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1 Introduction

In these lectures the nonperturbative approach to quantum field theory,
variational perturbation theory (VPT), is briefly reviewed.

Solution of many physical problems is based on approximation of a
quantity under consideration by a finite number of terms of a certain se-
ries. In quantum field theory this is conventionally an expansion into
a perturbative series. This approach combined with the renormalization
procedure is now a basic method for computations. As is well-known,
perturbative series for many interesting models including realistic models
are not convergent. Nevertheless, at small values of the coupling constant
these series may be considered as asymptotic series and could provide a
useful information. However, even in the theories with a small coupling
constant, for instance, in quantum electrodynamics there exist problems
which cannot be solved by perturbative methods. Also, a lot of problems
of quantum chromodynamics require nonperturbative approaches.

Many approaches have been devoted to the development of nonpertur-
bative methods. Among them is the summation of a perturbative series
(see reviews [1] and monograph [2]). The difficulty is that the procedure of
summation of asymptotic series is not unique as it contains a functional ar-
bitrariness. A correct formulation of the problem of summation is ensured
by further information on the sum of a series [3]. At present information of
that kind is known only for the simplest field-theoretical models [4]. More-
over, in many cases of physical interest, the series of perturbative theory
is not Borel summable. :

There have been approaches that are not directly based on the per-
turbative series. Many of nonperturbative approaches make use of a vari-
ational procedure for finding the leading contribution. However, in this
case there is no always an algorithm of calculating corrections to the value
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found by a variational procedure, and this makes difficult to answer the
question how adequate is the so-called main contribution to the object
under investigation and what is the range of applicability of the obtained
estimations.

Therefore, useful approaches to the study of the nonperturbative struc-
ture of quantum field theory are the methods that combine an expansion
of a given quantity in a series that defines the algorithm of calculating the
correction with an optimizing procedure. The nonperturbation Gaussian
effective potential for a quantum system has been constructed by an ap-
proach of that sort in refs. {5, 6, 7, 8}. There exist the various optimizing
procedures. In [9, 10], for example, the principle of minimal sensitivity
has been applied to the third-order calculation of R.+.-. Different ways of
constructing the variational procedures for scalar models of quantum field
theories are discussed in refs. [11, 12, 13]. However, even if the algorithm
of calculating corrections, i.e. terms of a certain approximating series,
exists, it is not still sufficient. Here of fundamental importance are the
properties of convergence of a series. Indeed, unlike the case when even a
divergent perturbative series in the weak coupling constant approximates
a given object as an asymptotic series, the approximating series in the ab-
sence of a small parameter should obey more strict requirements. Reliable
information in this case may be obtained only on the basis of convergent
series.

We shall consider the method of a series construction with the aid of a
variational procedure of the harmonic type. It has been observed empiri-
cally in [14] that the results seem to converge if the variational parameter
is chosen, in each order, according to the principle of minimal sensitivity.
This induced-convergence phenomenon is discussed in detail in ref. [15].
In ref. [16] ] the proof of convergence of an optimized é—expansion is given
in the cases of zero and one dimensions. The proof of convergence of varia-
tional series in the case of anharmonic procedure is given in ref. [12] . Here,
we discuss a method which allows one to systematically determine the low
energy structure in quantum chromodynamics. We shall construct the ex-
pansion which is based on a new small parameter and apply this method to
the nonperturbative renormalization group analysis in quantum chromo-
dynamics. Applications to the definition of the QCD running coupling in
the timelike domain and to the semileptonic decay of the 7 lepton will be
considered. The main results concerning the method of variational theory
and some its applications can be found in the papers (5, 10, 11, 12, 13]
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and (17, 18, 19, 20, 21, 22] (see also references therein).

2 Toy model

To represent a simple explanation of the basic idea of the method, let us
first make a start with very transparent example, simple integral of the

form o
Wi(g) = /_co dz exp( ~ S[z]). (2.1)

The expression (2.1) can be considered as the zero-dimensional analog of
the ¢*-model. The function S[z] plays the role of “the action functional”

Slz] = Solz] + Sifz] = z* + g=z*. (2.2)

In the quantum field theory we can calculate the Gaussian functional in-
tegrals. Let us imagine that in this simple case we have to operate with
Gaussian integrals as well. Thus, we can try to evaluate the quantity (2.1)
by using the Gaussian integrals of the sort

/ dz P(z) exp( —az?) (2.3)

with some polynomial P(z) of z.

