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Inonu—Wigner contractions from the rotation group O(n+1) to the Euclidean
group E(n) are used to relate the separation of variables in Laplace-Beltrami
operators on n-dimensional spheres and Euclidean spaces, respectively. In this
article we consider all subgroup type coordinates corresponding to different chains
of subgroups of O(n+1) and E(n), respectively. In particular, the contractions
relate the graphical formalism of ‘‘trees’’ on spheres to the *‘clusters’’ on Euclid-
ean spaces (introduced in this article). The contractions are considered analytically
on several levels: the vector fields realizing the Lie algebras, the complete sets of
commuting operators characterizing separable coordinate systems, the coordinate
systems themselves and the separated eigenfunctions. © 1999 American Institute
of Physics. [S0022-2488(99)04102-X]

l. INTRODUCTION

Our purpose in this article is to use Lie algebra contractions to relate the separation of
variables in Helmholtz equations on n-dimensional spheres S, and on the Euclidean spaces E, .
An earlier article! was devoted to the case n=2. It was shown that spherical coordinates on S, can
be contracted either to polar or Cartesian ones on E,. Elliptic coordinates on S, were contracted
to elliptic, parabolic and Cartesian ones on E,.

The more complicated case of contractions from a two-dimensional Lorentzian hyperboloid
H, to E, has also been studied.?

Here we are interested in the case of S,, for arbitrary n, but will only consider the simplest
types of coordinates, the so-called subgroup type coordinates.>-® For S, these are polyspherical
coordinates introduced by Vilenkin®!® and described by the ‘‘method of trees.”” *~!3 Trees, or
*“clusters’” can, of course, also be introduced to describe subgroup type coordinates in E »» and we
shall show how “‘trees’” on S, are related to *‘clusters’” on E, via the group contraction O(n
+1)—E(n).

At least two definitions of Lie algebra contractions exist in the literature. The original Inonii—
Wigner contractions'"!® can be viewed as singular changes of bases. The more recent *‘graded
contractions’ '~ are obtained as deformations of the original Lie algebra via modifications of
the commutation relations, preserving a given grading of the Lie algebra. In many cases, though
not all, the two concepts are equivalent.” In particular, the contractions considered in this article
are simultaneously Inonii-Wigner and Z,-graded ones.

Our main tool for dealing with contractions is the concept of *‘analytic contractions,” already
introduced in Ref. 1. The generators of the original Lie algebra, in our case o(n+ 1), are written
as differential operators, involving the contraction parameters, in our case the radius R of the
sphere. The parametrization must be such that in the contraction limit, in which the o(n+1)
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algebra contracts to the e(n) one, the generators themselves as differential operators, contract into
generators of e(n).

As a motivation for this study we mention, first of all, the theory of special functions. Indeed
contractions relate two different groups and their homogeneous spaces. They relate separable
coordinates in these two spaces, the separated equations and their solutions. The contractions will
thus, in particular, provide asymptotic formulas and other relations between special functions.

Other applications concern the relations between integrable systems in different spaces, in
particular, on spheres S, and Euclidean spaces E,, . Indeed, each separable system can be extended
by adding a potential that allows separation. The corresponding Hamiltonian systems will be
integrable both on §, and E,,, since they will also have n integrals of motion in involution. Again,
the contractions relate the S, and E, integrable systems and their solutions.

In Sec. Il we review some known results on the method of trees for S, .°'> We introduce
O(n) subgroup diagrams and relate them to the trec diagrams. Section III is devoted to the
separation of variables in Euclidean spaces E, . We introduce E(n) subgroup diagrams, E, *‘clus-
ter’’ diagrams, and relate the two. Beltrami coordinates are used in Sec. IV to introduce the radius
of the sphere into the expressions for the elements of the o(n+ 1) Lie algebras. This provides the
tools for an analytical realization of the Lie algebra contraction o(n+ 1)—e(n). The contraction
of the coordinate systems and the complete sets of commuting operators is presented in Sec. V.
Finally, the asymptotic formulas representing contractions of the solutions of the Laplace-
Beltrami equation on S, to those of the Helmholtz equation on E, are presented in Sec. VL

Il. SUBGROUP TYPE COORDINATES AND THE METHOD OF TREES

A. Subgroups of Lie groups and separable coordinates

We shall make use of an algebraic approach to separating variables in Helmholtz (and
Hamilton-Jacobi) equations in Riemannian and pseudo-Riemannian spaces that are homogeneous
spaces for some Lie group G.3-8

The equation that we are interested in can be written as

1 4 i d
ALBW:E\I,, ALB=-\/?§‘§_,\/Eg ‘é?’, g=|detg”|, (2.1)
where g;; is the metric tensor written in the considered coordinates ;. The space M can be
identified with some factor space M ~G/G,, where G, is the isotropy group of the origin.
The separated solutions of Eq. (2.1) are simultaneous eigenfunctions of some complete set of
n commuting operators Y, (including the Laplace—Beltrami operator). We thus have

Y. ¥=AY, =[] WA A0\ 2.2)
i=1

The operators Y, are second order operators in the enveloping algebra of the Lie algebra of
the isometry group G. Thus we have a Lie algebra L with basis L~{X,,...,X} and put

Y,=A%X.X,, [Y..Y,]=0, A%=AL; a=12,..n. (2.3)

The commuting sets of operators {Y,,...,Y,} can be classified into conjugacy classes under
the action of the group G. Mutually conjugate sets provide equivalent systems of coordinates,
transformed amongst each other by the group G.

