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SEPARATION OF VARIABLES
IN CLASSICAL AND QUANTUM MECHANICS

ON A GENERALIZED OSCILLATOR:
INVARIANCE ALGEBRA AND INTERBASIS EXPANSIONS

©1998 Ye.M. Hak(Manl), M. Kiblerz), G.S. Pogosyanl), A. N. Sissakian?

This article deals with a quantum-mechanical system which generalizes the ordinary isotropic harmonic oscil-
lator system. We give the coefficients connecting the polar and Cartesian bases for D = 2 and the coefficients
connecting the Cartesian and cylindrical bases as well as the cylindrical and spherical bases for D = 3. These
interbasis-expansion coefficients are found to be analytic continuations to real values of their arguments of the
Clebsch—-Gordan coefficients for the group SU(2). For D = 2, the superintegrable character for the generalized
oscillator system is investigated from the points of view of a quadratic invariance algebra.

1. INTRODUCTION

During the last 30 years, superintegrable dynamical
systems have been the object of considerable interest
(see [1-10] and references therein). In particular, nu-
merous works have been devoted to the search for dy-
namical invariance algebras (especially quadratic alge-
. bras) of nonrelativistic systems with potentials present-
ing singularities. Such systems are important in various
fields (e.g., Aharonov—Bohm effect, Dirac or Schwing-
er monopoles, confining problems, supersymmetry,
etc.).

It is the aim of this paper to investigate the system
with the potential

D
V=3V,
1 1“1l 1 @
_ 1 2.2 ipt = 2___
V, = 2Q xa+2Px:, P =k P
where Q>0 and k> >0 (a=1,2, ..., D). This system

was already discussed for D = 2 by the late Prof.
Smorodinsky and his collaborators [1] from a classical
and quantum-mechanical point of view. We shall be
concerned here mainly with D = 2 and 3 for which the
spectrum of the Schrodinger equation

HY = EV, H#-%A+V @)
will be given. Emphasis will be put on interbasis ex-
‘pansions in terms of analytic continuation of Clebsch—
Gordan coefficients (CGc’s) for the group SU(2). As

another important result, we shall introduce a quadratic
invariance algebra in the D = 2 case.
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2. D-DIMENSIONAL CASE

We briefly consider here the D-dimensional case in
Cartesian coordinates. We start with D = 1 and look for
a solution of the one-dimensional equation (2) for the
potential V,, see (1), with x, = x and &, = k. The resolu-
tion of this equation, with the conditions ¥(x) — 0 as
x — 0 and -, leads to the normalized wave function

l
-tk
2
¥, (x; tk) = '/I‘( T 1)(4 3

X exp(—%xZ)Lf*(sz), ne N,

where L, is an associated Laguerre polynomial [5].
The normalization is such that

2 j W (x; H)*P,(x; 2h)dx = B, ()

The discrete energy spectrum is given by
. E=Q@ntk+1).

Only the sign + may be taken in front of X when k> 1/2.
For 0 < k < 1/2, both the signs + and — are admissible.
For k = (1/2)7, due to the connecting formulas [11] be-
tween the (even and odd) Hermite polynomials #,(x)

and the Laguerre polynomials L*'/? (x?) and by put-

ting p = 2n + 1 for the sign + and p = 2n for the sign —,
we immediately have

i) - (&) P 2 el

We now deal with the D-dimensional case. In this
case, the Cartesian wave function, that vanishes when
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x,—0ande (a=1,2,...,D),is

_ D
¥ xi k) = [0 250,
a=1
wheren=n,,...,npwithn,e N,x=x,,...,xpandk =
=k, ..., k,. The energy is

b
E = Q[2n+D+ Z(ik,,)],
q=|

wheren=n; +ny + ...
number.

+ np is the principal quantum

3. TWO-DIMENSIONAL CASE
3.1. Cartesian basis

In Cartesian coordinates (x; = x, = y), the wave
function is

¥, (5 : 2k ) = ¥, (6 1), 0 k), ()

where ¥, (with a = 1, 2) are given by (3). Note that
'we have the new constant of motion

1 k'—% "2_}1
N = 75| Du=Dyy + . (6)

(in addition to the energy), where Dog = -aa,, + Q% is
the Demkov tensor [12].

