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Abstract

The Schrédinger equation is analysed for the Kepler-Coulomb problem in the
three-dimensional space with constant positive curvature. The representation of
the elliptic basis as a superposition over hyperspherical states is obtained. The
“parabolic” system of coordinates on the three-dimensional sphere is determined
which is a particular case of elliptic coordinates rather than an independent system
of coordinates as in the flat space.

1. Introduction

The Kepler-Coulomb problem in the spaces with constant curvature has a long
history and was first considered by Schrodinger fifty years ago in the paper [1]. He used
the factorization method to solve the Schrédinger equation in hyperspherical coordinates
and to find the energy spectrum for the harmonic potential being an analog of the Coulomb
potential on the three- dimensional sphere and showed that like in the case of flat space
there occurs complete degeneracy of energy levels in orbital and azimuthal quantum
numbers. Later, Higgs [3], Leemon (4] and Kurochkin and Ofchik [2] have shown for
the space with positive constant curvature and Bogush, Kurochkin and Otchik [5] for
the space with negative constant curvature that the degeneracy of the spectrum of the
Coulomb problem is caused, as in flat space, by an additional integral of motion: Runge-
Lenz’s vector. From the point of view of path integrals the Kepler-Coulomb problem for
N-dimensional spaces with constant curvature has been investigated in detail by Barut,
Inomata and Junker [10], Grosche [11] and Grosche, Pogosyan and Sissakian [12, 13].

The Schrédinger equation for the Kepler-Coulomb problem on the three-dimensional
sphere S : z} + 2% + z} + x3 = R?, has the following form (h=m=1)
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where z,(p = 1,2,3,4) are the Cartesian coordinates in the four-dimensional ambient
Euclidean space E4 and App = — 353 (L? + N?). The operators L; and N;(i = 1,2,3)
are the group O(4) generators :

3:::,» %

As has been shown in refs. [3, 2], alongside with the square angular momentum L?, the
Hamiltonian (1) commutes with an additional integral of motion

. g . (7] 0
L,' = _zeijkzja_.’tk ,N,‘ = —1€i5k (.’1!4—' — I ) (2)

ax

———— X = (T, T2, T3). 3
Nz S ®

The operators L; and A; obey the following commutation relations

1
A= ﬁ{[L,N] - [N,L}} +

. . , . L?
[L,’,LJ'] = ze,-jkLk, [L,‘,A]‘] = ze,'jkAk, [A,‘,AJ'] = —Zléijk (H - -ﬁ) Lk, (4)

which are of the nonlinear nature and, consequently, do not form the finite-dimensional
Lie algebra. This is an essential difference of the Coulomb problem on the sphere form
the flat case when the group O(4) is given in the form of a group of “hidden symmetry”.

It is known that there exists a one-to-one correspondence between the sets of
independent symmetry operators of the Schrédinger equation, both in the flat space [22]
and the space with constant positive curvature, and the orthogonal systems of coordinates
admitting separation of variables in this equation. Thus, for instance the Schrédinger
equation for a hydrogen atom in the flat space is separated in four systems of coordinates
[22): spherical, sphero-conical, parabolic and prolate spheroidal, and the corresponding
wave functions are eigenfunctions of the complete set of independent operators constructed
out of the components of the angular momentum operator and Runge- Lenz vector.

Olevsky [16] has found that variables in the Helmholtz or Schrédinger equation
on the three-dimensional sphere can be separated only in six orthogonal systems of
coordinates whereas in the Euclidean three-dimensional space their number is 11.

Until recently it has been considered that variables in the Schrédinger equation (1)
for a Coulomb problem on S3 are separated only in two systems of coordinates [6,15]:
hyperspherical and sphero-conical, which is connected only with conservation of the square
of the orbital momentum, and the presence of an additional integral of motion does not
lead to separation in additional, with respect to them, systems of coordinates.

For the first time, one of the elliptic systems (ellipso-cylindrical II) of coordinates
in the three-dimensional space with constant curvature was used in separating variables
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in the Schrodinger equation for the problem of two-Coulomb centers [7]. Later, in ref. [12]
for the case of three-dimensional space with constant positive curvature there have been
determined a rotated elliptic system of coordinates corresponding in the flat limit to a
prolate spheroidal system of coordinates (when the center of the system of coordinates lies
in one of the foci of the system) and admitting separation of variables in the Schrédinger
equation for the Coulomb problem.