The standard method of calculations is the expansion of the expression
exp(—S[z]) in the power series of the “coupling constant” g. Indeed, in
this case, one uses the Gaussian integrals (2.3) and obtains the standard
asymptotic perturbative series

W(g) = Z Wi (24)
k=0
. with the coefficients
= 5 [ de(~g5")! exal~ Sole]) (25)
ST R L, o9 ) expl=dolal). '

: Whereas the expansion of the function (2.1) in the series (2.4) with
~ coefficient (2.5) is unique, the inverse procedure of finding the sum of the
series (2.4) without using additional information about the function (2.1)
- i1s nonunique. For example, the same series (2.4) has also the function
W(g) + exp(—1/g) that has different from W(g) asymptotic behavior at

203



large values of the coupling constant g. The reason for the incorrectness
of the summation procedure is the asymptotic nature of the perturbative
expansion (2.4). Therefore, the perturbation series by itself without any
additional information about its sum cannot be used to evaluate the func-
tion (2.1) for sufficiently large values of the coupling constant. Of course,
in this simple case, we know the needed additional information about W (g)
and can apply to the series (2.4) some method of summation, for example,
the Borel method. But, in the real field theory models, we do not know
this information about function that is represented by functional integral
and the problem requires special attention.

The VPT approach makes it possible to construct different expansion
for the function (2.1) and for quantum field models using the Gaussian
quadratures. In this section we will demonstrate how the VPT idea allows
one to construct a nonperturbative expansion which is based on a new
small expansion parameter.!

By using a new split of the action let us rewrite Eq. (2.2) in the form

Slz] = Solz] + Sil=], (2.6)

where we have introduced a new free action Sp[z) = (~*z? and an action of
interaction Sj[z] = gz* — (¢~* — 1)z2. Here ( is an auxiliary parameter of
a variational type. Actually, the original quantity W(g) does not depend
on this parameter, therefore, when studying a finite number of the terms
of the series it is possible to choose the variational parameter on the basis
of some principle of optimization (12, 23}.

The VPT series for (2.1) can written down as follows

W(g) = f} W, ' @)

n=0

where the terms of the VPT expansion have the form

Wo = = [ dz(=Sila])" exp(~ Syle]) (28)
. 1 4 -1 21" !
= 3 o [ e [ )2 ] el - 1))

1Here, we use the so-called harmonic variational procedure. Other choices of the
trial VPT functionals have been considered in [11, 12, 13, 22].
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It is convenient to rewrite the free action as follows
Sl = ¢t = (14 m(¢TH = 1)) (2.9)

and set & = 1 after all calculations. In this case, any power of [((~' —1).r?]
n Eq. (2.8) we can obtain by differentiations with respect to x. The
remaining polynomial (—g.r"')k has the standard perturbative form. there-
fore. we have a possibility to apply to calculations the standard diagram
technique with modified propagator

A= (2.10)

L+ (¢t =1)°

For x = 1, one finds A = (.
The terms of the VPT expansion can be written down in the form

n 1 a n-k
V. = —_—— ] - W 2.
W, =3 (n_k)!( a~> L (2.11)

k=0

where the coefficients
1 k _ )
we = H/d;r(—g;r.") exp (—ralr) (2.12)

are given by the standard diagrams of perturbation theory with the prop-
agator (2.10).

Consider a structure of the VPT term (2.11). First of all, note that
the differentiation with respect to parameter & gives the additional factor

(1-¢) J
' %(“5;) Ar=1)=(1-¢)"A(x=1).  (213)

‘Secondly, it is easy to see that in this model the number of internal lines
(L) in any diagram (here, all diagrams are vacuum diagrams) equal to the
double number of vertices (V): L = 2V. The internal line corresponds
to propagator and leads to the factor (, and the vertex gives the factor g.
‘Thus, schematically, one can write down

W~ (@) + (1= Q) (@)™ 4+ (1= (g0 + (1= Q)"
(2.14)
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N 0 ] 1 23] 4] 6] 8

C 1.14 | 2.64 | 3.56 | 5.46 | 6.12 | 871 | 11.33
D(g=10) % | 2.76 | 4.83 | 0.26 | 0.73 | 0.038 | 0.006 | 0.0012
D(g=1000) % | 5.01 | 6.52 | 0.56 | 1.13 | 0.089 | 0.017 | 0.0033

Table 1: The relative error D(g) = |Wiheor.(9)/Wexper.(g) — 1.