A classification of the sets {Y,} provides a classification of coordinate systems. The essential
properties of the coordinate systems are related to properties of the operators Y,. In particular,
ignorable coordinates®* ¢ (i.e., coordinates that do not figure in the metric tensor g;) are asso-
ciated with operators Y; that are squares of elements of the Lie algebra,
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N 2 32
Yj:{zl aj,,Xk] ='a_a’f. (24)

Hence, maximal Abelian subalgebraszs'31

variables.

Particularly simple coordinate systems are obtained if all operators Y, in a given set are either
squares of elements in the Lie algebra L, as in Eq. (2.4), or Casimir operators of subalgebras of L.
Such coordinate systems have been called subgroup type coordinates.® Thus, consider a chain of
subalgebras,

of the algebra L will provide maximal sets of ignorable

LDL}DLza"'DLM, (25)

such that each subalgebra L; has at least one second order Casimir operator (second order operator
in the center of the enveloping algebra of L;). Subgroup type coordinates are obtained if the chain
of subalgebras provides n linearly independent second order operators. They will automatically
commute amongst each other.

In this article we restrict our attention to subgroup type coordinates on spheres S, and Eu-
clidean spaces E,. We mention that on S, precisely two types of separable coordinates exist.
Spherical coordinates are subgroup type, the subgroup chain being 0(3)2 0(2). Elliptic coordi-
nates are not of the subgroup type. On S5, six separable coordinate systems exist,**>** two of
them of the subgroup type, corresponding to the chain 0(4)20(3)20(2) and 0O(4)D0(2)
®0(2), respectively. For E,, three out of eleven separable coordinate systems are of the sub-
group type: Cartesian, cylindrical and spherical.

A graphical method, called the ‘‘method of trees,”’ has been developed to treat subgroup type
coordinates on real and complex spheres.’~!> We will reproduce some of the relevant results for
real spheres §, in the following subsection, and then extend them to analyze subgroup type
coordinates on E, . Moreover, we will connect the tree diagrams with subgroup diagrams, intro-
duced below.

B. Subgroup type coordinates on S, and the method of trees

Let us consider the Lie algebra o(n+1) and use the standard basis of operators on S, :
L= (ui0;— urd;);
[Lij,L.;]=—g8jsLir—8irLjst&jiLis+8isLjr, O0<i,k,j,r,s<n. (2.6)
Let us now consider the defining representation of o(n+1) by matrices
XeRM*D+D) - ¥Tyx=0, 2.7)

acting on the space R+, Maximal reducibly imbedded subalgebras of o(n+1) will leave
some vector subspace of R" invariant, All subalgebras of this type have the form

o(n+1)Do(n)®o(ny), ni+ny=n+1, n=n,=2, or o(n+1)Do(n). (2.8

Maximal irreducibly imbedded subalgebras also exist, e.g., u(n)Co(2n) or g,Co(7), but they
will not be needed here.

Chains of mutually maximally imbedded subalgebras are obtained by further splitting o(n,)
and o(n,) into pairs of algebras, until we end the chain with one-dimensional subalgebras 0(2)
[we drop all the o(1)~{0} algebras]. We shall describe subalgebra chains by subalgebra diagrams
(or equivalently subgroup diagrams). Each O(k) subgroup is represented by a circle with the
corresponding number & in it. All subgroup diagrams of this type are shown in Fig. 1 for n<5.
Their recursive character is obvious: different subgroup diagrams for a given O(n) correspond to
different flags of invariant subspaces of R.
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No. Subgroup chain Subgroup diagram Tree diagram

2 0@ ©)

2
3 0(3)>00)

OO @O

uo\/ul
u°\<"/‘
Yo U U U3
41 0(4) > 0(3) > 0(2) W
Up Uy Uz u3
42 0(4)>0(2)®0(2) @\@/® \Q
@
Up U U2 U3 Uy
®
51 O(5)>0(4)>0(3)>0(2
0
®
@ e Ug Uy Ug U3 Uy
- 52 0(5)>0(4)>0(2)®0(2)
®

7

U Uy Uz Uy

s

53 0(5) > 0(3)®0(2) > 02)

@Q@

FIG. 1. Subgroup and tree diagrams for S, .

The subgroup diagrams are closely related to the tree diagrams of Vilenkin,>'® describing
polyspherical coordinates on S,. In Fig. 1 we associate a tree diagram with each subgroup
diagram for 2<n=35. Families of different, but topologically equivalent, trees are associated with
the same subgroup diagram. They are obtained either by permuting the end points, corresponding
to the coordinates, or, equivalently, by rotating branches around branching points on the tree. All
different trees, including equivalent ones, are shown for S,, §3, S, in Fig. 2.

The tree diagrams are best described in the original article’ and the book." Together with the
subgroup diagrams described above, they provide a tool for writing coordinates on S,,, complete
sets of commuting operators and their eigenvalues and separated solutions of the Helmholtz
equation. ‘

Let us recall some basic facts here, using the example of a specific tree, namely that in Fig. 3
for S;. In Fig. 3(a) we give the corresponding O(8) subgroup diagram. The actual S, tree is in
Fig. 3(b). Figures 3(c) and 3(d) refer to the E(7) group and E; space (after contraction) and will
be used below.

