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Abstract 

Two closely related topological phenomena are studied at finite density and temperature. These 
are the chiral anomaly and the Chem-Simons term. Using different methods it is shown that 
/z 2 = m 2 is the crucial point for Chern-Simons at zero temperature. So when /x 2 < m 2 the /z 
influence is absent and we obtain the usual Chern-Simons term. On the other hand, when/z 2 > m 2 
the Chem-Simons term vanishes because of the non-zero density of the background fermions. 
The chiral anomaly does not depend on density and temperature. The connection between parity 
anomalous Chem-Simons and the chiral anomaly is generalized at finite density. These results 
hold in any dimension in abelian and in non-abelian cases. © 1998 Published by Elsevier Science 
B.V. 
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1. Introduction 

Topological  objects play a great role in modern physics. In particular, here we are 

interested in Chern-Pontr iagin  and Chern-Simons  (CS)  secondary characteristic classes. 

This corresponds to chiral anomaly in even dimensions and to CS (parity anomaly)  

in odd dimensions.  Both phenomena are very important in quantum physics. Chiral 

anomalies  in quantum field theory have direct applications to the decay of  7r0 into two 

1 E-mail: shevch@nusun.jinr.ru. 

0550-3213/98/$19.00 (~) 1998 Published by Elsevier Science B.V. All rights reserved. 
PH S0550-3213  (98 )  00 148-5 



456 A.N. Sissakian et al./Nuclear Physics B 518 (1998) 455-472 

photons (7ro ~ 9'9') in the understanding and solution of the U(1) problem, etc. On the 
other hand, there are many effects caused by the CS secondary characteristic class. For 
example, the appearance of gauge particle mass in quantum field theory, applications 
to condensed matter physics such as the fractional quantum Hall effect and high Tc 
superconductivity, the possibility of theory construction free of metric tensors, etc. 

It should be emphasized that these two phenomena are closely related. As shown (at 
zero density) in Refs. [ 1,2], the trace identities connect the even dimensional anomaly 
with the odd dimensional CS. The main goal of this paper is to explore these anomalous 
objects at finite density and temperature. 

It was shown [3-5] in a conventional zero density and temperature gauge theory 
that the CS term is generated in the Euler-Heisenberg effective action by quantum 

corrections. Since the chemical potential term/zq~y°~b is odd under charge conjugation 
we can expect that it would contribute to the P and CP non-conserving quantity, the CS 
term. As we will see, this expectation is completely justified. The zero density approach 
is usually a good quantum field approximation when the chemical potential is small 
compared with the characteristic energy scale of physical processes. Nevertheless, for 
the investigation of topological effects this is not the case. As we will see below, even 
a small density can lead to effects. 

In the excellent paper of Niemi [ 1] it was emphasized that the charge density at 
/z v~ 0 becomes a non-topological object, i.e. contains a topological part as well as 
a non-topological part. The charge density at /z 4 : 0  (non-topological, neither parity 
odd nor parity even object) 2 in QED3 at finite density was calculated and exploited in 
Ref. [6]. It should be emphasized that in Ref. [6] the charge density (calculated in the 
constant pure magnetic field) contains in addition to the parity odd part corresponding to 
the CS term, the parity even part, which cannot be covariantized and does not contribute 
to the mass of the gauge field. Here we are interested in the influence of finite density 
and temperature on the covariant parity odd form in the action leading to gauge field 
mass generation, the CS topological term. Deep insight into this phenomenon at small 
densities was reported in Refs. [ 1,2]. The result for the CS term coefficient in QED3 
is [tanh ½fl(m- #) + tanh ½fl(m +/~)] (see Ref. [2], formula (10.18)). However, to 

obtain this result it was heuristically assumed that, at small densities, the index theorem 
could still be used and only the odd energy part of the spectral density is responsible 
for the parity non-conserving effect. Because of this it was stressed in Ref. [2] that the 
result holds only for small/z. However, as we will see below this result holds for any 
value of the chemical potential. Thus, to obtain reliable results at any value of /~  one 
has to use a transparent procedure free of any restrictions on/z,  which would allow us 
to perform calculations with arbitrary non-abelian background gauge fields. 

It was shown at zero chemical potential [ 1-3] that the CS term in odd dimensions 
is associated with the chiral anomaly in even dimensions by trace identities. As we 
will see below it is possible to generalize a trace identity to the non-zero density case. 

2 For brevity, for the parity invariance properties of local objects, we will keep in mind the symmetries of 
the corresponding action parts. 
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The trace identity connects the chiral anomaly with the CS term which has a At and 
T dependent coefficient. Despite the fact that the chemical potential and temperature 

give rise to a coefficient before the CS term they do not influence the chiral anomaly. 
Indeed, the anomaly is a short distance phenomenon which should not be affected by 
medium At and T effects or, more quantitatively, as the anomaly has ultraviolet nature, 
the temperature and chemical potential should not give any ultraviolet effect since the 
distribution functions decrease exponentially with energy in the ultraviolet limit. 

