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1 Introduction

A charge—dyon system with the SU(2)-monopole in the space IR® is described by
the equation [1]

. 2

2 2
L (—ir»i - hA;T.,) ¥+ ”r,rz‘% -Zy=ep Q)

2m Oz; 2m

where j = 0,1,2,3,4; a = 1,2,3. The operators T, are the generators of the SU(2)
group and satisfy the commutation relations

[Ta; ﬁ] = ieabcj:: .
The triplet of five-dimensional vectors A° is given by the expressions

1

Al __ - - —

A = T(T+$o)(0, T4, 23,12,11)
1

A-z = M(Oi T3, —1.4, —ZIy, 12)
1

A-“a = (0’ Z2,—%1,%4, —13) .

r(r + zo)

Every term of the triplet A7 coincides with the vector potential of the 5D Dirac
monopole [2] with a unit topological charge and the line of singularity along the
nonpositive part of the z,-axis. The vectors A3 are orthogonal to each other

l_(r - .’L’o)
r2(r + z0)

aAb __
F A ab

and also to the vector 7 = (%o, T1, T3, T3, T4).
The eigenvalues of the energy (N = 0,1,2...)

me?

r_ ____ "¢
N =TT+ 2) @

for fixed T are degenerated with multiplicity [3]

iy (-740) (o749
o= 5@T+1* (5 -T+1) (5 -T+2

{(%’-—Tn) (%’--T+3)+2T(N+5)}_

For T =0 and N = 2n (even) the r.h.s. of the last formula is equal to (n+1){(n+
2)*(n + 3)/12, i.e., to the degeneracy of pure Coulomb levels.
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The article is organized as follows: In Section 2, we describe the hyperspherical
and parabolic bases for the charge-dyon system with the SU {(2)-monopole in a
way adapted to the introduction of interbasis expansions. In Section 3, we prove an
additional orthogonality property for hyperspherical radial wave functions of the
given hypermomentum . In Section 4, by using the property of biorthogonality
of the hyperspherical basis, we calculate the coefficients of interbasis expansion
between hyperspherical and parabolic bases.

2 Hyperspherical and parabolic bases

The variables in Eq.(1) are separated in the hyperspherical and parabolic coordi-
nates.

Let us introduce in IR® the hyperspherical coordinates r € [0, 00), 6 € [0, 7],
a€(0,2r), e 0,7], v € [0,47) according to

Zo = rcosf
T1+1z3 = rsinfcos ge;e_p
. . . ﬂ $a=Y
I3 t+izg = rsxn0sm§e 2
Since
Y 2 .
o
where
L = 5(Da(z) + Du(a)]
- ]
L; = 5[Dw(z) + Da(z))
Iy = %[D12(1)+D34(2)]
and i R
' ) d
Dij(z) = —1-'5;7+$15£ )

Eq.(1) in the hyperspherical coordinates assumes the form

I? J? om e?
(Aro‘rzsin20/2_r260829/2)¢+_f7(6+—r—)¢_0' (3)




Here

Ay = —"1—450; (r4 %) + -;2—;—‘1;1—@585 (sin“ 0%)
and J, = L, + T,. Emphasize that
(Bay L) = i€abele,  [Jar Jo] = i€asce .
The solution of Eq.(3) is of the form [3]
PP = RuA(r)Zans(0)G 1Y pinla, B, 7; a1, 81, v7) 4)

where G are the eigenfunctions of L?, 77 and J? with the eigenvalues L(L + 1).
T(T + 1) and J(J + 1); ar, fr and 47 are the coordinates of the space group of
SU(2) and have the form

G- \/(2L +1)2T +1)
474

Z (JMIL': m; T7t ) Drl;lm’(av ﬂ”Y)Dz"(aTv .BTv 77') .
M=m+t
Here (JM|L,m;T,t) are the Clebsch—Gordan coefficients, and D%
the Wigner functions.
The functions Z,,;(6) and Ry(r) normalized by the conditions

. and DY, are

3

n

/sinsaz,\:“(O)Z,\,,J(ﬂ)do = 6,\:,\

0

T‘RN:,\(I‘)RN,\(T)dT =énN (5)

C\g

are given by the formulae

Zas(0) = NIp(1 —cos8)(1 + cos O)JR{'I_LT_IJ'““)(COS 6) 6)
LT L
Rui(r) = CN,\e""(2lcr)'\F (_g + X204+ 4; 251') . )