Each end point on the tree of Fig. 3(b) corresponds to a Cartesian coordinate in the ambient
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FIG. 2. Equivalent tree diagrams corresponding to one subgroup diagram for S n -
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FIG. 3. Examples: An O(8) subgroup diagram (3a) and the corresponding S, tree diagram (3b). An E(7) subgroup
diagram (3c) and the comresponding E, cluster diagram.

space R 8. At each branching point we introduce an angle 6;. We move along the tree from the
ground upwards to a specific coordinate u;. At each branching point we write cos 6, if we go to
the left, sin 6, if we go to the right. The polyspherical coordinates corresponding to Fig. 3(b) hence
are

uo=R cos 0, cos 0, cos 63, uy=R sin 8, cos b cos g cos 6,

uy=Rcos 0 cos 0, sin @3, us=R sin 6, cos 5 cos b, sin 6;, 29)
. . . 29

uz=Rcos 6, sin 6, cos 6;, ug=R sin 8, cos s sin 05,

u3=R cos 0, sin 8, sin ;, u,=R sin 6, sin Gs.

The complete set of 7 commuting operators is also read off from the tree diagram, or from the
subgroup one. We have

Y3=Ly;, Y=L}, Y=L, Ye=Lis+Lis+Lis,
(2.10)

Y,= Ly, v.= L%, Y,= L%.
2 o<i<2ks3 ik» 55 4si<2ks7 LA o<x§k<7 ik

We see that Y3, Y, and Y, are Casimir operators of 0(2) algebras, Y¢ of an 0(3) one, Y, and Ys
correspond 10 0(4) algebras and Y, is the original o(8) Casimir operator. More generally, each
circle in the subgroup chain provides the Casimir operator of the corresponding o(k) to the set

{Y.}.
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FIG. 4. Elementary cells for S, (diagrams 1a,...,1c) and their contractions to E, ones (diagrams 2a,...,2c).

To each branching point on the tree diagram, or each circle on the subgroup diagram, we also
associate a quantum number /; [see Fig. 3(b) for a specific case]. It will determine the eigenvalue
\ of the corresponding o(k) invariant operator according to the formula

YU =AW =—1(l+k—2)¥, 2.11)

where k is the dimension of the ambient space above the corresponding vertex on the tree [the
same k as in O(k)}. The numbers /; are non-negative integers, labeling irreducible representations
of O(k) for k=3. For k=2, i.e., the group O(2), we have l]-=0,: 1,%2,....

C. The separated eigenfunctions for S,

To specify the separated wave function,
V=11, %,(0,), 2.12)

on S,, we follow Refs. 9-13 and introduce four types of vertices, or ‘‘cells’” on a tree, as
illustrated in Fig. 4. The first row, diagrams la,...,lc, contains elementary S, cells. The second
row, 2a,...,2c contains E, cells, obtained after a contraction, and will be discussed below in Sec.
VIA. The dashed lines in row 1 will also be explained below. A circle on diagrams 1la,...1c
denotes a “‘closed’’ end, i.c., one that leads to further branches. An open end (no circle) leads
directly to a coordinate. For example, in Fig. 3 angles 63, 8, and 4, correspond to cells of type
“a,” s and 64 to cells of type “‘b’,”” and 6;, 8, to cells of type ‘‘c.”” The angles in the
polyspheric coordinate systems satisfy

0<0,<2n, 0<by<w, —aN2<O,<wul2, 0<f <=/ (2.13)

The following numbers are associated with each cell: m, I, lg, I, are related to the separation
constant corresponding to each vertex, S,=number of vertices above vertex !, , Sg=number of
vertices above vertex lg. The numbers m, I, Ig, I, are all integers, labeling representations of the
corresponding rotation subgroup in the chain, i.e., angular momentum type quantum numbers. We
have

A+c=n"'-2, (2.14)

where n’ is the number of end points u; connected to the vertex 0,- and c is the number of vertices
above and to the left of vertex 6 or 6,.
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Each vertex and each angle 6; provides a ‘‘building block™ W¥,(8,) for the wave function
W¥(6,,...,6,) of Eq. (2.12). Specifically, we have the following.

(1) Cell of type a:

v,(6)= mby,  m=0,+1,%£2,..., 0<6,<27. (2.15)

1
—c
2w
(2) Cell of type b:

ni(8) =Ny %(sin 6,)'8P{*(cos &),
Sg
n=l—-lg, a=lg+ > n=01.2,..., 0s<sé=<m, (2.16)
where Pf,""ﬂ)(x) is a Jacobi polynomial.
(3) Cell of type b":
‘I’f',a(o,,,)=Nf'ﬂ(cos q,,)’wPf,p'ﬁ)(sin 6,);
Sq
n=l—-1,, B=l+ Tx n=01.2,..., —-wR<6,<u/2. (2.17)
(4) Cell of type c:

Vol 1.(8) =2 PPYINE(sin )'5(cos 6,)'=PL™P(cos 26,);

I-1,—-1 s S
n=———§——ﬁ, a=lg+-L, B=lgt =5, n=012,., 0<f<wi.
(2.18)
The normalization constants are
2n+a+p+1)I'(n+a+B+1)n!
NTB= (2.19)

22*AH P (n+a+ 1) (n+B+1)

We mention that the wave functions (2.16) and (2.17) can also be expressed in terms of Gegen-
bauer polynomials, using the formula*

FAmLA+ID) o
TeOTOtnr12) 7 (x). (2.20)