From (2.14), we can see that if the value of (1 — () will be proportional to
(9¢?), the expression W, will contain the common factor (1 — ¢)". So, let
the parameter { obeys to equation

1-(¢=Cg(? (2.15)

with some positive constant C. We see from (2.15) that for all values of the
initial coupling constant g the new expansion parameter ¢ = 1 — ¢ obeys
the inequality: 0 < a < 1. The remained parameter C is independent on
the value of the coupling constant g and can be found by different ways.
For example, if we consider the first non-trivial order W((g) = Wy(g) +
Wi(g) and use so-called “fastest apparent convergence”, from point of view
of which an absolute value of the last calculated term in the expansion
should be minimal or vanishes, and require that W, = 0 we find C =
3/2. In this case, we have the approximation W(g) by the expression
W{)(g) (with Wy = 0) with an accuracy better then six percent for all
interval of g. In particular, at ¢ — oo, the relative error of approximation
is about 5.1%. Similar results can be obtained if one uses the principle
of minimum sensitivity, or a normalization at some “experimental” value
W (g0) = Wexperim.- If one includes to our consideration the next orders of
the VPT expansion we will obtain a best approximation of W (g).

In Table 1 we can see a dependence of the parameter C of the or-
der expansion and the relative error D(g) = |Wineor.(9)/Wexper.(g) — 1.
Here, to find the parameter C one makes use the normalization condition
min|W(go) — Wexper.| = min|W(go) — Wexact(g0)] at go = 1.

3 Variational perturbation theory in QCD

To explain the basic idea of the method in the QCD case, let us first con-
sider the pure Yang-Mills theory (quarks can be included without prob-
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lems). The Lagrangian density has the form

1 1 1
Lym = —Z(F"")z - ;gFuv [Au X Av} + 292 [Au X Au]2 + Lg.!- + Lrp.

Lo(A) + g Lo(A) + ¢ Lu(4) | 3.1)

It

where F,, = 0,A, - 0,A,, L, 7. and Lpp are gauge fixing and Faddeev-
Popov terms. :

The L3(A) generates the three-gluon and ghost-gluon—ghost vertices.
This interaction is the Yukawa type interaction. The term L4(A) generates
the four-gluon vertices. Let us introduce the x,, field and transform the
term L4(A) to the Yukawa type diagrams

2 .
9 2| _ _r 2
exp {z 1 /dx [A, x A] } = /Dxexp{ 2/(113)(,,,, (3.2)
g
1$/d$xw,[Au X Ay]} .
The action functional can be written in the form

§ = So(x) + S(A,x) + S¥ir(4), (3.3)

where

ab
S(Ax) = 5 [dedy A3@) DM eab0]” A (34)
and the gluon propagator D(z,y|x) in the x—field is defined as

ab
[D—l(l,ﬂX)]‘w = [—a2gpu6ab +g\/§fachfw + gauge terms] iz - y).

(3.5)
The Green’s functions can be written as
G(-++) = (Gru.(--- X)), (3.6)
where
Grue(--I0) = [ DA[-Jexe{i [S(4x) + Y4}, ()
and
() = [ Dxl) expliSolx)] (38)
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Figure 1: The perturbation expansion of the full gluon propagator by
using the y—transformation. The gluon line with point corresponds to the
function D(x). '

The Green’s functions Gyuk.(: -+ |x) contain only the Yukawa type di-
agrams appearing inside the brackets (---) with the gluon propagator
D(z,y|x) . In Fig. 1 (a), the full gauge propagator is shown. The ex-
pansion D(z,y|x) in perturbation theory generates the four-gluon graphs
[Fig. 1 (b)] that are added to the Yukawa diagrams, and in this case we
obtain the standard perturbation expansion [Fig. 1 (c)].