The aim of the present paper is first to construct an elliptic basis of the Coulomb
problem for the three-dimensional space with constant positive curvature and, second,
to find a , “lacking” parabolic system of coordinates which can diagonalize the Runge-
Lenz operator.

The paper is organized as follows. In the first section we give some known results
concerning the hyperspherical basis of the Coulomb problem on S3. The second section is
mainly the study of elliptic coordinates and determination of elliptic basis for the Coulomb
problem.

2. Hyperspherical basis

Let us remind the basic results concerning the hyperspherical basis of the Coulomb
problem on the sphere. The hyperspherical system of coordinates on S; is connected
with the Cartesian coordinates z,, of the enveloping Euclidean space E4 by

1 = Rsinysinfcos¢, z3 = Rsinxsinfsin g, (5)
z3 = Rsin xcos#, T4 = Rcosy,

where 0 < x < 7,0 € 8 < 7,0 < ¢ < 2. The solution of the Schrédinger equation (1)
for the Coulomb problem in the hyperspherical system of coordinates has the from [6, 18]

‘I,nlm(X) 0, ¢; R) = Sﬂl (X1 R)},lm (01 QD) ’ (6)

where n € N is the principal quantum number, [ = 0,1,...n is the orbital quantum
number and Y;,,,(8, ¢) is an ordinary spherical function on the sphere S2. The quasiradial
wave function Sp;(x; R) orthonormalised in the interval x € [0,n] can be represented as
follows:

(n?2+0?)(n—-10-1)
2nn(n +1)!

. (sin x)*"le7x° P,E:?ffa’_"—ia)(i cot x)

Sm(GR) = ()" 12D+ 1~ io)le™

. ™

The parameter 0 = aR/n and P38(z) are the Jacobi polynomials. For the energy
spectrum we have formula [1]
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2

n-1 a
E.(R) = SR "o (8)

In the flat space limit when R — oo and x — 0 so that R.x — r where r is the vector
radius in Ej, the quasiradial wave function (7) turns into, for n << R and n ~ pR (p
is a constant), the radial wave function of a hydrogen atom for the cases of discrete and
continuous spectra, respectively, [18].

3. Elliptic basis

3.1 Prolate elliptic coordinate system

The prolate elliptic coordinate in the algebraic from is given by [12]

2 _ p2 (p1 — a2)(p2 — a2) 2
i = R (a5 —a2) (a1 — a2) cos “¢,
— (pr—a2)(p2 —az) . »
2= R (43 - 02)(01 —az) sin °9,
2 _ p2lp1—a1)(p2 —a1)
= R @)@ —a) ®)
2 _ R? (o1 — a3)(p2 — a3)
(az — a3z)(a1 — a3)”

where (a1 < p; < a3 < p2 < a3,0 < ¢ < 27). In terms of the Jacobi elliptic functions we
have {22, 12] !

z; = Ren(p,k)en(v,k') cos ¢, —-K <p<K,
z2 = Ren(y, k)en(v, k') sin @, -K'<v<K'
za = Rsu(y, K)dn(v, ¥), (10)
z4 = Rdn(g, k)sn(v, k).
where
k'2=a2_a1=sin2f, p2=2879 cos % f
az — ay as — a1

The Jacobi elliptic functions in the variables 1 and v have moduli k¥ and k', respectively,
and 2fR is the interfocal distance on the upper hemisphere; K and K’ are the complete
elliptic integrals. The Laplace-Beltrami operator has the following form:
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ALp = L[ 1 (6_2_snudn,u_3_
R? [k%cn?p + k2cn?v \ Ou? cnp Oy
6_2_snudnu_3_) 1 _zz_J (11)
av? cnv  Ov cn?ucn?y 9¢?

In the flat space limit the elliptic system turns into an ordinary prolate spheroidal
system of coordinates. Indeed, passing to the geodesic coordinates on the sphere, accord-
ing to refs. [3, 17],

T Ti
s \/1—(2¥+2%+22)/R?