This paper is organized as follows. In Section 2 the independence of the chiral 
anomaly of temperature and background fermion density is discussed. It is shown in 
the two-dimensional Schwinger model that the chiral anomaly is not influenced by the 
chemical potential At nor the Lagrange multiplier x in the conservation of chiral charge 
constraint. In addition, we consider the appearance of the CS term at finite density 
in even dimensional theories. In Section 3 we obtain the CS term in thee-dimensional 
theory at finite density and temperature using different methods. In Section 4 we evaluate 
the CS term coefficient in five-dimensional theory and generalize this result to arbitrary 
non-abelian odd-dimensional theory. In Section 5 we generalize the trace identity to 
finite density on the basis of the previous calculations. Section 6 is devoted to the 

concluding remarks. 

2. Chiral anomaly  and Chern-S imons  term in even dimensions 

As is well known, the chemical potential can be introduced into a theory as a Lagrange 
multiplier following the corresponding conservation laws. In non-relativistic physics this 
is the conservation of the full number of particles. In relativistic quantum field theory it 

is conserving charges. The ground state energy can be obtained by use of the variational 
principle 

(~b*/:/~) = man (1)  

under the charge conservation constraint for the relativistic equilibrium system 

(~*O~b) = const, (2) 

where / )  and Q are the hamiltonian and charge operator, respectively. We can use the 
method of undetermined Lagrange multipliers instead and seek the absolute minimum 
of the expression 

(0" (~0 - AtO~O), (3~ 

where At is the Lagrange multiplier. Since ~) commutes with the hamiltonian (]o) is 
conserved. 

On the other hand, we can impose another constraint which implies chiral charge 
conservation 

(4'*~)5~b) = const, (4) 
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i.e. in the Lagrange approach we have 

(~p* ( / t / _  KQs)~b) = min, (5) 

where K arises as the Lagrange multiplier at the (fioo) = const constraint. Thus, /z 
corresponds to the non-vanishing fermion density (number of particles minus number 
of antiparticles) in the background, r is responsible for conserving asymmetry in the 
number of left- and right-handed background fermions. 

It should be emphasized that the formal addition of a chemical potential to the theory 
appears like a simple gauge transformation with gauge function/zt. However, it not only 
shifts the time component of the vector potential but also gives the corresponding pre- 
scription for handling Green's function poles. The correct introduction of the chemical 
potential redefines the ground state (Fermi energy), which leads to a new spinor propa- 
gator with the correct • prescription for poles. Therefore, for the free spinor propagator 
we have (see, for example, Refs. [7,8] ) 

G ( p ;  lz)  = 
+ m 

(lYo + i•  sgnp0) 2 - p2 _ m z'  (6) 

where/~ = (po + /z ,  p) .  Thus, when/z = 0 one obtains the usual • prescription immedi- 
ately because of the positivity of P0 sgn P0. In the Euclidean metric one has 

G(p;/.Q lYo2 + p2 + rn 2 , (7) 

where/~ = (Po + i/.L, p) .  In the presence of a background Yang-Mills field we conse- 
quently obtain for the Green function operator (in Minkowski space) 

1 
= (y~" - m) (y~)2 _ m 2 ÷ i • (po  ÷ / z ) s g n ( p 0 )  ' (8) 

where ,h'~ = ~r,, + 1~3~o, 1r~, = p,, - gA~,(x) .  

We will now consider the chiral anomaly. It was shown in Ref. [9] that the chiral 
anomaly does not depend on/z  and T. In Ref. [9] direct calculations in four-dimensional 
gauge theory were performed by imaginary and real time formalisms using the Fu- 
jikawa method and perturbation theory. These calculations are rather cumbersome. To 
clearly understand the /z-independent nature of the anomaly (the T-independence will 
be discussed later) we will consider here the simplest case, two-dimensional QED, and 
re-derive the result of Ref. [9] by use of the Schwinger non-perturbative method [ 10]. 
One can write 

[ ( : ) ]  J~ = - i g t r  y ~ G ( x , x  r) exp - i g  d ~ A ~ ( ~ )  , (9) 

X t Xt_..+X 

where G ( x ,  x I) is the propagator satisfying the equation 

~ ( 8 ~  -- i g A ~ ( x ) ) G ( x ,  x') = 8(x - x ' ) .  (lO) 
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Following Schwinger we use the ansatz 

G( x, x') = G°(x, x') exp[ ig( dp( x ) - (b( x') ) ], (11) 

where G°(x, x t) is the free propagator 

~,~a~G°(x, x t) = ~(x - x'). 