Let us rewrite the Lagrangian in the form

L(A,x) = Lo(A,x)+ Li(Ax),
Lo(A,x) = (T'L(Ax) + €' L(x), (3.9)
Li(Ax) = n[gL¥i(A) — " - DL(Ax) - (€7 - D LK)],

where ( and ¢ are the parameters of variational type. The original quantity
L(A, x) does not depend on ¢ and £. Therefore, the freedom in choosing
¢ and £ can be used to improve the series properties . In the variational
perturbation series a new action of interaction is used for constructing
the expansion. It is clear that if the parameters 0 < ¢ < 1 and 0 <
€ < 1, we “strengthen” the new free Lagrangian and, at the same time,
“weaken” the Lagrangian of interaction. After all calculations we put
n = 1. This parameter will be also written in the propagator D(z,y|x)
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in the combination with the coupling constant. The V'PT series for the
Green's function is given by

G(-1) = D Gal--)s
Gou(--) = Ln"/D\DA(-~~][iS,(A,\)]"exp[iSo(.-l.\)]. (3.10)
= (ln)"Z(l k).k./D\Dll 1o s¥tka)"

-k o
[ = DS + (€ = VS]] exp [ SolA)] -

We redefine the Lo(A.\) for convenience of calculations as follows:
Lo(A\) = Lo(4,x) = [144(¢7 = DIL(A, O)+[1+s(E7 = DIL()- (3.11)

In this case, any power of [((~' ~ 1) S(A4,\) + (€' — 1) S(\)] in (3.10)
can be obtained by the corresponding number of differentiation of the
expression exp(iSp(A4, x, £)] with respect to x. After all calculations we set
k=1

From Egs. (3.10) and (3.11) we have

n 1 a n-k .
G,. = 1]" Zom(—ﬂ) (gk(h')) , (312)
where the functions
& .
aulx) = 1 [ DA [-1[g SVt
exp {i[l + &(¢7' = 1)] /d;r L(A.Y) } (3.13)

correspond to the Yukawa diagrams of the Yang-Mills theory with gluon
propagator [1 + (¢~! — 1)] 7' D(x,y|x) = ¢D(x,y|x) for x = 1. The prop-
agator of x-field includes the factor [1 + (™! — 1)] transformed into €
for k = 1.

The operator of differentiation (—3/3x)' /1! gives the factor (1 — ) for
the gluon propagator and (1 — €)' for the propagator of the )-field. '

It is easy to verify that the Nth order of the VPT series contains the
Nth order of a perturbation series with the correction O( gV*!), therefore,
the VPT expansion does not contradict the perturbative results obtained
for the small coupling constant.
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Figure 2: The diagrams for the VPT expansion of the full gluon propagator.

The diagrams corresponding to the new expansion of the full gluon
propagator are shown in Fig. 2. The gluon line with slash signifies the
differentiation over « and contains the factor (1 — (). If this line arises
due to the x—field propagator, the corresponding factor is (1 — £).

The outline of the VPT expansion structure can be written as

1 o+n(1 - Q)+ [(1 - + 6" C +g°¢] (3.14)
+ P [ =P+ PCU-O+FEON -+ -O] + -

The construction of expansions for the Green’s functions corresponding
to three-, four-gluon, ghost-gluon-ghost vertices are introduced in similar
manner.

If we choose € = (2 and (1 — ¢)? = CA(®, where C is a positive constant,
we obtain that the nth order term of our series contains the factor (1 - ¢)"
and the expansion parameter a = (1 — () < 1 for all values of the initial
coupling constant. Now, one can perform the renormalization procedure
and define the renormalization constants a power series of a (18, 19].

Consider the connection between the perturbative and non-perturbative
regimes of the running coupling constant ,(Q?). To fix the parameter C
we will use non-perturbative information from meson spectroscopy and de-
rive o,(Q?) in the perturbative region at large Q. In other words, we will
find the connection between the universal tension ¢ in the linear part of
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the quark-antiquark static potential Vji,(r) = o r, which can be determined
from meson spectroscopy, and the description of high energy physics. If,
as usual, we assume that the quark potential in momentum space can be
written as V(¢?) = —16ma,(q?)/3¢?, where a,(q?) describes both large
and small momentum, and that a,(q?) has the singular infrared asymp-
totics a,(q®) ~ ¢~2, we obtain, by taking the three-dimensional Fourier
transform, the large-distance linear potential in coordinate space. The
corresponding singular infrared behaviour of A = a,/(47) conforms to the
asymptotics of the S-function: 3()A) — —A for a large coupling constant,.