’ui=R (z=1a2a3),

assuming

2 d?
BE__ , (12)
az — a1 as — a1

and changing a variable p; = a; + (a2 — a1)n%,p2 = a; + (a2 — a1)€?, in the limit
R ~ a3 — 0o we have

uy = dv(fz—l)(l—ﬂz) cos ¢a —IST’SI’
uy = dv/(£2 - 1)(1 — ?) sin ¢, 1<€ < oo, (13)
ug = d€n.

thus arriving at the ordinary prolate spheroidal system of coordinates in E3 where 2d is
the interfocal distance.

The variables in the Schrédinger equation for the Coulomb problem (1) are not
separated in the system of coordinates (9) or (10). Therefore, in ref. [12] the authors
have introduced the rotated elliptic system of coordinates

z1 = Ren(u, k)en(v, k') cos ¢,

zz = Ren(u, k)en(v, k') sin ¢,

R[k'sn(p, k)dn(v, k') + kdn(u, k)sn(v, k)], (14)
R[K'dn(u, k)sn(v, k') — ksn(p, k)dn(v, k)] .

i

T3
T4

I

connected with (10) by the transformation f coordinate z, rotation on the three-
dimensional sphere z, + R(f)z, where the matrix R(f) has the form
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00 0
10 0
0 cosf sinf
0 —sinf cosf

R(f) =

SO o

The elliptic coordinates (10) and (14) are the one-parametric coordinate systems
depending on k. In thi cases of £ — 0 and k — 1, the elliptic coordinates transform into
the hyperspherical coordinates [22, 14]. ‘

The next interesting patricular case is the coordinate system (14)

z; = Rcenpcnvcosg,
x7 = Rcnucnvsing,

z3 = —%(sn,udnu + dnusnv), (15)

T4 = £-(dnusnu — snpdny),

V2

with k =k’ = 1/v/2(orf = n/4) for all Jacobi elliptic functions.
From eq. (15) we can obtain that

me= {02703 0037 04 5)")
V2doy = 71_2_{(1_'_%)1/2 (1- %)1/2+ (1+%)1/2 (1‘ %)1/2}.

Then, for large R we have

r(1 +cosf) u (1 - cosf) v
sn’u—;—1+T——1+2R\/§dnu—>l+—2—ﬁ——1+§§ (16)

and the rotated elliptic coordinates (15) in the limit R — oo transform into

U = +/uv cos ¢, Uz = v/uv sin ¢, ugz =

=, a7)

which are the flat space parabolic coordinates [19]. Thus, the rotated elliptic system of

coordinates (15) at particular values of the parameter k = k' = 1/4/2 plays the role of a
“parabolic” system of coordinates on the three- dimensional sphere.
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3.2 Separation of variables and integrals of motion

In the elliptic system of coordinates (15) the Coulomb potential has the form

_a z3 _ k'dnvsny — kdnusnpu (18)

R[22+ 22 + 23 R k2cn?p + k'2cn?v

Choosing the wave function as

ime
Y(u, v, ¢; R) = 1 (p; R)p2(v; R)f/? (19)

and substituting it into the Schrédinger equation (1), after separation of variables we
arrive at two ordinary differential equations

d®y1  snudnp di 2120 2 Zm?

2 oop dn + {2R k*Ecen“y — ey 2aRksnudn,u} Yr=—-Ap (20)
d%y,  snvdnv dy; P ,

P R —— + {2R k"“Ecn*v — i 2aRk snudnu} P2 = Athy (21)

where- A = A(k; R) is the Coulomb elliptic separation constant. Eliminating from equa-
tions (20) and (21) energy E we arrive at the operator

_ 1 2 2 [8* snvdnv d 2 2 [ 82

A= k2cn?p + k'2cn2y {k K [81/2 cov  dv K en’y o2

snpdnpy d k”cn’v — k%cn’py &% + 2Rk ksnvdnven?u + k'snpdnucn?y
cnp  du cn?ucn?y 9¢? k%cn?p + k'2¢n?v

whose eigenvalues are the elliptic separation constant A(k;R) and the eigenfunction is
the wave function (19). Passing to the coordinates z, we obtain that

A = (k* - kK*)L? + 2RkK' A3 = cos 2fL% + R sin 2f A3 (22)

Thus, the elliptic integral of motion is not an independent symmetry operator of the
Schrédinger equation and is a linear combination of the operators of the square angular
momentum and the third component of the Runge-Lenz vector and depending on k as
on the parameter.

