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ABSTRACT

A brief review of 2 nonperturbative expansion technique for QCD is presented.
The method based on a new small expansion parameter is constructed and
the connection between the perturbative and nonperturbative regimes is
investigated. We argue that a renormalon representation is obtained as a
particular renormalization group improvement of the lowest order radiative
corrections which takes into account both the analytic properties and the
structure of the operator product expansion. Application to the inclusive
semi-leptonic decay of the 7 lepton is considered.

In this paper we consider a method based on the ideas of the § expansion and
variational perturbation theory. The method leads to the so-called “floating” series,
the convergence properties of which can be controlled by special parameters. The idea
of constructing such a series in quantum theories was suggested and applied to the
anharmonic oscillator in Refs. [1, 2]. Within this approach, a certain variational principle
is combined with the possibility of systematically calculating higher-order, thus allowing
one to assess the validity of the principal contribution and the region of applicability of
the results obtained. At present, this idea has found many applications in developing
various approaches, which all go beyond perturbation theory. Among these are the
Gaussian effective potential method [3], the optimized d-expansion {4}, and variational
perturbation theory [5, 6]. In certain cases, there is a rigorous proof of the convergence
of such an expansion (7, 8]. The generalization of the method to the QCD case has
been suggested in Refs. [9, 10]. Within the method, the quantity under consideration, for
example a Green function, can be approximated by a series different from the perturbative
expansion and which can be used to go beyond the weak-coupling regime, thus allowing
one to deal with considerably lower energies than in the case of perturbation theory.

The renormalon idea is widely discussed in recent literature in different contexts.
The renormalon chains lead to the effective gluon exchange in the Feynman diagrams
with a running coupling constant at the vertices. However, in the case of a non-abelian
theory, results obtained have no direct connection with subclasses of diagrams. Besides.
the corresponding approach is not based on any systematic expaunsion parameter. and
hence, in known sense, its justification is a delicate problem. At the same time, the
renormalon idea scems to be very attractive; and it will be yseful to try to develop some
new approach to this problem in which the renormalon chains can be substantiated by
another consideration.

We apply the renormalization group method to improve the known two-loop result for
the Adler D-function taking into account both the certain analytic properties and some
information comes from the structure of operator product expansion. We demonstrate
that an expression obtained by the procedure of that sort contains the renormalon chains.
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The virtue of the method proposed is that it can be generalized to the nonperturbative
expansion technique in which an effective coupling constant has no the ghost pole. This
approach gives a well defined analytic properties of the running coupling and allows one
to evaluate the R, ratio for the inclusive semileptonic decay of the 7 lepton both by
integration over the physical region and by using Cauchy’s theorem. In this paper we
consider the 7 decay taking into account a renormalon contribution.

The QCD action has the following form

S(A,q,0) = S2(A) + S2(q) + Sa2(y) + 953(A,q,0) + 92 Si(4), (1)

where S2(A), S2(g) and Sy(y) are the free action functionals of the gluon, quark, and ghost
fields, respectively; the term S(A) also contains a term fixing the covariant a¢-gauge.
The term S3(A, g, ¢) describes the Yukawa interaction of gluons, gluons with quarks, and
gluons with ghosts

S3(A,q,) = S3(A) + S3(A,q) + S3(A, ). (2

The terms S3(A), S3(A, g) and S3(4, ¢) generate the three-line vertices (AAA), (§Aq)
and (pAp) respectively; whereas the term S;(A) in (1) generates the four-gluon vertex
(AAAA). We will transform the latter term by introducing auxiliary x-fields [9]. After
making the x-transformation, the diagrams for the Green functions will consist only of
diagrams of Yukawa type. In addition to the usual three-line vertices of QCD, vertices of
the type AxA will appear. Thus, any Green function of QCD can be represented in the
following functional integral form

G(-)= / DxDaco(---) exp i[S(A, x) + Sz(q) + Sa(¢) + S2(x) + 953(4, 4, o), @

where

S(4,x) = 5 [ dady A(z) D™}z, 1) A() 0

with the gluon propagator D(z, y|x) in the x-field, and the term (---) is a set of v gluon,
quark and ghost fields.