3.2. Polar basis
In polar coordinates (p, @), the potential (1) reads

1 .2 1

kf‘—— kz—"
V-'szz" S| —+— |
2p cos’ @ sin'@

for which equation (2) may be separated by seeking a
solution in the form R(p)d)((p) This leads to the system
of coupled differential equations

2 1

ki =
174

cos’p

1
ki—-

4o = o,

2
dog+ A"~ )
sin (P (7)

1 22 Al
[-‘;dp(pdp)+2E-Q p ——z]R -0,
P

where A is a polar separation constant.

The solution ®(¢) = ©,,(¢; tk,, 1k,) of the angular
equation in (7) with the conditions
>O) = <I>(’-2‘) =0 ®)
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is easily found to be
CmEk 2k, + DmIT(mtk, Tk, + 1)
2T(mtk, + DI(mtk, + 1)
1

21k

x(cos(p)z- (sin(p) P

() =
, 9

etk (cos 2¢),

where m € N and PP denotes a Jacobi polynomial.
The normalization is such that
x/2

4 [ s thy, k) D03 2k, 2O = B, (10)

Then, the separation constant A is quantized as
A—2m+k,+k2+l (11)
The radial solution R(p) = R,l (P Tk, ._k)_) n(7)is

R(p) = ' 2Qn,!
P= T, +2m+k,:t:k2+2)
' Q
x(fagh) exp(- 271 6%,
where n, € N is the radial quantum number. The func-
tion R satisfies the orthogonality relation

(12)

jR W05 k1 H)R (P 2y, 2edpdp = 8,

The energy E corresponding to the n + 1 wave func-
tions

\Pn,m(p’ (P; iklr ikl) = R(P)d)((P)
(with n = n, + m fixed) is
E=Q@2n+k tk,+2), neN, (13)

where n is the principal quantum number. Note that
only the sign + in front of &, and k, has to be taken
when &, > 1/2 and k, > 1/2. In the case 0 < k, < 1/2 (with
a = 1, 2), equation (9) shows that for each n we have
four levels corresponding to (1k,, 1k;). The degeneracy
of the level with the principal quantum number nisn+1.
This degeneracy is identical to the one of the isotropic
oscillators in two dimensions, for which the degenera-
cy group is SU(2).

1Y 11
For ky =k, = (5) we have A(Z’ 2) =2m + 2,
1 1 1 1) _ 1 1) _
A(_i, —E) 2m an dA(z, i) —A( > 2) =2m+ 1.

Then, by using the connecting formulas [11] between
Jacobi and Chebychev polynomials, we obtain the four
following wave functions [3]

q}zn.?,m(p’ (P) = %tRz,.,z,.(P)COS:lm(P, n = 2n; (14)
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Yanezame 2P, @) = 1 —=Ryp 12 2m+2(P)sin(2m + 2)Q,
A (15)
n=2n+2;

Yonet,2me1(P @) = J—R2n+l am+1(P)cos(2m + 1),

(16)
n=2n+l;

' 1
\y2n+l,2m+l(p, (P) = J—R2n+l 2m+l(p)81n(2m+ 1)‘9,
an
n=2n+l

_ corresponding to the energy E = Q(n + 1). In equations
(14)+(17), we have

Q

(Jap’) exp(-30* )L, 0"
2

to be compared with the corresponding result for the or-

1895

is a polar constant of motion, the eigenvalues of which
are A (see (11)).

3.3. Connecting Cartesian and polar bases

According to first principles in quantum mechanics,
we have

n,n2 2 W:n2(+kl’ :th)\Pnpm’ (19)

where n, + m = n; + n, = n. In equation (19), it is under-
stood that the wave functions both in the left- and right-
hand sides are written in polar coordinates (p, ¢). Fur-
thermore, by using the asymptotic formula for the asso-
ciated Laguerre polynomials, equation (19) yields an
equation that depends only on the variable ¢. Thus, by
using the orthonormality property of the function ®
with respect to the quantum number m, we obtain