Thus, for ~b we can write yuau~b = yUAu. From (6) we have 

d2 p eip(x_x, ) 
G°(x'  x~) = ~ p2 + ie(po +/z)sgnp0 

+oo 

d2p eip(x_x, ) 1 2 
= - i ¢  ~ p2 + ie 2~" 

- - 0 0  

+cx~ 

xfd2P---~°O(-fiosgnpo)eip(x-x')mpz~te]. (12) 

So, beside the usual zero density part, a/z-dependent part appears. Further, we have to 

remove the regularization in the current by use of the symmetrical limit x ~ x t. After 

some simple calculations it is clearly seen that all /z-dependent terms disappear after 

removing the limit. Thus, the contribution to the current arises from the/z-independent 

part only. Therefore 

Jg  = t~---~ t3 uu 03 2 / A~, 

J~=t~-~ e u ~ - e  u~ A~, (13) 

and we obtain the usual anomaly in the chiral current 

a~J  u = 0, 
2 2 

= ig-*E (14) cg ~J~ = i-~-~e~ O~ A~ 
4¢r 

Let us now consider the influence of K on the chiral anomaly. Since, as we have 

seen above, K is directly associated with the chiral charge it would be natural to expect 

some effect of K on the chiral anomaly. However, a rather amazing situation occurs. 

The demand of chiral charge conservation (instead of the usual charge conservation) on 

the quantum level does not influence the chiral anomaly. Actually, in two dimensions 
the introduction of the Lagrange multiplier K in the chiral charge conservation gives the 
term K~TsT°~p = K~yl~p in the Lagrangian. Therefore, K has the same effect as /z, i.e. 
K does not influence the chiral anomaly (this can also be seen from direct calculations 
similar to those presented above for the case o f / z ) .  This can be explained due to the 
ultraviolet nature of the chiral anomaly, while t¢ (/z) does not introduce new divergences 
into the theory. 
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From the above calculations the principal difference between the chiral anomaly and 
CS is clearly seen. The ultraviolet regulator, P exponent, gives rise to the anomaly, but 
(as we will see below) does not influence CS. Thus, it is natural that the anomaly does 

not depend on IX, K and T because it has ultraviolet regularization origin, while neither 
density nor temperature influence the ultraviolet behavior of the theory. General and 

clear proof of axial anomaly temperature independence will be presented in Section 5 
on the basis of trace identities. 

We now consider CS in even dimensional theory. From the definition one has 

ale~a~ = f d°x(~l" (15) 

Since the axial anomaly does not depend on K, the effective action contains the term 

proportional to the anomalous Q~ charge with x as a coefficient. The same is true for the 
chiral theory. There, the effective action contains the term proportional to the anomalous 

Q charge with IX as coefficient; see, for example, Refs. [ 11-13]. Therefore, we have 

dleff = -K / dxo W[ A ] (16) 

in conventional gauge theory and 

A1chiral / "eff =- Ix  dxoW[A] (17) 

in the chiral theory. Here W[A] is the CS term. Thus we obtain the CS with the 

Lagrange multiplier as a coefficient. 

It is well known that at non-zero temperature in the /3 ---, 0 limit the dimensional 

reduction effect occurs. So the extra t-dependence of the CS term in (16) disappears 
and CS can be treated as a mass term in three-dimensional theory with coefficient iK/T 
(the same as for chiral theory with IX; see Ref. [11] ). For the anomalous parts of the 
effective action we have 

Aleff = - i K / 3 W [  A ] ,  

AI chiral = -iix/3W[A] (18) 

in conventional and chiral gauge theories respectively. The only problem arising in 
treating CS as a mass term is that the coefficient is imaginary; see discussions on this 
theme in Refs. [ 11,13]. One can see that the results (16) - (18)  hold in arbitrary even 
dimensions. Let us stress that we do not need any complicated calculations to obtain 
(16 ) - (18 ) .  The only thing we need is knowledge of the independence of the chiral 
anomaly on IX, K and/3. 
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3. CS in three-dimensional theory 

3.1. Constant magnetic field 

Let us first consider a ( 2 +  1)-dimensional abelian theory. Here we will use a constant 
magnetic background. We will evaluate the fermion density by performing a direct 
summation over Landau levels. As a starting point, we will use the formula for fermion 
number at finite density and temperature [ 1 ] 

, ( l )  
N = - ~  ~ sgn /3An 

n 

+ Z  exp(-fl(--~-~---~n)) + 1 - exp(-/~--~, ---)x)) + 1 
n 

1 Z t a n h  1 ~--,~ 1 = - 8 /~(#  - .In) - ~ ~ sgn(/z - ,~,). (19) 
2 - 2 

n n 

Landau levels in a constant magnetic field have the form [ 14] 

