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CHERN-SIMONS TERM AT FINITE DENSITY
AND TEMPERATURE
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The Chern—Simons topological term dynamical generation in the effective action is obtained at arbitr:
density and temperature. By using a few different approaches it is shown that at zero temperature 1

finite

2= mtisthe

crucial point for Chern—Simons. So when i < m?, p-influence disappears and we get the usual Chemn-Simons
term. On the other hand, when p2 > m?, the Chern-Simons term vanishes because of non-zero density of back-
ground fermions. In particular, for massless case parity anomaly is absent at any finite density or temperature.
This result holds in any odd dimension as in abelian so as in nonabelian case. :

Since introducing the Chem-Simons (CS) topologi-
cal term [1] and by now the great number of papers de-
voted to it appeared. Such interest is explained by variety
of significant physical effects caused by CS secondary
characteristic class. These are, for example, gauge par-
ticle mass appearance in quantum field theory, applica-
tions to condensed matter physics such as the fractional
quantum Hall effect and high-T, superconductivity,
possibility of free metric tensor theory construction and
SO on.

It was shown [2—4] in a conventional zero-density

gauge theory that the CS term is generated in the Euli--

er—Heisenberg effective action by quantum correc-
tions. The main goal of this paper is to explore the par-
ity anomalous CS term generation at finite density. In
the excellent paper by Niemi [5] it was emphasized that
the charge density at 1L # 0 becomes nontopological ob-
ject, i.e. contains both topological and nontopological
parts. The charge density at i # 0 (nontopological, nei-
ther parity-odd nor parity-even object)3) in QED; at fi-
nite density was calculated and exploited in [6]. It must
be emphasized that in [6] charge density contains as
well parity-odd part corresponding to CS term so as
parity-even part, which cannot be covariantized and do
not contribute to the mass of the gauge field. Here we
are interested in the finite-density influence on the co-
variant parity-odd form in action leading to the gauge
field mass generation — CS topological term. Deep in-
sight into this phenomena at small densities was done
in [5, 7). The result for CS term coefficient in QED; is

[m% Bim — ) + th%B(m + u)] (see [7], formulas
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(10.18)). However, to get this result, it was heuristicaly
supposed that at small densities the index theorem
could still be used and only the parity-odd term in the
energy part of spectral density is responsible for parity
nonconserving effect. Because of this in [7] it had been
stressed that the result holds for small u. However, as
we shall see below, this result holds for any values of
chemical potential. Thus, to obtain trustful result at any
values of |1, one has to use transparent and free of any
restrictions on W procedure, which would allow us to
perform calculations with arbitrary nonabelian back-
ground gauge fields..

Since the chemical potential term P Yy is odd un-
der charge conjugation, we can expect that it would con-
tribute to P and CP nonconserving quantity — CS term.
As we will see, this expectation is completely justified.

The zero-density approach is usually a good quantum
field approximation when the chemical potential is small
as compared with characteristic energy scale of physical
processes. Nevertheless, for investigation of topological
effects, it is not the case. As we will see below, even a
small density could lead to principal effects.

Introduction of a chemical potential L in a theory
corresponds to the presence of a nonvanishing back-
ground charge density. So, if i >0, then the number of
particles exceeds that of antiparticles and vice versa. It
must be emphasized that the formal addition of a chem-
ical potential looks like a simple gauge transformation
with the gauge function pr. However, it does not only
shift the time component of a vector potential but also
gives a corresponding prescription for handling
Green’s function poles. The correct introduction of a
chemical potential redefines the ground state (Fermi
energy), which leads to a new spinor propagator with
the correct e-prescription for poles. So, for the free
spinor propagator we have (see, for example, [8, 9

g+m 0

2 ’
(o +iesgnpy)’ =B —m’

G(piy) =
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where p = (pp + I, 3 ). Thus, when y = 0, one gets at
. once the usual e-prescription because of the positivity
of pysgnp,. In the presence of a background Yang-
Mills field we consequently have for the Green func-
tion operator
(oA C ) P — o)
(YR) —m” + ie(py + W)sgn(po)

=T, + 1y, T, = py — gA(X).

