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This article deals with nonrelativistic study of a D-dimensional superintegrable system, which generalizes the
ordinary isotropic oscillator system. The coefficients for the expansion between the hyperspherical and Carte-
sian bases (transition matrix), and vice-versa, are found in terms of the SU(2) Clebsch—Gordan coefficients an-
alytically continued to real values of their arguments. The diagram method, which allows one to construct a

transition matrix for arbitrary dimension, is developed.

1. INTRODUCTION

The present article represents a generalization of the
work done by one of the authors (G.P.) fifteen years
ago together with Ter-Antonyan and Smorodinsky [1].
It could also be considered as a continuation of the
work [2] published in these Proceedings. Here we study
the superintegrable D-dimensional oscillator system
[3] corresponding to the singular potential
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The constants Q >0 and k; (i = 1, 2, ..., D) are chosen

to be strictly positive. In the case of k; = 1/2, equation (1)

yields the well-known oscillator potential. - The

Schrédinger equation for the D-dimensional potential
(D

4))
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is separable in the general éllipsoidal coordinates [4]
and, particularly, in the Cartesian and polyspherical co-
ordinates. The potential (1) for D=2and D=3 belongs

to the potentials, which were systematically investigat- -

ed by Smorodinsky with collaborators in [5, 6] and lat-
er considered from a different point of view (quantiza-
tion in different systems of coordinates, path integral
treatment, invariant and noninvariant algebra, quadrat-
ic algebra, interbasis expansion) in [2, 7-13].

The plan of this article is as follows. Section 2 is de-
voted to the Schridinger equation for the superintegra-
ble D-dimensional oscillator in the Cartesian coordi-
nates. In Section 3, by using the “tree” formalism [14]
we construct the hyperspherical basis, which is the so-
lution of the Schrodinger equation in the polyspherical
coordinates. Section 4 is the calculation of the interba-
sis expansion coefficients between the hyperpsherical
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and Cartesian bases and determines the graphical meth-
od of constructing the transition matrix.

2. SOLUTION -
OF THE SCHRODINGER EQUATION

2.1. Cartesian Basis

The Cartesian wave functions, vanishing as x; — 0
and x; — oo (i=1, 2, ..., D), have the following form
[2, 10-12]:
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where X = (xy, .., Xp)y 1 = (s -, ip), ny€ Nand L (%)
are associated Lagerre polynomials {15]. The wave
function (3) is non‘ng.lized in the domain [0, <)

I‘{ln‘(x)*\}’n'(x)dx = 2lD8n'ns ’ . (4)
° _ .
and the energy spectrum is

D
E=Q) (2ntk+1) =
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i=1

where N = n, + n, + ... + np is the principal quantum
number. Note that the positive sign at k; has to be taken
when k; > 1/2, and both signs, positive and negative,
must be taken into account if 0 < k; < 1/2. -

2.2. Hyperspherical Basis
Consider the system of coordinates

- 2 2 2
X =UrXx, r= Jx, + X34 ...+ Xxp, 6)



1874

mn
N
X
2
3

Figure.

where the Cartesian coordinates x; (i=1, 2, ..., D) de-
note the point on the (D - 1)-dimensional unit sphere
Sp-1: 2” "-2 = 1. Looking for the wave function
¥(x) in the form

¥(x) = R(")Y(ih X2, ---,io) Y

after partial separation of variables in the Schridinger
equation (2) we come to the differential equation for
the radial function R(»)

4R D-1dR +{ZE_£’_+'_IZ_—Q_QZ#}R =0,(8)
r

;;2- r dr

and to the equation describing the guantum motion on
the S, _ , sphere with the Rosochatius potential [16]

ok-l -
[ ] = 0+D-2)Y, O

Table 1
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where [ is the hyperspherical separation constant. Here -
A is the Laplacian on the sphere and has the form

D .
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To solve equation (9) via separation of variables in the
polyspherical system of coordinates, we follow the
graphical method, which was developed by Vilenkin,
Kuznetsov and Smorodinsky in paper [14]). According
to this method it is useful to associate a polyspherical
system of coordinates with definite graph, called
“tree”. In the D-dimensional Euclidean space with the
coordinates X,, X,, ..., Xp any tree has D free points
and D - 1 nodes. To each node we ascribe a spherical
angle 6, (i=1, 2, ..., D - 1) and for each line, opened
(free) or closed, which goes to the right or left side, we
write a function sin 6; or cos®0;, respectively. In this
case, the coordinate X; may be represented as a product

it = X@i,-xtai,-

-of all the lines coming toward itself. For example, to the

tree on Figure there comrespond the following poly-
spherical coordinates:

X, = cos8,c080,, X, = cose,sin62c0s63,

X; = cos0,sin0;sin0;, x, = sin0;cosO,cos0;,

© %s = sin®,cos0,sin6;, X, = sin®,sinb,.
To construct the separated solution
D-1

Y(il’ iz: ) ip) = ka(ek)
k=1

for equation (9), we follow the paper [14] and introduce
four types of vertices or elementary “cells” on a tree, as
illustrated in the first line of Table 1.
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D i ' . - - N. A N, N,
[1G)Y" (cos8)"(sin@)" (cos8)™( sinO)N' (cos®) *(sin®)"” (cos@) ‘(sin®) "
i=1 .
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Consider the general cell d) with two closed end-
points on the first line of Table 1. Let I, I, and I be sep-
aration constants corresponding to the nodes on the cell
d) and the parameters v, and v, represent numbers of
nodes above the origin of the cell to the left and right
sides, respectively. Then, the separated equation corre-
sponding to the angle 6 = 6, is