,~0 = - m  sgn(eB),  ,~, = ±v/2nleB[ + m 2, (20) 

where n = 1,2 . . . .  It is also necessary to take into account in (19) the degeneracy of 
the Landau levels. Namely, the number of degenerate states for each Landau level is 
leBI/27r per unit area. Even now we can see that only zero-modes (because of sgn(eB))  

can contribute to the parity odd quantity. So, for zero temperature, by using the identity 

sgn(a - b) + sgn(a + b) = 2sgn(a)O([a[ - Jb l) 

one obtains for the zero-modes 

IsB[ sgn(/z + m sgn(eB))  = ~ - ~  sgn(/z)O(I;z [ - [m[) 

+ ~-~ sgn( eB)sgn(m)O(Im I - I / z[) ,  

and for the non-zero-modes 

(21) 

o o  

l leB[ Z sgn(/z - v/2n]eB[ + m 2) + sgn(/~ + v/2n[eB[ + m 2) 
2 2~- 

n = l  

leBI ~ 
= 2~r sgn(~) Z O ( I / x l -  v/2nleBI +m2). (22) 

n- - I  

Combining contributions of all modes we obtain for the fermion density 

o o  

p =  ~ [  sgn(/z) ~ 0 ( I / z l -  v/2nleB[ + m 2) + 1 [eBI sgn(/z)O([/zf-  [ml) 
2 2~ 

~=1 
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1 eB 
+~-~sgn(m)O(Im I -Ii~l) 

[eBI ( [/~2 - m21 2 )  
= 27r sgn(/z) Int [ ~ j  + 0(I/.t I - Iml )  

eB 
+-~--~sgn(m)O(Im[- I/zL). (23) 

Here we see that the zero-modes contribute to the parity odd as well as to the parity 
even part, while non-zero-modes contribute to the parity even part only (note that under 
parity transformation B ~ - B ) .  Thus, the fermion density contains a parity odd part 
leading to the CS term in action after covariantization, as for the parity even part. It is 
straightforward to generalize the calculations to the finite temperature case. Substituting 
zero-modes into (19) one obtains 

N°= leB[27r -21tanh [~ fl (Ix + m sgn(eB) )] 

leBl[ sinh(fl/z) sinh(flm) ] 
= 47r cosh(flbe) + cosh(flm) + sgn(eB) cosh(fl/z) + cosh(flm) ' (24) 

so, extracting the parity odd part, one obtains for CS at finite temperature and density 

e B sinh(flm) e B 1 
Ncs = 47r cosh(fl/z) + cosh(flm) = ~ tanh(flm) 1 + cosh(~l.t)/cosh(flm) .(25) 

Therefore, the result coincides with the result of Niemi [2] for the CS term coefficient 
obtained for small/z, [ tanh ½fl(m-/z) + tanh ½fl ( m +/~) ]. The limit to zero temperature 
is obvious. The disadvantage of this method is that it works only for abelian and constant 
field cases. 

The result at zero temperature can be obtained by use of the Schwinger proper- 
time method. Consider (2 + 1 )-dimensional theory in the abelian case and choose the 
background field in the form 

A ~ = 2~ p~ 2 ~ -  ' F ~  =c°nst" 

To obtain the CS term in this case, it is necessary to consider the background current 

,~Seff 
= _ _  

8A u 

rather than the effective action itself. This is because the CS term formally vanishes 
for such a choice of A ~ but its variation with respect to A ~ produces a non-vanishing 
current. So, consider 

(J~) = -ig tr[y~G(x, x') ] x--.x', (26) 

where 

( i )  G(x,x') =exp -ig d(~AU(() <xldlx'>. (27) 
X t 
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Let us rewrite the Green function (8) in a more appropriate form 

[O((po + /z )sgn(po) )  O ( - ( p o  + / z ) s g n ( p 0 ) )  ] 
(~ = (ygr - m) L ( - - ~  - m - g ~  + (--~)T_---~_--~ • 

We now use the well-known integral representation of denominators 

(28) 

(x)  

, / o~ ± iO - qzi d s e  -4-ias, 

o 

which corresponds to introducing the "proper-time" s into the calculation of the Euler- 
Heisenberg Lagrangian by the Schwinger method [ 15]. We obtain 

(3O 

= ( y #  - m) [ - ifdsexp(is[(~/#) 2 - m 2 + ie] )O((po + / z ) s g n ( p 0 ) )  

o 
0(3 

+ i f  d s e x p ( - i s [  ( ')/"7"/ ')  2 - -  m 2 -- ie] )0(--(Po + /z ) sgn(po) ) ] .  (29) 

o 

For simplicity, we restrict ourselves to the magnetic field case, where A0 = 0, 
[#o, #u]  = 0. We can then easily factorize the time dependent part of the Green 
function. By using the obvious relation 