Ch(x)=

lll. SUBGROUP TYPE COORDINATES ON E,, AND CLUSTER DIAGRAMS

Let us now consider the Euclidean Lie algebra e(n), with a basis
Ly=%dy,~Xidy, Pi=0s, ik=12...n. 3.1
The commutation relations are, as in Eq. (2.6), together with
[pj Lul= 8;ipx— Spi,  [Pi PL]=0. (3.2)

Subalgebra chains (2.5) will include Euclidean subalgebras e(k) and rotation subalgebras o(k). A
possible link in a subalgebra chain is
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e(n)De(n;)®e(ny), ny+n,=n, n=n,=1. (3.3)
The Casimir operator of e(n) is
A,=p3+pi+---+pl. (3.9)

Hence, we have A,=A, +A, in the chain and only one of the Euclidean subalgebras (3.3)
provides a new invariant operator, say e(n,). Alternatively, A, and A, can replace A,. A
further possible link in a chain is

e(n)Do(n), n=2, (3.5)

where o(n) will provide a new [with respect to e(n)] invariant operator.

As in the case of the O(n) group we will introduce diagrams for the E(n) group to illustrate
subgroup chains and subgroup type coordinate systems on E, Euclidean spaces. We shall use
rectangles (‘‘boxes”’) to denote E(k) groups [or e(k) algebras] and circles to denote O(k) groups
[or o(k) algebras]. As an example, we give all subgroup chains for E(n), 1<n<4 in Fig. 5.
Maximality requires that as we go from one level to a higher one, we obey the following rules

(1) From a rectangle representing e(n), we can go to two rectangles [see Eq. (3.3)], repre-
senting e(n|)®e(n,y), with ny+ny=n, n;=n,=1, or to a circle [see Eq. (3.5)], representing
o(n) (the same n as in the rectangle).

(2) From a circle representing o(n) we can go to two circles, representing o(n,)®o(n,),
nytny=n, n;=n,=2, or to one circle, representing o(n—1), n=3.

Now let us consider subgroup type coordinates on the Euclidean space E, and introduce
diagrams to represent them. We shall call them ‘‘cluster diagrams’’ and they will consist of
individual trees of the O(k) type with a tree ‘‘trunk’’ added, or isolated *‘trunks,”” or of clusters
of trees with trunks and isolated trunks. The E, cluster diagrams are simpler than the E(n)
subgroup diagrams, since E(k) subgroups that do not contribute new invariant operators will be
omitted.

All clusters for E,, 1<n=4, are also shown in Fig. 5. An isolated trunk corresponds to a
Cartesian coordinate. A trunk with further branches above it corresponds to a radial coordinate r
satisfying 0<r<c. The tree above the trunk is treated exactly as in the case of polyspheric
coordinates on S, spheres.

As an example let us consider the diagrams in Fig. 3(d); the coordinates in E, are

x;=g, X4=r;cos f5cos 8¢ cos 6,
Xa=rycos 8y, x5=r;cosfscos Osin O, (3.6)
x3=rysinf;, xg=rycosfssinfs, xy7=r,sinbs.
The prescriptions for writing the complete sets of commuting operators, eigenvalues and eigen-
functions are now quite simple.
To each tree trunk we associate an M-dimensional Laplace operator, where M is the number

of end points (Cartesian coordinates) above the trunk. We also associate a number k € R>0 with
each trunk. The corresponding radial eigenfunction [normalized to the delta function: 8(k’ —~ k)] is

k
W(r)= \/ ;MTI-’H(M—z)rz(kf), M=2,

ikz

‘Pk(Z)= J2—1r’

3.7

M=1.
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FIG. 5. Subgroup chains for E(n) and cluster diagrams for E,, .

The angular part of the eigenfunctions is written following the rules for S, spheres, as are the

invariant operators and their eigenvalues.
For the example of Figs. 3(c), 3(d), the invariant operators are

Yi=p}, Y,=pi+p}, Yi=pi+pi+pitp}, Yi=Ly,
Ys=Li;, Ye=Lis+Li+Li, Y7=4<i<2k<7 L.

We note that the Laplace operator on E; does not figure explicitly; it is equal to

7
A=21 p?=Y1+Y2+Y3.
i=

(3.8)

(39
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@ 9 A1 z2 T3 7

E(4) > 0(4) D 0(2) ® 0(2)

E(4)D E3)®E(1)D>0(3) > 0(2)

E(4) D E(2)® E(2) D 0(2) ® O(2)

E(4) D E(3)® E(1) D E(2)® E(1) D
0(2)

E(4) > E(2)® E(2) D
0O(2)® E(1)® E(1)

E(4) > E(3)® E(1) > E(2) ® E(1) >
EQ1) ® E(1)

E(4) > E(2)®E(@2) >
E(1) ® E(1) ® E(1) ® E(1)

FIG. 5. (Confinued.)

IV. CONTRACTIONS OF THE LIE ALGEBRA AND CASIMIR OPERATOR

Let us consider the n-dimensional sphere S, :

n

n
u(2,+2 u3= E g,“,unu,=R2, R%>0, : 4.1)
v=1 H,v=0
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where u,, are Cartesian coordinates in the Euclidean ambient space E, ;. and the metric tensor in
this case has the form g,,=diag(1,1,...,1). The isometry group is O(n+1). We choose a stan-
dard basis L, , for the Lie algebra o(n+1) as in Eq. (2.6).