Let us first consider a (2 + 1)-dimensional abelian
theory. Here we shall use constant magnetic back-
ground. We shall evaluate fermion density by perform-
ing the direct summation over Landau levels. As a
starting point, we shall use the formula for fermion
number at finite density and temperature [5)

1 0(A)
N = _E;sgn(xn) + ;[exp T e

N =
exp (B, —u))+1] -

= —Zth B -A, ngn(u Ay

Landau levels in the constant magnetic field have the

form [10]
= t2nleBl+m’,  (4)

where n =1, 2, ... . Itis also necessary to take into ac-
count in (3) the degeneracy of Landau levels. Namely,
the number of degenerate states for each Landau level
is [eB]/21 per unit area. Even now we can see only zero
-modes (because of sgn(eB)) could contribute to the par-
ity-odd quantity. So, for zero temperature, by using the
identity

where T,

3

‘Ao = -—msgn(eB),

sgn(a b) +sgn(a+b) = 2sgn(a)6(|a| b)),
one gets for zero modes
Bl sen(u+ msgn(eB) = ! ‘sgn(u)e(lul i)+
&)
. I—;gsgn(eB)sgn(m)O(lml -l

and for nonzero modes

1leB| 2 sgn( — +2nleB| + m”) +

22m

+sgn(u+J2nIeBl +m’) = () _

.= —-sgn(u)ze(lul - Jz—n|e3|_+m -

Combining contrlbunons of all modes, we get for fer-
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mion density
- 'g‘;'sgnm)ieum ~anleBl + )+
. l'ﬁ-‘-’i'sgn(u)eum ) +
+ 2B on(m)0(Im| - lul) = Q)

22w

'—;—'sgn(u)(lnt[ . ] +3)00 - +

+ Z—s_gn(m)e(lml ~ ).

Here we see that zero modes contribute to parity-odd as
well as to parity-even part, while nonzero modes contrib-
ute to the parity-even part only (note that under parity
transformation B — —B). Thus, fermion density con-
tains as parity odd part leading to CS term in action after
covariantization, so as parity even part. It is straightfor-
ward to generalize the calculations on finite temperature
case. Substituting zero modes into (3), one gets

leB| 1

No =55 21 2

[1B(u+msgn(e8))] -

_leBlr__ sh(Bw)
= [ch(ﬁu) +ch(Bm) ' ®

sh(Bm) ]
ch(Bp) + ch(Bm) I’

s0, extracting parity-odd part, one gets for CS at finite
temperature and density

+sgn(eB)

_eB sh(Bm)
cs
- 41cch(Bu)+°1h(B”') ©)
= -Etth(ﬁm)l + ch(Bp)/ch(Bm)’

So, the result coincides with result for CS term coeffi-

cient by Niemi [7] obtained for small u[m% B(m— ) +

+ th% B(m + u)] . Itis obvious how to go to the limit of

zero temperature. The lack of this method is that it
works only for abelian and constant field case.

This result at zero temperature can be obtained by
use of Schwinger proper-time method. Consider (2 +
+ 1)-dimensional theory in the abelian case and choose

background field in the form A* = %va’", F = const.

To obtain the CS term in this case, it is necessary to
consider the background current () = 8S,4/34,,, rather
than the effective action itself. This is because the CS
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term formally vanishes for such choice of A* but-its
- variation with respect to A* produces a nonvanishing
current. So, consider .

(7 = ~igt[¥*G(x, )i, (10)

where

G(x, x') = exp[—igJ.dCuA"(C))(_xIGlx'). (an

Let us rewrite Green function (2) in a more appropriate
form . :

8((po + 1)sgn(py)) +
(YR —m’ + ie
+ 0(-(po + u)sgn(po))]‘

(Ya)’-m’—ie

G = (yﬁ:-m)[
(12)

Now, we use the well-known integral representation of
denominators

.. tias
o+i0 :Fl.[dse ’
0

which corresponds to introducing the “proper-time” s
into the calculation of . the Eulier—Heisenberg
lagrangian by the Schwinger method [11]. We obtain

G=(rn- m)[—ijdsexp(is[('yi’t)2 —m’ +ie])x
0

X 8((po + 1)sgn(po)) +

+i J’ dsexp(~is[(YR)® - m’ - i€]) x (13
0 .

xO(~(py + H)Sgn(Po))}-.