( ,~,~) 2 (190 _~_ / z ) 2  _ ,/.g2 ~._ l o t  r b-,/zv (30) 

one obtains 

G(x,x,)lx x,=_i f @o d2p _ 2rr (-~-) 2 ( r r r  - m) 

o o  

X / ds[e  is(p~ .... 2)e-isrrZeisg°-F/2 - O( -- (Po + / z )  sgn(po) ) 

o 

× ( ei  s (p2 _ m 2 ) e - is~2 e isg~rF/2 q_ e-is ( if2 _ m2 ) eiSr ? e-isgoF/2 ) ] .  (31) 

Here the first term corresponds to the usual /z-independent case and there are two 
additional/z-dependent terms. In the calculation of the current the following trace arises: 

tr[y~*(y~r m ) e  isg°'F/2 ] 2¢r~ g~U cos(gl*Fls ) 7r~ F~* 
- = + 2  ~ - ~ 7  

• * F  ~ 
x sin(gl*f ls  ) - 2 t m - ~  s in(gl*f ls) ,  

where *F ~' = e ~ # F ~ # / 2  and I 'El = , / a  2 - ~ .  Since we are interested in the calculation 
of the parity odd part (CS term) it is sufficient to consider only terms proportional to 
the dual strength tensor *F z'. On the other hand, the term 2crag ~u cos(gl*Fls)  at t, = 0 
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(see expression for the trace; we consider here that there is only a magnetic field) also 
gives a non-zero contribution to the current j0 [6] 

J~even=glgB, ( r / x2 -m 2] 1 )  
Int L 21gnl J + o(I/xl-Iml). (32) 

This part of  the current is parity invariant because under parity B --~ - B .  It is clear 

that this parity even object does not contribute to the parity anomaly nor to the mass 

of  the gauge field. Moreover,  this term has the magnetic field in the denominator of  

the argument of  the cumbersome function - the integer part. So, the parity even term 

appears to be "non-covariantizable", i.e. it cannot be converted to the covariant form in 

the effective action. Since we are exploring the parity anomalous topological CS term, 

we will not consider this parity even term. Therefore, only the term proportional to the 

dual strength tensor *F ~ gives rise to CS. The relevant part of  the current after spatial 
momentum integration reads 

q-cx~ 

2 dpo ds[e is(p~-m~) J&=f-~2m*F"/ f - 0 ( - /5o  sgn(p0))  

--o¢~ 0 

× (e is(p~-m2) + e-iS(p~-m~)mt) ]. (33) 

Thus, we obtain in addition to the usual CS part [4] ,  the/x-dependent  part also. It is 
easy to calculate using the formula 

o o  

/ d s e i S ( x 2 _ m ~ ) = T r ( 6 ( x 2 _ m 2 ) + i 7 9  1 ) 
77" X 2 - -  m 2 ' 

o 
and we eventually obtain 

2 
m 4g_~,F~ [ 1 _ O ( - ( m  +/x)sgn(m))  - O ( - ( m  - / x ) s g n ( m ) )  ] J&= 

2 
m 2 g-*FC (34) = _~1o( m _/x2) 4~ 

Let us now discuss the non-abelian case. Then A u = TaA~ and 

( J,~) = - igtr[  yUTaG( x, x') ]x~x,. 

It is well known [4,16] that there exist only two types of  constant background fields. 
The first is the "abelian" type (it is easy to see that the self-interaction ¢abcaua~' d " A b ' t C  

disappears under this choice of  background field) 

Aa~ 1. , ~  = r l a ~ v r  , (35) 

where r/a is an arbitrary constant vector in color space, F ~u = const. The second is the 
pure "non-abelian" type 

A ~ = const. (36) 
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Here the derivative terms (abelian part) vanish from the strength tensor and it contains 

only the self-interaction part F,~ ~ = oeabcaUau It is clear that to obtain the abelian 6 J  ~ ~b • ~c • 

part of the CS term we should consider the background field (35), whereas for the 
non-abelian (not containing a derivative, cubic in A) part we have to use (36). 

Calculations in the "abelian" case reduce to the previous analysis, except for the trivial 

adding of the color indices to the formula (34) 

2 
m 2 tzz)__~.Fff. (37) =  O(m - 

In the case of (36) all calculations are similar. The only difference is that the origin of 

the term o - ~ F  ~'~ in (30) is not the linearity A in x (as in the abelian case) but the 

pure non-abelian A ~ = const. Here the term t r ~ F  ~'~ in (30) becomes quadratic in A 

and we have 

m 2 ~ Jfft = -~-~]O(m -/z 2) eu~l~tr[TaA~A~]. (38) 

Combining formulas (37) and (38) and integrating over field A~ we eventually obtain 

m 2 ~s = -~ O(m -/x2)TrW[A], (39) 

where W[A] is the CS term 

g2 2 A . W[ A ] = -ff-~5~2 / d3xe~'~ tr (F~A~ - -~g ~A~A~) 

In conclusion note that it may seem that the covariant notation used throughout this 

section is rather artificial. However, the covariant notation is useful here because it helps 

us to extract the Levi-Civita tensor corresponding to the parity anomalous CS term. 