The Laplace—Beltrami operator on S, is

1
As=77 > L, 4.2)

O<p<vsn

We shall use R™! as the contraction parameter. To realize the contraction explicitly, let us
introduce Beltrami coordinates on the sphere S, , putting

-12
yi= R——u( Zuk) , i=123,....n. (4.3)

The O(n+1) generators then can be expressed as

Ly, Vi <
TIE”H':P."*' E’,‘Zx (yePi)s 44

Ly=ypy—ywpi=yimi—yie®i; L,k=12,....n, (4.5)

where p;=d/dy;. The commutation relations now are

[Lik vLmn] = 6kmLin + 8inLkm - al‘mLkn - 8knLim ’ (46)
Lik
[m; . Lijl= Simj— 8wy ["Ti:’”k]=ifv 4.7

so that for R— the o(n+ 1) algebra contracts to the Euclidean e(n) one. The Beltrami coordi-
nates y; (4.3) contract to Cartesian coordinates on E,, and we have

a
yi—x;, —p;= (48)

Jx,
so that the rotation generators Lg; go into the translations p; .
The o(n+1) Laplace~Beltrami operator (2.1) contracts to the e(n) one:

n n 2
=E ; —1;2-—>A=pf+p%+---+p3. (4.9)

i=1

V. CONTRACTION AND COORDINATE SYSTEMS. THE GRAPHICAL METHOD

A. General formulation

We have seen that all subgroup type coordinates on a sphere S, can be characterized by tree
diagrams. Similarly, there is a one-to-one correspondence between subgroup type coordinates in a
Euclidean space E, and the cluster diagrams of Sec. IV.

We shall now introduce a graphical method for connecting the subgroup type coordinate
systems on S, and E, and give the rules relating the coordinates, invariant operators, eigenvalues
and basis functions. The relations are asymptotic ones for the radius of the sphere satisfying R
— and one, or more, of the angles 6; satisfying 8,—0.

A general S, tree diagram can be represented by Fig. 6(a). One principal branch of the tree
goes from the ground to the point representing the coordinate uq. The branches growing from this
one can lead directly to a coordinate u;, or they can branch further and lead to sets of coordinates,
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T..-3y 1+1-+ - Tl4 Tigk+1 Tnj. - Tn

LS T,’-l m

6b

FIG. 6. Contractions of tree diagrams into cluster ones for S,—~E, .

e.g., {U;41,4)42,---,4;+3}- Graphically the contraction R— o corresponds to the fact that we cut
off the ground to uy branch by the dashed line in Fig. 6(a). The dashed line then becomes the
ground for the corresponding cluster E, diagram of Fig. 6(b) and the ambient space coordinates
(ug,uy,...,u,) for S, are replaced by the Cartesian coordinates (x;,x;,...,x,). The angles
6,,0,,...,6; that lead to branches cut-off by the dotted line satisfy §;,—0 in the contraction and
are replaced by radial coordinates r;, or Cartesian coordinates x,, (if the surviving branch leads
directly to a single coordinate on S, and E,). We have

R—’w, 0,'—’0, R tan 0,~R sin 0,-~R0,-—-*r,-. (5.1)

The individual trees in an E, cluster correspond to O(k) subgroups of O(n) that survive the
contraction.

All contractions of coordinate systems for S, S,, and S5 are illustrated in Fig. 7. Let us run
through the individual cases.

B. Contractions from S, to E;

In the case of a one-dimensional sphere, i.e., a circle, we have only one diagram, namely No.
1 of Fig. 7. In the original ambient space we have polar coordinates

up=Rcos#, u;=Rsinb, (5.2)
with 0=< #<24r. The Beltrami coordinate satisfies
yi=R tan 6—x, (5.3)
where x is a Cartesian coordinate on E, .

C. Contractions from S, to E,

In the case of the two-dimensional sphere S; we have two tree configurations and two types
of coordinate contractions to consider, namely, No. 2 and No. 3 of Fig. 7.
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Cut tree Cluster Contraction
No diagram diagram of coordinates
Iy
1 AN e Polar to
\V &] Cartesian
AN
m
I Za
Uy u u .
9 \ : 9, ? (2 Spherical
\ m m r to
) Spherical
l
N AN s i =2 Spherical
3 & . to
m N\, Cartesian
l
Ty T2 Z3
4 0y Spherical
102 m to
f Spherical
Spherlcal
4I
Sphencal
I T2 I3
0 ;
5 }/ J Spherical
T to
[ ] Cylindrical
Up Uy U2 U3 Iy T2 23
6 Spherical
m 0 to
! Cartesian
Up U J Uz Uz z I 3
63/ Cylindri
ylindrical
7 m AN 2 1'2 to
Cylindrical
J

For diagram No. 2 we have

ug=Rcos 8,

FIG. 7. Contractions of tree diagrams on S, into cluster ones on E, for l <n<4.

u;=Rsin 8, cos §;,, wu,=Rsinf,sinb;, (5.9

where 0=< 6, <, 0= §,<2x. Introducing Beltrami coordinates and taking the appropriate limits
R— o, §,~r/R, we have
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FIG. 7. (Continued.)
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FIG. 7. (Continued.)
y1=Rtan 6, cos 6,—x,=rcos 6,, y,=Rtan 0, sin @y—xy=rsin 6,. (5.5)