Equations (20) or (21) can be reduced, by substituting the variable, to the Heun-
type equation [20] with four singularities [7,8]. A direct solution of these equations is a
complicated mathematical problem, and it cannot be derived in a closed form, i.e., as
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classical polynomials. As has been shown in paper [8], it can be chosen as a series over
hypergeometric functions whose coefficients satisfy the three-term recurrence formulae.
We look for an elliptic basis of the Coulomb problem (19) as a superposition of .
hyperspherical bases {at a given energy) which could serve as an eigenfunction of the
elliptic integral of motion and angular momentum projection Lj.
Let us write down the expansion we are interested in

n—1

Crngm (s 1, 5 R) = Y Wigm(R) ¥uim (X, 6, 63 R). - (23)

I=|m|

where the elliptic and hyperspherical bases are eigenfunctions of the operators H, L3 and
A, L2 , respectively,

A‘I’nqm(ua v, ¢; R) = Aq(k; R)\I’nqm(ﬂ'a v, ¢; R) (24)

Lz‘I’nlm(X’ 0’ ¢; R) = l(l + l)q’nlm(Xv 01 ¢; R) (25)

and the quantum number q = 0, 1, ...,n—1 labels the eigenvalues of the elliptic separation
constant. Substituting expansion (23) into eq. (24), using eq. (25) and the orthogonality
property of the hyperspherical function ¥,;,,, we arrive at the system of homogeneous
equations

n—1
{Mg(k; R) = (k* = k)L + 1)}W}(R) = REK' Y AwWi . (R) (26)
U'=|mj
where
T L4 2r
Ay =R® / sin Zxdx / sinfdg / Ul im A Vnimde (27)
0 0 (4]

Let us write down the Runge-Lenz operator in the hyperspherical system of coordinates

A, = 1 cot y cos @ ——1—-(?—sin0—£9— + —1—?—2—
*7 R X €08 sin 008 08  sin%6 8¢4°
. .0 ]
+ ( sin 9% + cos 9) o + aR cos 0} (28)

Now substituting eq. (28) into eq.(27), using the recurrence relations for the spherical
harmonics Y, (8, ¢)[21] and using the results of ref. [4] we have
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A =L (n=)(n+ 1) +io)(l - io) P
w=-z @I—)@+1) I,1-1

(n—l—1)n+1+ 1) +1+i0)(I+1-io)
+\/ (20 + 1)(2l + 3) 6""“} (@)

Finally, substituting eq. (31) into eq. (26) we arrive at the three-term recurrence relations
for the expansion coefficients W, = W] . (R)

[n2 — (1 + 1)2)[( + 1)2 + 0?] 1 .
—[Ag(k; R) — (k* — k W,
\/ (20 + 1)(2 + 3) Wisr + 5k R) = ( NI+ 1)W,
(n? = 12)(* +0?) _
+ (2l -1)(2 +1) Wi =0 (30)
which have to be solved together with the normalization condition Y, lerl.qm|2 = 1.

The recurrence relations obtained are the system of (n — |m| — 1)) linear homogeneous
equations, and admissible values of the elliptic separation constant are determined from
the condition for the relevant determinant to be zero.

At k = k' = 1/+/2 the recurrence formula is simplified and turns into the recurrence
formula for the recurrence coefficients for the “parabolic” basis over the spherical one.
In contrast with the flat space, they are not expressed through the Clebsch-Gordan
coefficients for the group O(4)[19].

4. Conclusion

We have shown that the presence of an analog of the Runge-Lenz vector for the
Coulomb problem in the space with constant positive curvature leads, like in the flat
space, to the separation of variables in an attitional coordinate system, the elliptic one.
Also, a “parabolic” system of coordinates diagonalizing the A3 component of the Runge-
Lenz vector is found on the three-dimensional sphere. In contrast with the flat space, the
“parabolic” system of coordinates on the three-dimensional sphere is not an independent
system of coordinates but rather a particular case of the elliptic one.
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