3.2. Arbitrary gauge field background 

One can see that the procedures we have used above to calculate CS are non-covariant. 

Indeed, both of them use a constant magnetic background. Here we will use a proce- 

dure completely covariant free of any restriction on the gauge field, which allows us to 

perform calculations immediately in the non-abelian case. We will employ the pertur- 

bative expansion. The zero-temperature case within this procedure has been explored in 
Ref. [17]. 

Let us first consider non-abelian three-dimensional gauge theory. The only graphs 
whose P-odd parts contribute to the parity anomalous CS term are shown in Fig. 1. 

Therefore, the part of the effective action containing the CS term is 

leCfS= ½ f A~(x) f e-i'WA,,(p)IP'~(p) 
x p 

+ l f A~(x) f e-iX(p+r)A~(p)Aa(r)IIU~a(p,r), (40) 

X p,r 
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(~) (b) 

Fig. 1. Graphs whose P-odd parts contribute to the CS term in non-abelian 3D gauge theory. 

where the polarization operator and vertices have the standard form 

H ~ ( p )  = g2 f tr[y~'S(P + k; tz)y 'S(k;  tz) ], 

k 

HJZUa(p, r) = g3 d tr[y~*S(P + r + k; tz)y~S(r + k; lz)y"S(k; ~ ) ] .  (41) 
, 1  

k 

S(k; /z )  is the Euclidean fermion propagator at finite density and temperature (7)  and 

the following notation is used: fx = ifoadxo fax and fk = (i / f l)  ~n~-oo fdk/(2~r)L 
First consider the second-order term (Fig. la ) .  It is well known that the only object 

giving the possibility of  constructing the P and T odd form in the action is the Lev i -  

Civita tensor. 3 Thus, we will drop all terms not containing the Levi-Civita tensor• The 
signal for mass generation (CS term) is H~'~(p 2 = 0) ~ 0. So we obtain 

H~, = g2 (-i2me~'~P~) (/~2 + m2)2" (42) 

k 

After some simple algebra one obtains 

I I ~  = -i2mg2eUP'~Pa (27r)2 (~:2 + m2)2 
n 

o~ i 1 
= -i2rng2e'~PaPa Z 47r ¢o~ + m 2' (43) 

t /------  O O  

where ton = (2n + 1)Tr/fl  + i/x. Performing a summation we obtain 

• g2 
H ~ = t4---~e~"p,, tanh(/~m) 

1 + cosh(f l /x) /cosh( ,Sm) " 
(44) 

It is easily seen that in the /3  ---* cx~ limit we will obtain a zero-temperature result [ 17] 

. m  2 

H #~ = t-~-~ g-~e~apaO(m2orq. I. - -  t/,2). (45) 

In the same manner, handling the third-order contribution (Fig. lb )  one obtains 

3 In three dimensions it arises as a trace of three y-matrices (Pauli matrices). 
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(~) (b) (~) 

Fig. 2. Graphs whose P-odd parts contribute to the CS term in non-abelian 5D theory. 

• (x3 
H~"=-2g3ie~a~ ~ f  d2k m(/~Z+m 2) 

n=- (2~)2 (~2 + m2)3 

• (30 
=_i2mg3eU~at ~ f dZk l 

/.4 n=-oo (27r)2 (/~2 + m2)2 ' (46) 

and, further, all calculations are identical to second order 

g3 1 
H ~ = i~-~e ~'~ tanh(/3m) 1 + cosh(/3/~)/cosh(/3m) " (47) 

Substituting (44) and (47) into the effective action (40) we eventually obtain 

1 g2 
I cs = tanh(/Tm) 

1 + cosh(/3/z)/cosh(/3m) 87r 

× i d3x e"Ua tr (A~cg~Aa - 2gA.A.A.). (48) 

Thus, we have the CS term with a temperature- and density-dependent coefficient. 

4. Chern-S imons  in an arbitrary odd dimension 

Let us now consider five-dimensional gauge theory• Here the Levi-Civita tensor is 
five-dimensional e ~'~<~z' and the relevant graphs are shown in Fig. 2. 