The subgroup chain 0(3)20(2) contracts to the Euclidean one: E(2)D0(2); the 0(2)
invariant and its eigenvalues m survive the contraction Lf2—>Lf2, m—m.
For diagram No. 3 in Fig. 7 we have

uo=R cos 6, cos 6,,

u1=R COos 01 sin 02,

u,=Rsin 6, (5.6)
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FIG. 7. (Continued.)

and the Beltrami coordinates satisfy (R—, #,~x,/R, 6,~x,/R)

tan 01
cos 0,

y1=Rtan02—»xl, y2=R —X;. (57)

The subgroup chain O(3)D0(2) contracts to E(2)DE(1)®E(1) and the O(2) subgroup invari-
ant undergoes a contraction,

¥, Ly
e —R;T=1T%—>p%. (5.8)

D. Contractions from S; to E,

Five types of O(4) tree diagrams exist, but only four of them give different contractions.
The diagrams No. 4 and 4’ on Fig. 7 correspond to spherical coordinates on §3 going into
spherical coordinates on E;. For No. 4 the polyspherical coordinates are
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uo=Rcos §,, u;=Rsiné,cosb,,

uy=Rsin @, sin 6, cos 83, u3=R sin 0, sin §, sin G5. 9
The Beltrami coordinates satisfy (R—o, 6,~r/R)
y1=R tan 6, cos 8,—x,=rcos 8,,
¥2=R tan 6, sin 6, cos 63— x,=r sin , cos 5, (5.10)

y3=R tan 8, sin 8, sin @;—x3=r sin 8, sin 0;.

We have 0(4)20(3)D0(2)—E(3)D0(3)D0(2) so that the O(3)20(2) subgroups and
their invariants survive:

Y, =L?=LL+L4L+LL-L% Y,=L%—Lk, (5.11)
The situation for diagram No. 4’ is quite analogous.
The case No. 5 in Fig. 7 corresponds to spherical coordinates contracting to cylindrical ones.
We have
upo=Rcos O;cos 0, u;=Rcos 8, sinf,cos b,
(5.12)
uy=Rcos 8, sin 8, sin 3, wu3=Rsin ;.
For Beltrami coordinates (R—, 6,~r/R, 8,~x3/R) we obtain
y1=Rtan 6, cos §;—x;=rcos 05,

y2=Rtan 02 sin 03—>x2=rsin 03, (513)

tan 6,
cos 0,

y3=R —X3=z.
The subgroup chain contraction is 0(4)D0(3)D0(2)—E(3)DE(2)®E(1)D0(2) and the
subgroup invariants contract as

Y, 1 L},

2= Lo+l t L) =ul+mi+ er—pi+p}, Yr=Lj-Lh. (5.14)
The diagram No. 6 in Fig. 7 corresponds to the contraction of spherical coordinates to Car-

tesian ones. We have

ug=Rcos 8, cos B, cos 83, u;=R cos 8, cos 8, sin 6,,

(5.15)
uy=Rcos §,sinf,, u3;=Rsinb,.

For Beltrami coordinates after the contraction R—%, #;~x; /R, 6,~x,/R, 8,~x3/R, we have

y1=Rtan 63—x,, y,=R —X3, ¥y3=R X3. (5.16)

— —_—y
cos 6, cos 6, cos 05

The subgroup chain undergoes the contraction 0(4)20(3)D0(2)—E(3)DE(1)®E(1)
®E(1) and the subgroup invariants satisfy
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Y, 1 L} Y, Ly
E!‘=EI(L(Z)I+L(2)2+L%2)=‘IT%'*"JT%:—RT—-DP%‘FP%, P=?=‘ﬂ%—ip¥. (517)

Finally the diagram No. 7 of Fig. 7 corresponds to polyspherical (or cylindrical) coordinates
on S5 contracting to cylindrical ones on E5. We have

ug=Rcos §,cos ,, u;=Rcos8,sinb,,

(5.18)
uy=Rsin 6, cos 3, u3=R sin §;sin 5.

For the Beltrami coordinates after the contraction R—, 8,~x,/R, 8,~r/R, we obtain
Y1 =R tan 02—>x, N

cos 6,
y2=Rtan0,E;;72—>x2=rcos 03, (519)

sin 03

y3=Rtan01 —>x3=rsin03.

cos 6,
The subgroup chain satisfies 0(4)D0(2)®0(2)—E(3)DE(2)®E(1)D0(2) so that for the
subgroup invariants we have

Y, Lj

VI. CONTRACTIONS OF BASIS FUNCTIONS

A. Contractions of functions corresponding to elementary cells

When we cut off the branches of a tree as in Fig. 6, the cutting line intersects an elementary
cell (see Fig. 4) at each branch. Each elementary O(n+ 1) cell then goes into an elementary trunk
for E(n), as indicated by the lower row of diagrams in Fig. 4.

Let us now discuss the four cases in Fig. 4. The limiting procedure is always the same,
namely,

r.
6~%+ L~kR, R—w, j=abb'c, 6.1)

where r; is the radius of the sphere that survives the contraction, i.e., corresponds to the circle on
the right hand side of the O(n+ 1) cell and on top of the E(n) trunk. Thus, for j=a and j=b' we
have r;=x, a Cartesian coordinate. Similarly, we have /,=me Z and also Ig=me Z.