[——;diﬁcos ‘Bsin 6‘—;15+l(l+ v, + v,)—-
cos 'Osin ‘0 an
L;+v,-1) L +v, -1
cos 0 sin" @

Equation (11) is of a Poschl-Teller type, and the corre-
sponding solution {17], orthonormalized in the region
6 e (0, n/2], has the following form:

FO)=F y.10(6) =

(a,a,) (o, a;) (12)
=N,” '(cose) (sm9) P, " (cos26),

where g=0,1, 2, ... is a spherical quantum number and

: v,—1 : v,—-1

o =1+ , O, =l +——,
2 ! 2 (13)

2g = 1-1,-1,.
The normalization constant is
N(a.ﬁ)

A/2(2q+(1+B+ DI'(g + 1)l"(q+a+|3+ 1) (14)

, T(g+a+1)I(g+B+1)
The solutions to the separated equations for other cells
a), b) and c) on Table 1 may- be found from equation
(12) by ad]ustmg to. every free endpomt x;, vi=0and

the “momentum” /; = 1/2 + k;. These functions are writ-

;en in the fourth hne of Table 1 and have the following
orm:

Fi; 22, (8) = f.ﬂho 1,0 ®) =
(2k, £k)) L, oty (15)
—%—(cose) (sme) Pq 7" (cos20),
fik,.;,,(e) f,m, NOE
(tk ) (16)
= ’ (cose) 7t i(sinO)"P(a"ﬂ")(COSZO)
"5 A «  (cos20),
fi +24,(0) = ./5 ,p ; 2ﬂ,0(9) =
(@ tk) - an

l .
_L_(cose) (sme) "P:ﬂﬁa‘)(cos

J2
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Let us go to the radial equation (8), which has the or-
thonormalized solution

{+D2
2Q n,!

R(r)=R, (7) = T(n,+1+D/3) X

b2 (18)
QN7 2
X exp —Er rL, Qr),
where n, € N is a radial quantum number and hyper—

2= (qi th;+1/2) + (1/2 £ k). The

energy spectrum is given by equation (5), where the
principal quantum number now is N=n,+q; +¢q, + ...
+ qp. - The total hyperspherical wave function (7) is
given by formulae (18) and (10)

W, (. 8) = R, (HT\(¥), (19
where 0 = (9], veey GD_l), I= (ll’ 12, veny ID—I)1 and the
connection between the spherical quantum number ¢

and the separation constants /; are represented by the -
fourth line in Table 1.

momentum [ =

3. CONNECTING CARTESIAN
AND HYPERSPHERICAL BASES.

For the fixed value of energy we.can write the ex-
pansion of the Cartesian basis W ,(x) in terms of the hy-
perspherical basis ¥, ,(r, 8) in the form

Yo x) = YWk, ...

ol

:tkN)‘yn,,l(r’ 0)- (20)

Here, the sum is taken over (D — 1) quantum numbers
q=(qy, --., 9p-) and determined by the condition N =
=ny+...+np=n+q; + ... + gp_,. By multiplying
both sndes of the expansxon (20) by the factor 7 and
using the asymptotic formula for the associated

Laguerre polynomials L (x) for large x
(= )

L,(x (21)

equation (20) ylelds an equatlon dependent only on
variables 6. Then, by using the orthogonality property
of Yy(0) in the region 6; € [0, ©/2], we obtain the inte-
gral representation for the transition matrix (20)

N Cl
Wa Yk, .., thy) = M[dQ@Y (O] )", 22)

where
M- (-1};’"”' Py T(n, +l+D/2) 23
41‘[[»: AL(n £ k;+1)]
i=1
" and &; = (2n; 2k + 102).
10¢
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To calculate the transition matrix (22), we must
know exactly the form of the tree, corresponding to the
polyspherical coordinates, and the contribution from
each of the cells (see Table 1) to the functions d€2(0),

Y,(8) and 7., (%)". Therefore, the matrix (22) in-
cludes only four types of mtegrals
n n‘(:tkn —-k ) =

=2 0 i (24)
= | (cos8)"(sin®) 'fﬂ,.;ﬂ,(e)de,

pr.,.,)v,(iki; lav) =
e N (25)
j (cos8)"(sinB) " fas, 1 (8)d9,

0

Fr,i (Lo v £k)) = o
x/2 N i (26)
j(cose) *(sin8)"f}, 4 (6)d0,

F:V,.N,(l.n Vss In V,) =

2 _ 27
j (cos8) “(sin8) ' f}., ()6, -

where N, and N, are the sums over all n; above the cell
on the left and right sides, respectively.
Let us now calculate the general integral (27). Using

the Rodrigues formula for the Jacobi polynomials [15],
we obtain

1-4,-1,
2

1

N4+N AL+l +v,+v, +2

2

Vet v,

(l+———2 )

1-1.-1, I+1,-
F(—z +1)I‘( >

I,(l+l£+l,+v,-;-v,)l . .
_[(1+x) T -x)

F(l_l;+ l,+ v,; 1) 5

!
FN,; N,(I.v Vss ln Vr) =

X
I V,+1)
+

> L+l vt 1 I-l+l, v,-1
X dt-l_l[(l +x) ° 2 a- X) ? 2 ]dx
dx 7 .