Here P{*#)(z) are the Jacobi polynomials; & = 2/ro(N + 4), ro = h*/me? is the
Bohr radius. The normalization constants N}, and Cnx equal

o - @A+3)A~=J =LA+ J+L+3)
LT 24PN+ J - L+ 2)T(A—J + L +2)

Cor = 32 1 (X +1+3)
MT INEaR ) BE -y
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The quantum numbers run over the values |[L -T| < J< L+ T;A=L+J L+
J+1,..,N/j2

In the parabolic coordinates

5 =)

o

B 2ty

T, +1z9 = \/é;cos-z-e 2

T3 +izy = y[€nsin ge'ﬁ;—i
where &,1 € [0, oc), upon the substitution

= fl(f)f!(rl)GLTm't'(a’ ﬂ’ Y; ar, ﬂT’ 77')

the variables in Eq.(1) are separated, which results in the system of equations

£d€<£zdf£.) 2h’ J(J+1)+ﬂ.]f,_o

29h
ndn( d,,)+ T L(L+1)+ﬂz] fo=

where
2

Bi+br=" ®)

At T = 0 (i.e. J = L), these equations coincide with the equations for a five
dimensional Coulomb problem in the parabolic coordinate [4], and consequently,

‘/"m = Ka\/zTofmJ(E)me(ﬂ)GLTm't'(av ﬂ’ Yiar, ﬂT’ 7T) (9)

where

1 +2¢+ 1) KT .
@) = | et L exp (- ) (o) F (2 + 252)

Here n, and n, are non-negative integers

m=-t-148 e p14 B

from which and (2), (8) it follows that the parabolic quantum numbers ny, ny, J
and L are connected with the principal quantum number N as follows:

N=2n+n+J+1L).
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3 Biorthogonality of the radial wave functions

We shall prove that along with the condition (5) the radial wave functions Ry (r)
satisfy the following "additional” orthogonality condition:

i 16 1
JAAI = /T2RN,\I(T)RNA(T)dr = 6A/\' : (10)
[

r2(N +4)22) + 3

This new relation shall prove useful when dealing with the interbasis expansions
in the next Section. The proof of the formula (10) is as follows.

In the integral appearing in (10), we replace Ry,(r) and Ryx(r) by their
expressions (7). Then, we take the confluent hypergeometric function in (7) as an
finite sum v
25+, eery

N
. ATV Y . =
F( g TA2 +4’2”) )3 (2,\+4) !

and perform the integration term by term with the help of the formula (5]

Az v T'v+1 k
/e Ao Fla,v; kz)dz = —(TA'-I-—I—)ZFI' (a,u+1,7; X) (11)

0

oo

By using
F(e)(c—a—b)

2F1(a,bi¢;1) = T(c = a)l(c =) (12)
we arrive at
jo__ 16 TA+X+3) (¥ +x+3)
TR @+3) \ () (E o) +3)

2 (40,047 43,0 (F-r-s+1)

2

+=0 3! 2x+4), TOA-N-5+1) - (13)

By introducing formula [6]
_T(z) —( L(=z+n+1)
TGon) (1) T (14)

into (13), the sum over s can be express;ed in terms of the ,F'; Gauss hypergeo-
metric function of argument 1. We thus obtain

g 16 1 (% -2 (£ +2+3)!
W AR A N\ (E o) (L4 v+ 9)!
1
TA— N+ DOV =A+1) (15)
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Equation (10) then easily follows from (15) since {['(A— X’ +DL(N =A+1)]7! = 6,5

The result provided by formula (10) generalizes the one for the hydrogen atom
(6). Such unusual orthogonality properties are connected with the accidental de-
generacies of the energy spectrum for the charge-dyon system with the SU (2)-
monopole.

4 Interbasis expansion

The connection between hypersph;rical (r,8,a,8,7) and parabolic (¢,1,a, 8, 7)
coordinates is

§=r(1+cosf), n=r(1-cosh). (16)
Now, we can write, for fixed value energy, the parabolic bound states (9) asa
coherent quantum mixture of the hyperspherical bound states (4)

N/2
PP = Z Wri\ngL'/)sph- (17)
A=T

By virtue of Eq.(16), the left-hand side of (17) can be rewritten in hyperspherical
coordinates. Then, by substituting § = 0 in the so-obtained equation and by
taking into account that

P'Sa'ﬂ)(l) = (_a+'—1)".
n:

we get an equation that depends only on the variable r. Thus, we can use the
orthogonality relation (10) on the hypermomentum quantum numbers . This
yields .