Here, we restrict ourselves only to the magnetic field
case, where Ay = 0, [Ty, 7, ] = 0. Then we easily can

factorize the time-dependent part of Green function.
Further we use the obvious relation

~ 2 1 v .
(V%) = (po+p)* - 7 + 580" (14

In the calculation of the current the following trace arises:

isgoF/2

tr{y" (YRt - m)e”**"’] = 2n"g™cos(g|* Fis) +

T F™*

(15)
+ 2—\;—- sin(g|*Fls) - 2im"“TFF—1'l sin(g|*Fs),

:SISSAKIAN et al.

where *F* = ¢#8F _4/2 and [*F] = J/B* ~ E*. Since we
are interested in calculation of the parity-odd part (CS
term), it is enough to consider only terms proportional
to the dual strength tensor *F*. On the other hand, the
term 27n"g" cos(gl*Fls) at v = 0 (see expression for the
trace, we bear in mind that here there is only magnetic
field) also gives nonzero contribution to the current J° [6]

0 = 281 oy |
vaen— 21‘ Int[2|g3|]+2 9(“1' ,m') (16)

This part of current is parity invariant under B —» —B.
It is clear that this parity-even object contributes nei-
ther to the parity anomaly nor to the mass of the gauge
field. Moreover, this term has magnetic field in the
argument’s denominator of the cumbersome function —
integer part. So, the parity-even term seems to be “non-
covariantizable”, i.e. it cannot be converted in covari-
ant form in effective action. Since we explore the parity
anomalous topological CS term, we will not consider
this parity-even term. So, only the term proportional to
the dual strength tensor *F* gives rise to CS. The rele-
vant part of the current after spatial momentum integra-
tion reads

2 e ) 2
Jis=Esmer dpo_l‘df[e'“"“"'z)—
= L a7
is(i):—mi) '+ e—i:(i::—mz)

)1

Thus, we get besides the usual CS part [3]), also the p-
dependent one. It is easy to calculate it. by use of the
formula

= 8(~posgn(py))(e

stf:i’(‘r ) o n(a(xz—mz)-ri?? 5 1 2)
K x-m
0 )

and we get eventually

2
Jgs = %%*Fu[l —O(—(m + pn)sgn(m)) -
2

= 0(~(m~p)sgn(m))] = ﬁemz—uz)f—n*ﬂ.

Let us now discuss the non-abelian case. Then A* =
=T,A" and '

(18)

(Vo) = ~ige[y"T,G(x, )], .

It is well-known [3, 12] that there exist only two
types of the constant background fields. The first is the
“abelian” type (it is easy to see that the self-interaction -

f A, A’ disappears under that choice of the back-
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ground field)

A = na%vaV", (19)
where 1, is an arbitrary constant vector in the color
space, F* = const. The second is the pure “non-abe-
" lian” type

A" = const. (20)

Here the derivative terms (abelian part) vanish from the
strength tensor and it contains only the self-interaction

pant 2 = gl
. part of the CS term, we should consider the background
-field (19), whereas for the nonabelian (derivative non-
containing, cubic in A) part we have to use the case
(20).

Calculation in the “abelian” case reduces to the pre-
vious analysis, except for the trivial adding of the color
indices in the formula (18):

¢ = Ie(m - )g *F.
In the case (20) all calculations are similar. The only
difference is that the origin of term ¢,,,F*¥ in (14) is not
the linearity of A in x (as in abelian case) but the pure
non-abelian A* = const. Here term 6,,,F*" in (14) be-
comes quadratic in A and we have

@n

= -u)g &Pa[T,4%4%. @)

m

2
Combining formulas (21) and (22) and integrating over
field AY we obtain eventually

St = [p0m’ ~n)RWIAL 23)

where W[A] is the CS term
WiA] = g J'd’x "% (F,WA,,- %gAuAvAa).