Following the ideas of the VPT method, we introduce auxiliary parameters ¢ and £
and rewrite the action in Eq. (3) in the form

S(A, 0,0, %) = So(A,a,0,x) + S1(A, 4,0, X) (5)
with

S(')(Aa q,¢, X) C-l[S(Ai X) + Sz((]) +'S2(¢)] + §_l SQ(X), (6)
Si(A, ¢, 0,x) = 955(A,q,9) — (¢ = 1)[S(A,x) + Sa(g) + S2(0)] = (€71 = 1) Salx)-

The exact value of the quantity under consideration does not depend on the parameters
C and €. However, the approximation of that quantity with a finite number of terms of
the VPT series resulting from the expansion in powers of the action Si(A, q,¢,X), does
so depend. One can employ the freedom in the choice of the parameters { and £ for our
aim, the construction of a new small expansion parameter.

It is convenient to rewrite Sh(4,q, ¥, x) by replacing ¢~ by {1 + (¢! —1)] and !
by [1+ k(€7 ~ 1)] and setting & = 1 at the end of the calculation. In this case, any

i

i
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power of the expression ((~' — 1)[S(A4, x) + S2(q) + S2(p)] + (€' — 1)S2(x) appearing
in the expansion of the corresponding exponential can be obtained by differentiating
with respect to the parameter k. Then, the integrand will contain only powers of the
action g S3(A, ¢, ¢), which generate the QCD Yukawa diagrams with modified propagators
defined by appropriate quadratic forms in the new “free” action Sy. After rescaling of
fields and the Gaussian integration over the x, the VPT series for the Green function is
given by

;) n—k -k

G(-) = ZZ k)' - 32) % (7)

n k=0 (
1

RTERTEI T

/ Dacp(- --)[g5Sa]* exp{i[So + g3S4]}.

Here S¢(A,q, ) no longer contains the term describing the field x and represents the
usual functional of the QCD free action, whereas g; and g, in the Yukawa and four-gluon
vertices are defined as follows: g3 = g[1 + x(¢™1 — 1)]7¥/%, gy = g[1 + (67 — 1)]7'/2.

Analysis of the structure of the VPT series shows [9, 10} that we will succeed in
constructing the small expansion parameter if we set £ = (3 and if the parameter ( is
connected with the coupling constant by the equation

g2 1 a2

Ty Ca-a T ®)

where C is a positive constant. As follows from Eq. (8), for any values of the coupling
constant g, the new expansion parameter a obeys the inequality 0 < a < 1.

Consider the connection between the perturbative and non-perturbative regimes of the
running coupling constant a,(Q?). To fix the parameter C we will use non-perturbative
information from meson spectroscopy and derive a,(Q?) in the perturbative region at
large Q2. In other words, we will find the connection between the universal tension o
in the linear part of the quark-antiquark static potential Vjin(r) = or, which can be
determined from meson spectroscopy, and the description of high energy physics. If,
as usual, we assume that the quark potential in momentum space can be written as
V(¢®) = —16ma,(q?)/3¢% where a,(g?) describes both large and small momentum, and
that a,(g?) has the singular infrared asymptotics a,(g?) ~ ¢~2, we obtain, by taking
the three-dimensional Fourier transform, the large-distance linear potential in coordinate
space. The corresponding singular infrared behaviour of A = a,/(47) conforms to the
asymptotics of the Gell-Mann-Low function: () — — X for a large coupling constant.

In the framework of this approach consider the functions 8, 8 g4 and g that
are obtained if we take into consideration the terms O(a?), O(a®), O(a*) and O(a®) in
the corresponding renormalization constant Z). As has been shown [10], the values of
~B®)(XA)/X as functions of the coupling constant for parameters C, = 0.977, C3 = 4.1,
Cy =10.4 and Cs = 21.5 go to 1 at sufficiently large A. The increase of Cy with the order
of the expansion is explained by the necessity to compensate the high order contribution.
A similar situation takes place also in zero- and one-dimensional models. The behaviour of
the functions —(*)()\)/\ gives evidence for the convergence of the results, in accordance
with the phenomenon of induced convergence. At large coupling, —B*}(A)/A ~ 1, which
corresponds to a,(Q?) ~ Q=2 at small Q2.
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The value of the coefficient ¢ in the linear part of the quark-antiquark static potential
Viin(r) = o7 is 0 ~ 0.15+ 0.20 GeV2. At a small value of Q? the corresponding behaviour
of a,(Q?) is a,(Q?) ~ 30/2Q?. Here we will use this equation at a certain normalization
point Qo and the value 0 = 0.1768 GeV? which has been obtained in Ref. [11]. The
renormalization group method gives the following equation for the Q2-evolution of the
expansion parameter a:

Q* = Qj exp[¢(a, Ny) ~ (a0, N})] (9)

with \
dA

In an appropriate region of the momentum, the value of 6(Q?) = 2/3Q%a,(Q?) is
almost independent of the choice of @y and lies in the interval 0.15 + 0.20 GeV2. This
© result agrees with the phenomenology of meson spectroscopy. Thus, we have found all -
the parameters and can now consider the behaviour of the effective coupling constant at
large Q2. For example, we find aeg(mz) = 0.126. It should be stressed that we have
obtained this result by evolution of the effective coupling starting from a very low energy
scale. Taking into account this fact the value of ceg(mz) obtained in such a way seems
to be quite reasonable.