1
A =
WoiniL = (27 + 1)!(2x + 3)!

EXSr KoL (18)

where

N
BN = \/(2A +3)A-J-L) (-2- +A +3)!

[ DA+ J = L +2)(my +2J + 1)l(ng + 2L + 1! ]"’ 9)

(n)(na)! (X = MTA =T+ L+ 2)F(A+ J + L + 3)

7 N
K = / e AR ( 0,y 2T + 2;2)F (-? +X,2) + 4 :z) dz. (20)
o



To calculate the integral K37}, it is sufficient to write the confluent hypergeometric
function F(—n,,2J + 2;z) as a series, integrate according to (11) and use the
formula (12) for the summation of the hypergeometric function ,F,. We thus
obtain

(22 +3) (5 - J-L)ITA+ T+ L +3)

Fany

ME A-T-D (X +xr+3)!
—ni,=A+J+ LA+ J+L+3
F{2J+z—¥+J+L 1}' (21)

The introduction of (19) and (21) into (18) gives

» o [@ 3P0+ T+ L+ 3)ny +2T + g+ 2L +1)1]"
nadh (n)(n2)A = T =D (E =) (X + A+ 3)!

(§-7-1) PA+J-L+2) o [ —n,=A+T+LA+J+L+3 22)
@7+ \FA-T+L+2)* | 2J+2,-Y+J+1L Aes

The next step is to show that the interbasis coefficients (22) are the Clebsch-
Gordan coefficients for the group SU(2). It is known that the Clebsch-Gordan
coefficient can be written as (7]

(a+bdb—7)(b+c—~a)

V(b= B)(b + B)!

[ (2¢ + 1)(a + @) (c + 7)! ] 1/2
(a=a)lc—7Ma+b+c+)(a+b—c)a—b+c)(b—a+c)

—a-b-c—-1,-at+a,~c+7
3F2{—a-—b+7’—b—c+a Il} (23)

:;;bﬁ = (~1)"" y.o+8

By using the formula [8)

5,8, —~N _(t+ 8N s, =&, —-N
3F2{tl,1__N_t|1}—"_(f')N 3F2{tl,t+3 1}

equation (23) can be rewritten in the form

c (2c+ 1)(b = a + ) (a + a)!(b + B)(c + ~)! 1
bl = | B= B e -1 a+b=c)(a=b+ M a+b+c+ 1)!]

5 ( 1)“ o (a+b"'7)' —(l+ﬂ,C+’Y+l,-(‘+7 ll
—1m+ﬁ\/(a___a)'(b__a_*_,r)l1 ly-a-bb-—a+y+1 )

(24)
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By comparing (24) and (22), we finally obtain the desired representation

ny Y A+1L,J4L41
WmanL = ("'1) ! N~2!:1L+2 ,+"z-;'1+l.N+zl‘-2L+2 JpnLTn2el (25)
NA ; . 2

At T =0 {i.e. J = L) formula (25) turns into the formula for the five-dimensional
Coulomb problem [4], as would be expected.
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SU(2)-monomons: Mex6asnucHoe paznoxeHue

IlpoBeneno  mccnemoBaHHE  HEPENATHBMCTCKON  KBaHTOBO-MEXaHHYECKON
NATHMEPHOI CHCTEMBI 3apsAa—nanoH ¢ SU(2)-moHononeM. IlepeMeHHbIe B YPABHEHHH
Wpenunrepa ans 310l CHCTeMbl pasnensioTcs B runepcepuyeckux M napa-
Gonuueckux koopauHarax. [TonHOCTBIO pewena npoGnema MexGa3ucHOrO pao-
XKEHHs BOMHOBhIX Gynkumi. Haiineno, uro kostbduuMenTs panoxenus
napabonuyeckoro Gasuca mo runepclepUuECKOMy BHIPAXAOTCA uYepe3 Ko-
apuuments KneGua—Iopaana ana rpymsr SU(2).

Pabota seinonnena B JlaGoparopitn Teopetnueckoii dmsuxn um. H.H.Boromio-
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Mardoyan L.G., Sissakian A.N. E2-98-15
SU(2)-Monopole: Interbasis Expansion

This article deals with a nonrelativistic quantum mechanical study of a
charge—dyon system with the SU(2)-monopole in five dimensions. The Schrodinger
equation for this system is separable in the hyperspherical and parabolic coordinates.
The problem of interbasis expansion of the wave functions is completely solved.
The coefficients for the expansion of the parabolic basis in terms of the
hyperspherical basis can be expressed through the Clebsch—Gordan coefficients of
the SU(2) group.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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