In conclusion note, that it may seem that covariant no-
tation used here is rather artificial. However, the cova-
riant notation is useful here because it helps us to ex-
tract Levi—Chivita tensor corresponding to parity
anomalous CS term.

This result can also be obtained with an arbilrary
initial field configuration by use of the perturbative ex-
pansion. Here we work immediately in the nonabelian
case. ’

Let us first consider nonabelian 3-dimensional
gauge theory. The only graphs whose P-odd parts con-
tribute to the panty anomalous CS term are shown in
Fig. 1.

So, the part of effective action containing the Cs
1998
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Fig. 1. Graphs whose P-odd parts contribute to the CS term
in nonabelian 3D gauge theory.

b“‘u~,

term looks as

= 3[40 [e AT (p) +
. o (24)
+3[Au) [ €77 A DAL (p, 1),

x p.r

where polarization operator and vertices have a stan-
dard form

I (p) = g [uly"S(p +k: WY'S(k: W],
k

H"vu(p, r)y = (25)

=g J' a(Y'S(p +r+k; p)y S+ k; p)Y*S(k; )l
k

Here the following notation is used L = J.zdxoj.d?r and

I Bz: __,j . First consider the second-order
@n)’

term (Fig. 1a). It is well-known that the only object giv-
ing us the possibility to construct P and T odd form in
action is Levi-Chivita tensor?. Thus, we will drop all
terms noncontaining Levi—Chivita tensor. Signal for
the mass generation (CS term) is [T* (p?> = 0) # 0. So
we get

1

m =g J(—12me "Pa) - (26)
(k +m’)
After some simple algebra one obtains
m -—12mg2 "vua ZI =
B~ '@y
@ )_ @n
= --12mg2 “mp 55
aB Z 41!:0) +m’

where @, = (2n + 1)n/P + in. Performing summatién,

4 In three dimensions it arises as a trace of three y-matrices (Pauli
matrices).
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Fig. 2. Graphs whose P-odd parts contribute to the CS term
in nonabelian 5D theory. : '

AL

we get

1
[+ ch(Bp)/ch(Bm)

2
m* = &) th(Bm)

4x (28)

It is easily seen that at B —» oo limit we shall get zero-

temperature result [13]

2
Huv .m g puva

= j—>-¢

m] 47 (29)

pue(mz—u2)~

In the same manner handling the third-order contribu-
tion (Fig. 1b), one gets

2 ~2
wva 3. pvali dkm(k +m2) _
I = -2g%"""2 J e
2r)"(k +m")

n=-oo

- (30)

Lo 2
= :_izmg:%envaé J' d'k 1

2 =2 2?
n=—co

2m) (k +m2)

and further all calculations are identical to the second
order

. 3
m® = i‘%te"vath(ﬁm) 31)

1
1+ ch(Bp)/ch(Bm)
Substituting (28), (31) in the effective action (24), we
get eventually ' .

cs 2

1
Ieﬂ' = g

1+ ch(Bp)/ch(Pm)87 ~

th(Bm)
(32)

x J’ d3xe"vatr(AuavAa - %gA"AVAa).

Thus, we get CS term with temperature and density de-
pendent coefficient.

. Let us now consider 5-dimensional gauge theory.
Here the Levi—-Chivita tensor is S-dimensional e#vofr
and the relevant graphs are shown in Fig. 2.

The part of effective action containing CS term
reads

1 ‘ —ix(p+r
L = 3JAu0) [ €174, (p) AN (p, 1) +
- X pr ’

+%J‘Ap(x) J‘ é—ix(‘p-o-r-o-s)'x
x p.r
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X Ay(P)Ao(N)Ag( )T (p, r, 5) + 33)

’ 1 : —ix(p+r+s
+3[Au@) [0 04 (p)A ()
o X Pr
x Ag($) A" (p, 1, 5, ).