W:l" nz(ikl’ —kZ) =

dinary circular oscillator. o C1)"B™ (b, k) (Hh th) (20)
To close this section, let us mention that s =R B\ =R 1 =02
| kf—% kg— }1 where
M_Z—a°+ e e Iny 4 1+2%k
cos'g sin'g Ena(tky, tky) = 2 [ (sing) ™" "™ x
(18) o 1)
: k2—l k2—l 2, 4112k (_k
D S I I P SR x(cos@) " Py cos29)dg
4] ™ 2 2
' .y and
(n—-m)Im!I'(mxk, £k, + DI(n + mxk, tk,+2) 22)

Bnmlnz(-—tk],ikz) = «jzmiklikz"'l“/n 1

By making the change of variable x = cos2¢ and by us-
ing the Rodrigues formula [11] for the J acobi polyno-

l'nz!r‘(mikl + I)F(m:tk2+ l)r(nl ikl + l)r‘(nzik2+ 1).

mial, equations (20)—(22) lead to the integral represen-
tation

@mtk Tk, + )(n-mlmik tk+ DIntmtk £k, +2)

(:tkls ikz) =

’ll"z

1

2

for the interbasis expansion coefficients W7
1k,).

Equation (23) can be compared with the integral
representation [13] for the CGc’s (aboficy) of the
group SU(2). This yxelds

(ikl’

"y,
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X ”‘*"1+"**likz+l_[(l x) 1+ ) __[(1_ )m k, )

nl'nz‘m'r‘(m + kl + l)r(m ikz + Z)F(nl e kl + 1)r(n2 + k2 + 1)

(23)
mik,

ldx

n,nz(ikb ikz) = ( 1) p<abaﬁ|0'¥)
With20=n| +n2:tk,, 2b'=n1+nzi'k2,20=2m:tkli
ikz, 20 = n; — nzikl and ZB ny — ny ikz Since the
quantum numbers in (24) are not necessarily integers or
half of odd integers, the coefficients for the expansion

(24)
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of the Cartesian basis in terms of the polar basis may be follows from the orthonormality property of the SU(2)
considered as analytical continuation of the SU(2) CGc’s. Thus, the relation

CGc's. ~ ny
The inverse of equation (19), viz., - _ Wan(tky, £ho) = W, (tk,, 2k;)
gives the expansion coefficients in (25). The SU(2)

"o CGc’s can be expressed [13] in terms of the hypergeo-
= z Wa m(tk,, £k)¥, o, (25)  metric function 3F,(1), so that equation (24) can be re-
n; =0 written as

n!r(nz +mz k2 + 1)
JnT(mtk, + DI(mtk, + 1)

Wo, (Gky, tky) = (-1)”

aLs)

1}

r(n,ik|+l)r(mik|:tk2+l) —n—mq:kl:sz“l,—nz,—m
+ A
xAﬁz’"—"‘ et Ty £ 5y + DT+ m 2k, 25, +2) 3F2

—ny—ny—ny—-m¥k,

By using symmetry properties for ;F,(1), we arrive at the expression

1"t
ETAR

Tmtk, Tk, + DI(mtk, + 1)
+ \
J(Zm k i tmin T £ £, + 1)

(ikl’ ikl)

n,n,

(ny £k, + DI, Ty + 1) ‘Fz[—m, mtk,tk,+1,-n,

26)
Tin+mtk,tky,+2) Iy

1+k,y—ny~n,

- _ Altemnatively, by using the formula [14] connecting the Hahn polynomial hf,“‘ 2 and the function 3F,(1), we obtain

m - min !T(m Xk, Tk, +1)
Wty k) = (=1) «ﬂzmik‘ik”l) lnz'r(mik,u)r(r;ikzn)

[ (n, 2 ky+ DDI(n, 2 ky + 1) 2y 21
Tn+mtk,tk,+2) "

(ny,ny+ny+ 1)

in terms of Hahn polynomials.

3.4. Invariance algebra [ J(a) 7 = J(a) [ Jga) J(za)] = i)
Let us consider the following realization of the :

SU(1, 1) generators (1, 5801 = is?