(28) .
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Comparing (28) with the integral representation of the
Clebsh-Gordan coefficients C_ ., for the group
SU(2) [18], we obtain

S ol Vii Lo v,) =

" 1-1,~N,

q+ 29)
ey K" Cel ,n
ﬁ . “ao; bp
with
N,-1, N, +l, v,+1
bvileve r( 2 ”)r( 2 2 )x
N M F(N,+N,+l+v,+vv,+1
T
(30)
N,-l, N\ (N,+l, v,+1
xr(2+1)r(2 + 2.)
N,+N -1 =
I‘(————z' +1)
and
4a = -, +N,+N, +v,-1,

4b = I, -1+ N,+ N, +v, -1,
4o = [, +1,+N,—-N, +v,-1,
48 = I, +1,+N,—N,+v, -1,

—1+v,-l
2 2’
ve-1 v, -1

2 2

By realizing that the integrals (24)—(26) may be ex-
pressed through the integral (27), we obtain

2c =1+

2y = L+, +-=

FL; (ko k) = S, ,,,(1+k 0; 3 £k, o) 31)

F’N,ﬁj(l.\" Vo ]) = J_FN nl(l :tkp 0)9 (32)

:;E

n N(knl Vr) =

G:tk,,o L v) (33)

"IE
Thus, the contributions from the four types of cells in
the matrix (22) are calculated and given by formulae
(29) and (31)—(33).

Let us now construct the transition matrix (22). At
first, we need to prove that the matrix (22) can be ex-
pressed in terms of the product of the Clebsch—-Gordan
coefficients only. Indeed, let “s”, “r” and “d” be the
quantum numbers corresponding to the cells “s” and
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Table 2
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r” corresponding to the left and right top in this cell
and “d” being the origin of the cell. Therefore, using the
relation v, = v, + v, + 1, we can write

vl v,

KNJ‘ NI

K, rs dy = O

————t

@ - 9

where

£Gi) = JF(Ni; "‘+1)F(N"2+ "’+""2+ l). 35)

The full contribution of constants (30) to the transition
matrix (22) is equal to the product of the constants (34)
upon all the cells

. D-1

D
N O N =
.-IZI.K"(Sf r; d>‘ f( d)gf(t)

D (36)
[IT(;+ DT £k;+ 1)

= Ji=t

I'(n,+1+D/2)[(n,+1)°’

where n, + N, = 2n,_+ 1. Then, the contribution of all the
constants (30) with the coefficient (23) is eliminated
and for any tree the transition matrix (22) has the fol-
lowing form: ‘

D-1 :
Wa 3k, . hp) = TID" " PC2T 0 37)
. i=1
with a;, b;, a;, B;, ¢;, ¥; given by formula (29), and the
multiplication is taken upon all the cells. The quantum
numbers in (37) for k; # 1/2 are not integers or half or
odd integers and, therefore, the coefficients in the ma-
trix (37) may be considered as an analytic continuation
.of the SU(2) Clebsch—Cordan coefficients for the real
values of their arguments. For D =2 and D = 3 we ob-
tain the result from paper [2].
Determine now the graphical methods of construct-
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ing the matrix. (37), which we call a transition “tree”
and which is identical to the corresponding hyperspher-
ical “tree”. Let the “momentum” 1/2 + k; and Cartesian
quantum number n; = 2n; + k; + 1 correspond to any
free endpoint of the tree and the separation constants /;,
the numbers v;and N, = Zr'i,- cbrrespond to the nodes.
Then, after drawing the transition “tree” and multiply-
ing the contributions from all the cells in the tree ac-
cording to Table 2, we come to the final result in the
form (37).

Because of the orthogonality properties for the
SU(2) Clebsch~Gordan coefficients, the inverse expan-
sion could be written as '
¥ ne)= Y w™

nmitmt..+np=N

(Ek,y, ..., ky)Po(X).

4. CONCLUSION
One of the main results of this paper is the construc-

. tion of the hyperspherical wave function which is the

solution of the Schridinger equation for the motion on
the (D - 1)-dimensional sphere for the Rosochatius po-
tential [16] and which generalizes the classical hyper-
spherical function for k; # 1/2 [14].

We have also calculated the transition matrix be-
tween the hyperspherical and  Cartesian bases and
shown that the Clebsch-Gordan coefficients entering
into this matrix are the analytic continuation of the
SU(2) Clebsch—-Gordan coefficients for real values of
their arguments. In addition, we propose the diagram
method, the “transition tree”, which allows one to con-
struct a transition matrix for an arbitrary tree.
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