In the framework of this approach consider the functions (), g6, gt4)
and ) that are obtained if we take into consideration the terms O(a?),
0(a®), O(a*) and O(a®) in the corresponding renormalization constant Zy.
As has been shown [19], the values of — B*)()) /A as functions of the
coupling constant for parameters C; = 0.977, C3 = 4.1, C; = 10.4
and Cs = 21.5 go to 1 at sufficiently large A. The increase of Cj with
the order of the expansion is explained by the necessity to compensate
the high order contribution. A similar situation takes place also in zero-
and one-dimensional models. The behaviour of the functions — B(F(A)/X
gives evidence for the convergence of the results, in accordance with the
phenomenon of induced convergence. At large coupling, — B:(A)/)\ ~ 1,
which corresponds to a,(Q?) ~ Q~? at small Q2.

The value of the coefficient o in the linear part of the quark-antiquark
static potential Vji,(r) = or is 0 ~ 0.15 + 0.20 GeV?. At a small value of
@? the corresponding behaviour of a,(Q?) is a,(Q?) ~ 30/2Q*. Here we
will use this equation at a certain normalization point (o and the value
o = 0.1768 GeV? which has been obtained in [24). The renormalization
group method gives the following equation for the Q?-evolution of the
expansion parameter a:

Q" = Q5 exp[¢(a, Ny) — ¢(ao, N})] (3.15)

with N
dA

a,Nj) = [ —=-. 3.16
#a, M) = [ 555 (3.16)
In an appropriate region of the momentum, the value of o(Q?) =
2/3Q% a,(Q?) is almost independent of the choice of Qo and lies in the
interval 0.15 + 0.20 GeV?2. This result agrees with the phenomenology of
meson spectroscopy. Thus, we have found all the parameters and can now
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consider the behaviour of the effective coupling constant at large Q2. For
example, we find aeg(mz) = 0.126. It should be stressed that we have
obtained this result by evolution of the effective coupling starting from a
very low energy scale. Taking into account this fact the value of a.g(mjz)
obtained in such a way seems to be quite reasonable.

4 Renormalon representation and 7 decay

In this section we will concentrate on a description of the inclusive decay
of the 7 lepton taking into account renormalon contributions (for detais,
see [25]). Consider the Adler D-function D(Q?) = —Q%dII/dQ? corre-
sponding to the vector hadronic correlator in the massless case. The two-
loop perturbative approximation is given by D(t,A) = 1 + 4\(u?), where
t = @Q¥/u®. Standard renormalization group improvement leads to the
substitution A(u?) — A(t,A), which implies a summation of the leading
logarithmic contributions. However, due to the ghost pole of the running
coupling at Q* = AZp this substitution breaks the analytic properties of
the D-function in the complex ¢* = —Q? plane, namely that the D-function
should only have a cut on the positive real ¢* axis. We may correct this
feature by noting that the above solution of the renormalization group
equation is not unique. The general solution is a function of the running
coupling with the asymptotic behaviour 1 + 4A, for small . To maintain
the analytic properties 2 of the D-function we can write it as the dispersion
integral of R(s) = (1/m)ImII(s +i¢), and use RG improvement on the inte-
grand rather than D itself. This method leads to D(t,A) =1 + 4).q(t, )
with 7 = s/Q? The Borel representation of A.g(¢,A) has the form

Aeir(t, A) = /o ” dbe b3 gp) | (4.1)

with B(b) = (1 + 880) I'(1 — bBo). Here Bp = 11 —2/3 Ny is the first coef-
ficient of the S-function, and Ny is the number of active flavours. Thus, in
the Borel plane there are singularities at b3y = —1,~2, ... and b, = 1,2, ...
corresponding to ultraviolet and infrared (IR) renormalons respectively.
The first IR singularity at b8, = 1 is probably absent since there is
no corresponding operator in the operator product expansion. Although

?Recently, in [26, 27}, it has been shown that requiring the correct analytic properties
for the running coupling leads to the non-perturbative power corrections of the form

exp(~1/(AM(Q%)fo))-
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this issue is not currently settled, it seems reasonable to assume that the
first IR renormalon occurs at b = 2/0p. and we would like to use this
property of the operator product expansion as an additional constraint on
the choice of solution to the renormalization group equation. This can
be simply achieved (by judicious integration by parts). and as result we
obtain the following expression for A.g:

Akt A)
1+ X(kt,\) InT "~

in which the factor k reflects the renormalization scheme ambiguity and
the function w(r) = 27/(1 + 7)® describes the distribution of virtuality
usually associated with renormalon chains. The function B(b) in the Borel
transform of (4.2) has the form

B(b) = (1 + bdo) (2 — bdo) . (4.3)

Thus in this representation for Ag the positions of all ultraviolet singulari-
ties remain unchanged, but the first IR renormalon singularity at b = 1/4J,
is absent.