The part of the effective action containing the CS term reads 

leC~ = gl f A~(x) ie-iX(p+r)A~(p)A~(r)H~(p,r) 
x p,r 

+1 S A~(x) i e-ix(p+r+s)A~(p)A~(r)AB(s)HU"~'(P'r's) 
x p,r,s 

-t-½SA'(x) S e-iX(p+r+s+q'Au(p)A<~(r) 
x p,r,s,q 

xAl3(s)Ar(s)H~aBr(p, r, s, q). (49) 

All calculations are similar to the three-dimensional case. First consider the third-order 
contribution (Fig. 2a) 
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II~zVa(p, r) = g3 I tr[y~S(P + r + k;/z)y~S(r + k;/z)y~S(k; /z) ]. (50) 
k 

Taking into account that the trace of five y-matrices in five dimensions is 

tr[ 3/~yv y~yl3 y p] = 4ie~ZW~P, 

we extract the parity odd part of the vertices 

l~tZ~a =g3 i ~=~oo/ 4~)4 , 1 -~ n (t4me~'~#~Pl3r'~) (~2 + m 2) 3' (51 ) 

or, in a more transparent way, 

"+__~00 f d4k 1 
~ (2~ )  4 (0) 2 .~_ k2 -b m 2) 3 

i4mg 3 egVaflg p a 
I1---- 

+oo - i  1 
= i4mgSeg~'~/3~p~r~ ~ 6 ~ 2  w2n + m 2" (52) 

n = - -  t O  

Performing summation one arrives at 

1 g3 
//g~" = i tanh(flm) 1 + cosh(fl/z)/cosh(flm) 1-6~ 2eu~'~#~p'r'~" (53) 

In the same way from graphs Fig. 2b,c one obtains 

1 g4 
H ~ ' ~  = i tanh(/3m) 1 + cosh(fl/z)/cosh(flm) 87r 2e~va#°'s°" (54) 

and 

5 
1 g~ e ~ ' ~ ' ~  ( 5 5 )  

H ~ r  = i tanh(flm) 1 + cosh( f l t x ) /cosh( f lm)  16~r 2 

Substituting (53) - (55)  in the effective action (49) we obtain the final result for CS in 
five-dimensional theory 

1 g3 f 
leC~ = tanh(/3m) 1 + cosh(fl/z)/cosh(flm) 48zr 2 eU~'~r 

X 

xtr  (auo~a~Ot~A ~ + 3 gAuA~A~O~Ar + 3 g2 AgA~A~A#Ar)  . (56) 

It is remarkable that all parity odd contributions are finite in three-dimensional and 
five-dimensional cases. Thus, all values in the effective action are renormalized in a 
standard way, i.e. the renormalizations are determined by conventional (parity even) 
parts of the vertices. 

From the above direct calculations it is clearly seen that the chemical potential and 
temperature-dependent coefficient is the same for all parity odd parts of the diagrams 
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and does not depend on the space dimension. Therefore, the influence of finite density 

and temperature on CS term generation is the same in any odd dimension 

1 
l~Cf s = tanh(/3m) 1 + cosh(/3/z)/cosh(/3m) rrW[A] 

~ o o  m 2 
- -~  -~l O( m - / z 2 ) ~ ' w [ a ] ,  (57) 

where W[A] is the CS secondary characteristic class in any odd dimension. Since only 

the lowest orders of the perturbative series contribute to the CS term at finite density and 

temperature (the same situation is well known at zero density), the result obtained using 

the formally perturbative technique appears to be non-perturbative. Thus, the /z- and 

T-dependent CS term coefficient reveals the amazing property of universality. Namely, 
it does not depend on either the dimension of the theory nor the abelian or non-abelian 

gauge theory studied. 

The arbitrariness of /z  gives us the possibility of observing the CS coefficient behavior 
at any mass. It is very interesting that /.L 2 ----- m 2 is the crucial point for CS at zero 

temperature. Indeed, it is clearly seen from (57) that w h e n  /z  2 < m 2 the influence 

of # disappears and we obtain the usual CS term Iecs = 7rW[A]. On the other hand, 
when #2 > m 2 the situation is completely different. One can see that here the CS term 

disappears because of the non-zero density of the background fermions. We would like 

to emphasize the important massless case m = 0 considered in many reports; see, for 

example, Refs. [2,4,18]. Here, even negligible density or temperature, which always 

occur in any physical process, leads to the disappearance of the parity anomaly. Let us 
stress again that we have used no restrictions on/z. Thus we not only confirm the result 

of Ref. [2] for CS in QED3 at small density, but also expand it to the arbitrary /z, 
non-abelian case and arbitrary odd dimension. 

