean QC D;. The new term :

—1(287") p(2)(%) = ~(2T) ¥*(2)¥(3)

arises in the effective Lagrangian, which corresponds to the chemical potential u = 2T
appearance! This is rather amazing result, because we considered the case of zero fermion
density from the very beginning and, as it seems at first glance, the temperature and
fermion density are not connected with each other at all.

The fact that high temperature transforms into large chemical potential in the effec-
tive action leads to a lot of physical consequences. One of them is that we at once may
nonperturbatively argue that at sufficiently high temperature QC D definitely loses con-
finement. Indeed, as is well known, the presence of large fermion density at once '3 gives
rise to generation of the "electric” gauge particle mass m ( the nonperurbative proof was
first presented by Fradkin in @ED [11]) which is proportional to the chemical potential:

My ~ U

This immediately leads to the quark deconfinement because the electric mass implies that

the correlation function of the timelike component of gluon field behaves at large distances
as

(Ao(£)Aa(§)) ~ e ™I, (|F ] = o)
that, in turn, means that the heavy quark potential includes exponential
V(R)~ e ™R as R - o0

which suppresses any polinomial in R and transforms the force into the shortrange one.

12Really, the situation with fermions is more subtle and essentially depends on the quantum field
objects under consideration. The fermions do not always survive in the cffective theory. So, for example,
it is possible to show that the full fermion propagator equals zero in the infinite temperature limit, which
is in agreement with the perturbative analysis. These questions will be discussed elsewhere.

13n the contrary to the high temperature case, when high loop perturbative calculations of m, are
performed in the standard approach which, however, are unreliable when we study such essentially non-
perturbative phenomenon as confinement.
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