In order to render Eq. (4.2) integrable we must combine this method
with the nonperturbative a-expansion in which from the beginning the
running coupling has no ghost pole. Separating the QCD contribution to
R.-ratio as A, and writing R, = R2 (1 + A,), where R? is the well-known
electroweak factor, we obtain the expression [25]

M? 2 s .
= 4b/ (Mz> (1 - W) Aks). (4.4)

in which the factor k again parametrizes.the renormalization scheme and
X = a*(1 4+ 3a)/C. In what follows we shall use the M5 scheme. in which
k = exp(—5/3). Note that the renormalon representation obtained for the
coupling modifies the polynomial in the integral so that the maximum now
occurs near s = (2/3)M?2.

Taking as input the experimental value of R®® = 3.56 + 0.03 [28]
three active quark flavours and the variational parameter C = 4.1, we find
a,(M?) = 0.339 % 0.015 which differs significantly from that obtained
(as(M?) = 0.40 in leading order [22]) without the renormalon-inspired
representation for the coupling. The method, applying the matching pro-
cedure in the physical s-channel and using standard heavy quark masses,
‘leads to Rz = 20.90 4 0.03, which agrees well with experimental data.

Ai{t, A) = /o“' drw(r) (4.2)
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5 Conclusion

In these lectures we have considered an approach to quantum field theory
- the method of variational perturbation theory. The original action func-
tional is rewritten using some variational addition and an expansion in the
effective interaction is made. Therefore, in contrast to many nonpertur-
bative approaches, in the VPT the quantity under consideration from the
very beginning is written in the form of a series which makes it possible
to calculate the needed corrections. The VPT method thereby allows for
the possibility of determining the degree to which the principal contribu-
tion found variationally using some variational principle adequately reflects
the problem in question and determining the region of applicability of the
results obtained.

The possibility of performing calculations using this approach is based
on the fact that the VPT, like standard perturbation theory, uses only
Gaussian functional quadratures. Here, of course, the VPT series pos-
sesses a different structure and, in addition, some of the Feynman rules
are modified at the level of the propagators and vertices. The form of
diagrams themselves does not change, which is very important technically.
The diagrams contributing to the Nth order of the VPT expansion are of
the same form as those contributing to the Nth order of ordinary pertur-
bation theory.

The variational parameters arising in the VPT method allow the con-
vergence properties of the VPT series to be controlled. In {8, 12] has been
shown that in the case of the anharmonic variational procedure for the
scalar ! model there is a finite region of parameter values in which the
VPT series converges for all positive values of the coupling constant. For
the harmonic variational procedure there are indications that VPT series
can be also converge on the sense of so-called induced convergence, by
fine-tuning the variational parameters from order to order. Note also, that
a possibility of constructing Leibnitz series in field models is interesting,
because, in this case, the first few terms of the series can be used to obtain
two-sided estimates of the sum of the series, and existence of variational pa-
rameters makes it possible to narrow these estimates the maximum amount
in a given order of VPT (see {23]).

Here, we have mainly concentrated upon the application of the method
to quantum chromodynamics (see also [29]), where the VPT idea leads
to an expansion with a new small expansion parameter. This parameter
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obeys an equation whose solution is always smaller than unity for any value
of the coupling constant. Therefore, while remaining within the limits of
applicability of this expansion it is possible to deal with considerably lower
energies than in the case of perturbation theory. An important feature of
this approach is the fact that for sufficiently small value of the running
coupling constant &, it reproduces perturbative predictions. Therefore, all
the high-energy physics is preserved in the VPT method. In going to lower
energies, where standard perturbation theory ceases to be valid, a, ~ 1,
the VPT running expansion parameter @ remains small and we do not find
ourselves outside the region of applicability of the method.
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