Let us now run through the individual cells in Fig. 4.
1. Cell 1a to 2a

Using Egs. (2.15) and (6.1) we have (R—,m~kR,0~x/R)

lim Le""'”m ;e”“. 6.2)
R\ 27T \/21r
2. Cell 1b to 2b

The contribution to the separated O(n+ 1) basis function is given in Eq. (2.16). Using the
formula for Jacobi polynomials in terms of the hypergeometric functions,>* we have
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N:g’;:ﬁ’z-lﬁsprz( sin 6y)'s P;l_pl-;spﬂJMSp’z)( cos 6y)

_[QI+Sg+1)(I+15+58p)!
(sin 6,)'s
2SI (1 + S g2+ 1) 2

i Sﬂ .qi 20b 6
Fyl =l+1g,l+1g+8g+ 115+ 3 Thsin®f (63)

Now, using the asymptotic formulas for the hypergeometric and I" functions (I~kR, 6,~r/R),

) Sg 5 0 Sg k*r?
I'(z+a) ( 1 )
im ———=2"8[ 1+ —(a— +B8-1)+0(z7Y |, 6.5
|z|li.nm1"(z+ﬂ) z 2z(ot B)(a+B-1)+0(z7%) (6.5
and the formula for the Bessel function,
J 4 L S 6.6
v(z)" E F(V+1)° v ’ I ’ ( .« )

we obtain

k
lim N'e+Sg2lp*SpR (sin ab)’ﬂPfl_"l;s’n ARTL) (cos 8,)= \/;g;! 1g+S ﬂ,z(kr). 6.7)

1
R—ox VR ﬁ+ I_lp

3. Cell 1b" to 2b'

The contribution of this cell to the O(n+ 1) separated basis function is given in Eq. (2.17). In
order to take the contraction limit (6.1) we express the Jacobi polynomials in terms of hypergeo-
metric functions:*

22 T(n+a+1)
PO ()= s
n Ja T(n+2a+1)

I([n+1)2+a) ( n n+l 1
T2k

L2
F(n/2+l) +a;-x ), n even,

—_1\n2 —_—
(1) 2’ 2 2

1("_1),21‘()1/2+t:r+1)2 F n—-1 n+2 3,
( ) l-.—([m Xqly "'T,—Z—-i-a,i,x , n odd.
(6.8)
In the limit R— o and Oy ~x,/R,I~kR,l,~pR, we have
lim (— 1)~ t2Nje ) S lat S oo g, Ylaplat Selblat D g
Rox a a
1 —k2x?
_ & )Rl 6o
B ‘rrk,,x ] 3 —k,zlx,z, (69)
—i(kyxp)oF, 7| ‘
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where k2=p2+k2. The oF,(x) hypergeometric functions in this case are expressible in terms of
sink,x, and cos k,x, functions,

1 —ki? 3 —kixl\
oF1 -Z-;T =cosk,x,, ofF) 'Z‘;T =sink,x,, (6.10)

and we finally have

2k [cos(k,x,)
. - Ly 1, 1 +S . _
lxm(-l)(’ ’«’”N;f;s"'“ +S.,f2(cos 9b')l"Pf_,+s°ﬂ' + "’2)(sm 6y)= ~ {-—isir:(lg,,x,',)}'
a a n

(6.11)

R—o

4. Cell 1c to 2¢

The relevant basis function is given in Eq. (2.18). To take the limit (6.1), /I~kR, I,~k R and
0~r/R, we use the equation expressing Jacobi polynomials in terms of hypergeometric functions,
and take the limit leading to Bessel functions:

L([I-1,—1g]2+1) (Ig+Spi2l g+ S ,12)
owl (= lat1gtSpl2+1) " U-la~iph2

(cos28,.)

= lim F
Rl (U +SpR2+1)27 1

1 ( I-lp—lg I+1,+1g+S,+S, Sg

. cain?
5 , ) +l,lﬁ+ > +1;sin” 4,

1 Sg
- r(lp+sp/2+l)oFl(lﬂ+7+l’_ 4 T.r Jlﬂ+Spf2(kﬁr)» (6.12)

k,zgr2 2 \lg*Sp2
- kpr

where k2 + k,z3=k2. The final result is

g+ S f2+1g+SgMN2+1 Lot Sl 4S Lot Sl 45
lim JR_SFT (Iﬂ_ Iaizl'ﬁ;lz alz( sin 0C)I’3(COS 0c)’aP(’€ l,flli)}.z o2 (COS 2 0:)
R—oe
2k
= N6 l1g+sgnlkar)- (6.13)

These contractions for basis functions of the elementary cells (1a,...,1c) determine the general
contractions for hyperspherical functions corresponding to any tree for the sphere S, .

B. Examples

The contraction formulas for basis functions of O(3) were given in Ref. 1. Here we apply the
general rules to give all different S3 and §, contraction diagrams in Fig. 7.