All calculations are similar to 3-dimensional case. First
consider third-order contribution (Fig. 2a)

™(p, r) = &[uly"S(p +r+ k: py x
k (34)

XY'S(r+ k; mYS(k; 1)),
Taking into account that trace of five Y-matrices in 5-
dimensions is '
tr['y"'yvyuyﬂ'yp] = 4] euvaBP’
we extract the parity-odd part of the vertice
me -
i (d% . 1 (3s)
= gsﬁ 2 Iﬁ(l4meuvuﬂopﬁrc)_ﬁ’
- (2m)" (k +m°)
of, in'more transparent way, -
m* = tv'4mg3e"mIB oparox

- oo
[

P

n=-—oo

X

f d'k 1
) (a2 ek )

+oo

i ~i 1
paroB z 7/ 2°

2 2
64n"w, +m

3 =

(36)

= i4mg3e"vaﬂ °

n=—co

Evaluating summation, one comes to

M = ith(Bm) x
3 (37

uvafo

T+ ch(B)/ch(Bm) (g2  Pole

In the same way operating graphs Fig. 2b, 2¢, one will
obtain

0*** = ith(Bm) x

4 (38)
. 1 ) g_2 e"V“B°s<,
1+ ch(Bu)/ch(Bm)gy
and |
™ = ith(Bm) x
s 39
y 1 g "vobo 39)
1+ ch(Bu)/ ch(Bm) 62"
1998
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Substituting (37)~(39) in the effective action (33), we
get the final result for CS in 5-dimensional theory

cs 1 g3 puvapy
Lew = th(Bm)l+ch(Bu)/ch(ﬁm)48,t2 e X
X tr(AuavAaaBAy + ggAuAvAuapA, +  (40)

32
+ gg AuAvAaAgA,).

It is remarkable that all parity-odd contributions are
finite in both 3-dimensional and 5-dimensional cases.
Thus, all values in the effective action are renormalized
in a standard way, i.e. the renormalizations are deter-
mined by conventional (parity-even) parts of vertices.

From the above direct calculations it is clearly seen
that the chemical potential and temperature-dependent
coefficient is the same for all parity-odd parts of dia-
grams and does not depend on space dimension. So, the
influence of finite density and temperature on CS-term
generation is the same in any odd dimension:

1
1 + ch(Bp)/ch(Bm)

— (00"~ WAL,

CS
1 eff

Tw[A] B2
(41)

= th(Bm)

where W[A] is the CS secondary characferistic class in’

any odd dimension. Since only the lowest orders of per-
turbative series contribute to CS term at finite density
and temperature (the same situation is well-known at
zero density), the result obtained by using formally per-
turbative technique appears to -be nonperturbative.
Thus, the p-dependent CS-term coefficient reveals the
amazing property of universality. Namely, either it
does not depend on dimension of the theory or abelian
or nonabelian gauge theory is studied. -

‘The arbitrariness of |1 gives us the possibility to see
CS coefficient behavior at any masses. It is very inter-
esting that p? = m? is the crucial point for CS at zero
temperature. Indeed, it i$ clearly seen from (41) that
when p? < m?, p-influence disappears and we get the

usual CS term I = =W[A]. On the other hand, when

- 12> m?, the situation is absolutely different. One can
see that here the CS term disappears because of non-ze-
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ro density of background fermions. We would like to
emphasize the important massless case m = 0 consid-
ered in [7]. Then even negligible density or tempera-
ture, which always takes place in any physical process-
es, leads to vanishing of the parity anomaly. Let.us
stress again that we have nowhere used any restrictions
on . Thus we not only confirm result in [7] for CS in
QED; at small density, but also expand it on arbitrary
M, nonabelian case and arbitrary odd dimension.

In conclusion we would like to emphasize that nev-
ertheless there is connection between chiral anomaly
and CS term at zero density due to trace identities, at fi-
nite density this connection is loosed. That is because -
of different nature of these objects. The chiral anomaly
is an effect of regularization, but the chemical potential
does not introduce new divergences in a theory. Thus it
does not influence the chiral anomaly. On the other
hand, CS term is essentially an effect of the finite part
of the theory. So, as we have seen finite density and
temperature plays a crucial role in CS term generation.
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