1 ki B ‘11 with the Casimir operator

” 2.2

.Ig) = m —ax"'x""g X, t —'xi— » 0, = [Jf,"’]z— [J('a)]z_ [J(zll)]2 = %(kﬁ- 1). @27
I = a0, = é(x..a,. ¥ %) Introducing the raising and lowering operators /¥ =

We thus have two copies (for a =1, 2) of the Lie alge- = J('a) £iJ", we get

bra SU(1, 1) given by . U919 = 19, (J9, 1] = 2 Jo

2
and Q, = [J§&] - I -1,

SIREPHAS ®U3UKA ToM 61 N 10 1998
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As an irreducible representation of SU(1, 1), the posi-
tive discrete series consists of an infinite number of
states. Each of these.states will be denoted as {j,m,),
where m, = j, + n, (n,=0, 1,2, ...). The eigenvalue of
the Casimir operator is

Qa = ja(ja"‘ 1),
so that from (27) we have j, = % a1z ka). The matrix el-

ements of the generators of the group SU(1, 1) may be
obtained through

(a)l.]am ) - mal]am )

J@ (28)
JOUumy = J(m Ej)m T jo t Dljym, 1)
with J i j = 0. Let us now define
Co = I +IP, €y =P +J2. (29)

Equation (29) corresponds to the direct sum of the two
SU(1, 1) algebras for a = 1, 2. The coupled basis |jm)
satisfies

Colim) = mljm) = (j+m)ljm),
Qljmy = j(j - Dijm).

Given the values j, and j 12, the parameter j can take the
discrete values

J=h+i2+q,
The Clebsch—Gordan decomposition yields

qe€ N.

lim =, Cirdamym| jm)Ljsm,) ® Lims),
m = m;+m,
with 2j, =1 ik,,,2m =2n,+ 1%k, }and2j 2g+2%
+ k, + k,. By using the connection between the SU(1, 1)
CGc and the 3F (1) function [15], one can obtain the
same hypergeometric function as in (26).
Note that the Hamiltonian H of our two-dimensional
oscillator system is
H = ZQCO .
From (28) and (29), we recover the spectrum of the sys-
tem as given by (13) with n=n, + n,.
Let us consider the two following operators:

N - ng) _ Jf)z)
= 01 O 2D U SO0
They commute with H. Indeed, they are nothing but the

integrals of motion (6) and (18). Moreover, let us de-
fine a third operator T via T = [N, M]. We have

T = 20/ _ j0 @y

SAOEPHAS ®U3HUKA . tom 61 Ne 10. - 1998
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or

k- A 1
{(3,+0)- =42, 1),

2Qx° 2) 2Qy 2

The operators N, M, T and H span a closed quadratic al-

gebra since

+

K-k
(M, T] = -2(MN + NM) + —'2?'11- N,

[T,N] = —2N*+ B am_ k-1
2Q
hold in addition to [N, M] =T, [N, H] =0 and [M, H} =0.
In the limiting case k; = k, = 1/2, we obtain a qua-
dratic algebra too. In this case

1

1 2
= m(Dxx_D_\'y)’ M = ZLU

T=- Q(D,, D,)- =D, L,

ZQ

Instead of N, LZ and T, we can consider N, L, and [N,
L,). In this regard, by putting
1
P 1 = N N P 2 = E,LZ’

we end up with the Lie algebra correspondmg to the
commutation relations

[P, Pl = igynP,, ki,me{1,2,3}.

Finally, going back to the genenc case for k, and k,,
we define .

Py = [PI’P2]— QD

L, = —%(2N=Fk,‘:tk2)
and .
s
S ik m k)

@
Jny £ k), £k, + 1)

They act on the eigenfunctions (5) of the Hamiltonian H as

1
LO\Pu,n, = i(nz -n )\{ln,nz’

1_1 1_1
LiT":"z=J(n‘+2 2)(’12"’5:’:5)\1”"'*“&1].
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The operators Ly, L, and L_ generate the Lie algebra  R(r)@(8)®(¢p), we are left with the system

SU(2) with |
(Lo, Ly] = £Ly, [L, L] = 2L,

. and are closely connected to our integrals of motion.

4. THREE-DIMENSIONAL CASE
4.1. Spherical basis

. In spherical coordinates (r, 8, ¢), the potential (1)
can be rewritten as

V= %erz +

) 1 ,2 1 I |
K-2 kB-2) K¥-2
+L[1 £, 5a) B

3| T2 ) .2 2
2r'|sin"®| cos’e sin“@ | cos‘®

Looking for a: solution of ‘equation (2) in the form

2 1

H-3 K-3
|dpp+ A~ —-—2 10 = 0,
cos' @ sin‘Q

(30)

1 .
[mda(sln ede) +

2 1 " (31)
2 377
A 4]9

+JJ+1)-

X 2 o,
sin‘® cos0
JU+1)
2

’

The solution ®(¢) = d,,(j; +k,, Tk,) of equation (30),
satisfying the boundary conditions (8) and the normaliza-
tion condition (10), is given by (9). The separation con-
stant A in (30) and (31) is quantized according to (11).