5. Trace identity 

Here, we will consider the trace identity at finite temperature and density. First, using 

the well-known trace identity at finite temperature [ 1,2], we will present simple reasons 

why the chiral anomaly does not depend on temperature in any even dimension. Indeed, 
at finite temperature and zero density the trace identity still holds and one has [ 1,2] 

(/ m dx (anomaly) (N)#=-~-~ Z m 2 + ~o2 
--(X3 

+ f d x O i t r < x j i P i p c  1 > )  (58) 
n0 + iv/-m -£ + to~ " 

The second term on the left-hand side is a surface term, which does not contribute to 
the topological part of the trace identity [ 1,2]. Thus, for the topological part which we 
are interested in, the trace identity takes the form 
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z " (/ ) (N)~pological 1 +oo 
= --2---~ m2 + to2 dx  (anomaly) . (59) 

- - O O  

We know the result for the left-hand side of Eq. (59) in an arbitrary odd dimension. 
Substituting (57) in 

(N)~S = <N)~ p°l°gical - '~leC~ 
g6Ao '  (60) 

and taking into account that 

1 +oo m 1 sinh(flm) 
2-~ 0=- ~on 2 + m 2 - 4 1 + cosh(flm) ' (61) 

one can see that the only possibility of reconciling the left and right sides of Eq. (59) is 
have the anomaly temperature independent. Thus, we have that the axial anomaly does 
not depend on temperature in any even-dimensional theory. 

Further, we can generalize 
finite density. From (57) and 

(N)~,s = _ 1  tanh(flm) 1 

where (N)~, s is the odd part 

the trace identity for the topological part to an arbitrary 
(60) we obtain 

+ cosh (/3/.~)/cosh(/3m) dx  (anomaly), (62) 

of the fermion number in D-dimensional theory at finite 
density and temperature, and (anomaly) is the axial anomaly in ( D -  1)-dimensional 
theory. On the other hand, as we have seen above, the anomaly does not depend on 
/z in two and four dimensions (and does not depend on T in any even-dimensional 
theory). Our comprehension of the problem allows us to generalize this to an arbitrary 
even dimension. Indeed, the anomaly is the result of ultraviolet regularization, while/z 
(and T) have no effect on the ultraviolet behavior of the theory. Taking into account 
(62) and that at finite density 

1 ~+°° 1 1 
m = tanh(/3m) (63) 

2---~ L.., to 2 + m 2 4 1 + cosh( f l t z )  / c o s h ( f l m )  ' 
~ = - -  0 0  

we can identify (N)~,r/~'°gical and cs (N)/~,~, Therefore, we obtain the trace identity gener- 
alized to finite density for the topological part of the fermion number 

m ( /  ) (N)~,% = /N\t°p°l°gical 1 +~ 
\ //~'/~ = --2---~ m2 + t° 2 dx  (anomaly) . (64) 

- - (X3 

The physical grounds of formula (64) can be more clearly understood if we recall the 
calculations performed in Section 3.1 by use of a summation over Landau levels. We 
have seen that only zero-modes contribute to the P-odd part in contrast to the P-even 
part which is contributed by all modes. Therefore, the index theorem and trace identities 
hold only for the parity odd (topological) part of the fermion number at finite density. 

Thus, Eq. (64) connects the CS term and the chiral anomaly in arbitrary dimensional 
theory at finite density and temperature. 
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6. Conclusions 

The influence of finite temperature and density on CS term generation is obtained in 
any odd-dimensional theory such as abelian and non-abelian cases. It is of interest that 
/~2 = m 2 is the crucial point for CS at zero temperature. Indeed, it is clearly seen from 
(57) that when/z 2 < m 2 the influence of /z  disappears and we obtain the usual CS term 
IC. s = ~ r W [ A ] .  On the other hand, when #2 > m 2 the CS term disappears because of 

the non-zero density of the background fermions. 

The #- and T-dependent CS term coefficient exhibits the property of universality. 
Namely, it does not depend on either the dimension of the theory or whether abelian 
or non-abelian gauge theory is considered. It must be stressed that, at m = 0, even 

negligible density or temperature, which always occurs in any physical process, leads to 
the disappearance of the parity anomaly. 

Medium effects such as the influence of finite density and temperature on the chiral 
anomaly have been studied. The simple and general argument that the chiral anomaly 
is independent of temperature has been presented. It is shown that even if we introduce 
conservation of chiral charge as a constraint, the chiral anomaly is not affected. By 
using the fact that the chiral anomaly does not depend on temperature and density we 
explore the appearance of the CS number in even-dimensional theories under two type 

of constraint. These are charge conservation with Lagrange multiplier # (conventional 
chemical potential) and chiral charge conservation with Lagrange multiplier K, which 
corresponds to the conservation of the left(right)-handed fermion asymmetry in the 
background. 

On the other hand, the independence of the chiral anomaly on density and temperature, 
together with our direct calculations of the CS coefficient, permit the simple generaliza- 
tion of the trace identity to the finite density case. Thus, the connection between the CS 
term and the chiral anomaly at finite density and temperature is obtained in arbitrary 
dimensional theory. 
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