Now we will concentrate on a description of the inclusive decay of the 7 lepton
taking into account renormalon contributions. Some applications of the method have
been considered also in Refs. [12, 13, 14, 15]. Consider the Adler D-function D(Q?) =
—Q%dI1/dQ? corresponding to the vector hadronic correlator in the massless case. The
two-loop perturbative approximation is given by D(t, A) = 1 + 4A(u?), where t = Q?/u2.
Standard renormalization group improvement leads to the substitution A(u2) — A(t, A
which implies a summation of the leading logarithmic contributions. However, due to the
ghost pole of the running coupling at Q? = A%, this substitution breaks the analytic
properties of the D-function in the complex ¢> = —Q? plane, namely that the D-function
should only have a cut on the positive real g> axis. We may correct this feature by noting
that the above solution of the renormalization group equation is not unique. The general
solution is a function of the running coupling with the asymptotic behaviour 1 + 42,
for small A. To maintain the analytic properties ! of the D-function we can write it as
the dispersion integral of R(s) = (1/)ImII(s + i¢), and use RG improvement on the
integrand rather than D itself. This method leads to D(t,A) = 1 + 4)eg(t, A). The Borel
representation of A (£, A) has the form

At V) = /0 ” dbe~t 0N B(p) | (11)

with B(b) = TI'(1 + bf) (1 — bfB,). Here By = 11 — 2/3Ny is the first coefficient of
the S-function and Ny is the number of active flavours. Thus, in the Borel plane there
are singularities at b, = —1,~2,... and bf, = 1,2, ... corresponding to ultraviolet and
infrared (IR) renormalons respectively.

'Recently in Refs. {16, 17], it has been shown that requiring the correct analytic properties for the
running coupling is indeed equivalent to the inclusion of non-perturbative power corrections of the form

exp(~1/(X(Q%)5o))-
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The first IR singularity at b = 1 is probably absent since there is no corresponding
operator in the operator product expansion. Although this issue is not currently settled, it
seems reasonable to assume that the first IR renormalon occurs at b = 2/ 8, and we would
like to use this property of the operator product expansion as an additional constraint on
the choice of solution to the renormalization group equation. This can be simply achieved
and as result we obtain the following expression for Aes:

A(kt, A)
1+ Akt,\)Bo InT’

A (1. ) =/o°° drw(r) - (12)

in which the factor k reflects the renormalization scheme ambiguity and the function

n

(13)

w(t) =

describes the distribution of virtuality usually associated with renormalon chains. The
function w(r) coincides with the function used in Ref. (18] and is numerically very close to
that found in Ref. [19]. The function B(b) in the Borel transform of (12) has the form {20]

B(b) = T(1 + bfe) T(2 — bfk) . (14)

Thus in this representation for Aeg the positions of all ultraviolet singularitics remain
unchanged, but the first IR renormalon singularity at b =1 /3y is absent.

In order to render Eq. (12) integrable we must combine this method with the
nonperturbative a-expansion in which from the beginning the running coupling has
no ghost pole. In effect, the representation for the D-function obtained in such a
way coincides with a technique explicitly introducing power corrections. and we can.
in principle, describe hadronic parameters using, say, the method of QCD sum rules
(see Ref. [21]). Separating the QCD contribution to R,-ratio as 2, and writing R, =
R°(1 + A,), where R? is the well-known clectroweak factor, we obtain the expression

A —48/”’zﬁ EANIS A(ks) 15)
=% ME\M? az) (13

in which the factor k again parametrizes the renormalization scheme and A= a*(1+3a)/C.
In what follows we shall use the M3 scheme, in which & = exp(=5/3).

Taking as input the experimental value of B7* = 3.56 + 0.03 [22]. three active quark
flavours and the variational parameter C = 4.1 as in Refs. [9, H]. we find o (A7) =
0.339 + 0.015 which differs significantly from that obtained (a.(M?) = 0.40 in leading
order [14]) without the renormalon-inspired representation for the coupling. The method.
applying the matching procedure in the physica) s-channel [14) and using standard heavy
quark masses, leads to Rz = 20.90 + 0.03, which agrees well with experimental data [22].
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