The solution &(9) = ©,(6; 1k £ ky  ky) of (31) is
(see [SD ‘

[—-lid,(rzd,)+2E-err2+ ]R 0. (3
r

0@) = [[Zm+a+DEk Tk kg g+ 2mEk thiky+2)

Tgtk;+ DI(g+2m+2tk, +ky)

which satisfies the boundary condition

o) = 9(’5‘) =0

and the normalization condition
x/2

2 [ ©,(0; 2k, thy, 2h)*
0
X ©,,(0; 1k, tk,, +k;)sin0dO = Gq-q.
The spherical separation constant J in (31) and (32) is
J= 2q+Aik3+% = 2q+2mik,ik2ik3+%.

The solution R(r) = R, gm(Ts 2y, 2ky, £k3) of equa-
tion (32) is

3
2 |
k() = \/ T +29+ 23:)1'1:,¢ LEE+3)
x (@)Jexp(-%rz)l,:f %(Qrz)
with
[R,(r3 ko, ko, k) x
.

XR,"qm(r; ikl, ikz, :tk3)r2dr = 8 L

nn,

11&, -
(cos8)* (sin8)" Py " (cos20),

where n, € N is the radial quantum number.
The energy of the system is

E= Q(2n,+]+g) = Q@2ntk thkytk;+3),
ne N,

where n = n, + q + m is the principal quantum number.
It corresponds to the wave functions

o (7, 8, @; 1y, tky, Hk3) = R(r)O(B) ()

with n fixed.

4.2. Cylindrical Basis

In cylindrical coordinates (p, @, z), we have
1 1
k-~ <

V=lgzp2+ ' 24+ 24

2 2p“{cos’p sin‘g

2
1 ky =

+

1

| S

+1 Q'+ 4 .
2 2

The corresponding Schrodinger equation may be
solved by looking for a solution in the _form
R(p)®(9)Z(z). By combining the results of Sections 2

SNEPHAS ®U3UKA Ttom 61 N 10 1998
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and 3, we get
Z(2) =Y, (z; 1ks),
R(P) = Ry n(P: hy, 2hy),
as given by (3), (9) and (12), respectively. The energy
E=Q@2ntk tkytk,+3)
corresponds to the wave functions
WY, mny(Ps @, 23 k), 2k, 1h3) = R(PYP(P)Z(2)

for which the principal quantum number n =n, + m + ny
is fixed.

D(p) = D, (¢; Lk, 1k)),

4.3. Connecting Cartesian, Cylindrical
and Spherical Bases

In the three-dimensional case, we have

ny+n,

2 W n (k1 £k,

"1"2"1 =
Ro+ny

n‘,mn1 E ,

where n; + n, =m + n, and n, + q = n, + n;. For the ex-
pansion of the Cartesian basis over the spherical basis,
- we have

(—kl’ ikZ! -—kS) \Pn,qrm

\Pn,nzn, = z n|n2n3(ikl’ ikZ’ —k‘i)‘{l ngqm>
mq

where n; + ny + ny3 = n, + ¢ + m. The coefficient
W, . (Xk,, tk,) is identical to the one found in the two-

Late]
dimensional case. It is given by (24). Sumlarly, 1t is
easy to obtam

VI |k, thy, Hky) = (-1)"""(a'b'a'[3'|c'y'), (34)

where 2a' =ny + nyt ks, 2b'=ny + ny + 2m+ 11k 1 ky,
2" = 2q+2m+1:tklj:k2:l:k3,2a—n3—npik3and
2f'= 2m+n,,—n3+1:|:kl:tk2'I‘hcexpansxoncoefﬁ-
cients in (33) are given by the formula

(":lnzlzns(—kh —k2: :tka) =
= Wn,nz(ikb :tkz) VZ u,(ikh ikz, :tk;)

(33)

(35)

Ne 10
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The value of the right-hand side of (35) follows from
(24) and (34).
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