1. The S; sphere
(1) Polyspherical to spherical coordinates [see Figs. 7(4)-7(4")] (R—, J~kR),

1 k
im =W j1m( 61,65, 63) = \/;me(kr) Yim(6,,05), (6.14)
R

where Y,,,(8,,85) is a spherical function on §,.
(2) Polyspherical to cylindrical coordinates [see Fig. 7(5)] (R—, J~kR, | ~k3/R),

eim03

lim(-l)(l-t)fz‘p PP k_pj e cos k3z (6.15)
R—ow_—_‘/E sim(01,6,,0)= Vqu3 im|(PT V2o | —isinksz]’ '
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where k2=k3+p2.
(3) Polyspherical to Cartesian coordinates [see Fig. 7(6)] (R—o, J~k;R, I~k,/R, m
~k3R)

coskyy cos k3z
2 eth* | —isink,ycosksz
wkiks T —icosk,ysinksz
—sink,y sink;z

lim (- 1)V, (6,,0,,8,)=

R—oo

, (6.16)

where k?=k}+k3+k3.
(4) Polyspherical (cylindrical) to cylindrical coordinates [see Fig. 7(7)] (R—%, J~kR, m
~k3R )

|m203

ik
R_.m\/—q,'"'""z(ol’az’03) \/71;... ((pr)e™ NTh

(6.17)

where k?=k3+p2.

2. The S4 sphere
(1) Polyspherical to polyspherical coordinates [see Figs. 7(8)-7(8")] (R—%, J~kR),

Jk
R_m\/—g‘l’n 1ym(61,62,03,80)= ——J), 1 (k) ¥ 1, m( 65,03, 64), (6.18)
where ¥ 1112,,,( #,,05,6,) is a hyperspherical function on §;.
(2) Polyspherical to cylindrical coordinates [see Fig. 7(9)] (R—%, J~kR),

1 vk
hm_\/fg“l’nmlmz( 01,0,03,84)= —J 141 (kr) ¥ s (8,03, 04), (6.19)

where ¥,,, . (8,,63,6,) is a hyperspherical function on S;.

3) Polysphencal to four-dimensional cylindrical coordinates in Fig. 7(10) [see also Fig.
7(10')] (R—®, J~kR, m;~k,R),

lim = \I,Jlmlmz(91102103’94) \/ X111 (pr) Y i (12— 03, 6,), (6.20)
R—»m
where Y, (7/2— 6,,6,) is a spherical function on §, and k2=kf+ P
(4) Polyspherical to four-dimensional cylindrical coordinates in Fig. 7(11) [see also Fig.
7(11")] (R—, J~kR, I~k4R),

C(—1yhn 2pk cos(ksxg)
im ——p———Y; ; (6,6,,63,0,)= m-’zzﬂrz(l”)ytzm(aa,od i ,

R—w -1 sm(k4x4)
(6.21)
where Y 1,m(03,6,) is a spherical function on S, and k2=k§+ Pt
(5) Polyspherical to bipolar coordinates in Fig. 7(12) (R—, J~kR, I~k R),
V2kk,

lim = ‘I’nm,mz( 6,605,05,0,)= —Jm](klrl)sz(kZTZ)eim]03+-im2041 (6.22)

R—om
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where k3 +k3=k2,
(6) Polyspherical to double cylindrical coordinates in Fig. 7(13) [see also Fig. 7(13")] (R
— 00, J""kR, l“'klR, m~k2R),

(ot U JRIEAE L feosthary) ) e
:112——7‘;—‘1’1»"1".2(01,02,03,04)— 7% ¢ — i sin(kx,) 1m,|( 3')E,
(6.23)

where k2+k3+k3=k>.
(7) Polyspherical to double cylindrical coordinates in Fig. 7(14) (R—, J~kR, l,~k3R,
I,~kR),

( -1 )(l— L
im ———=—Y; |, (6,,6,,05.04)

R \/E

cos k3x3 cos kaxy
2k kI K2 o) —isinksx;coskex
=\ o yr)emated : . (629
i Kok icosksxssinkyxy

—sin k3X3 sin k4X4

where k3+k3+k3=k2.
(8) Polyspherical to Cartesian coordinates in Fig. 7(15) (R—, J~kR, m~k R, 1,~k,R,
l1~k3R),

lim (= 1)Y"™2% ) 1 m(61,6,,05,6,)

R—o

\/8kﬁf+k§\/kf+k§+k§ .
= e'*1*1

7r4k2k3k4
coSkyxyCOSk3x3 COSkyxq;  —iSinkyx,cos kX3 COSKkyXy;
—icoskyx,sinksx; coskexy;  —sink,x;sink;x; coskyxg;
, . . . , (6.25)
—icoskyx,coskyxssinkgxy; —sink,x, coskaxs sinkgxy;
—coskyx; sinkyxs sinkgxy;  —isinkyx, sinkyxs sinkgx,;

where k2 +k2+k2+k2=k2.

As a final example, let us consider the contraction O(8)— E(7) for the coordinate systems of
Fig. 3. The contraction of the O(8) basis to the E(7) one in this case is (R—w, [,~kR, I,
~k2R, l3~klR):

o1
Lm 23 W1, 111151¢1,( 61262, 63,04, 65, 66, 67)

R—o0
= _k2k3 iklll I.I‘O,‘ 626
= Sy Tialkar )i i (kara)e €M NY ., (85, 66, 67). (6.26)

Vil. CONCLUSION

In our previous paper' we studied contractions of all (i.e., both) coordinate systems on S to
all (four) coordinate systems on E,. Here we have presented all possible contractions of subgroup
type coordinate systems on S, to subgroup type ones on E, for n arbitrary. Moreover, we have
developed a graphical formalism illustrating these contractions.
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Contractions of ellipsoidal and parabaloidal coordinate systems will relate more ‘‘exotic’’
special functions amongst each other. For instance, Lamé polynomials and their generalizations
will go into Mathieu functions, parabolic cylinder functions, spheroidal functions, etc. Work in
this direction is in progress.
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