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Abstract. We study the free quantum motion on the three-dimensional sp&rén ellipso-
cylindrical coordinates, where we distinguish between prolate elliptic and oblate elliptic
coordinates. The oblate and prolate elliptic wavefunctions are constructed in terms of the hyper-
spherical and cylindrical wavefunctions. A perturbation theory for the elliptic wavefunctions in
powers of the elliptic parameter is established. Finally, the interbasis expansions are used to set
up path integral identities for the two ellipso-cylindrical coordinate systems®n

1. Introduction

The investigation of separation of variables in the Helmholtz (&dihger) equation has a

long history, and the case of spaces of hon-vanishing constant curvature has been thoroughly
discussed by Olevsk{1]. This includes the two- and three-dimensional sphere with two
and six orthogonal coordinate systems, and the two- and three-dimensional hyperboloid
with nine and 34 orthogonal coordinate systems, respectively. The corresponding cases
for the flat spaceR? and R® with four and eleven orthogonal coordinate systems can
be found in [2]. However, many of these coordinate systems are not well known, and
the usual studies of physical systems, potential problems, the incorporation of magnetic
fields, monopole problems, perturbation theory, or scattering theory, are studied in the more
familiar systems, e.g., in Cartesian, spherical or parabolic coordinates, depending which
coordinate system is best suited to match the symmetry properties of the problem under
consideration.

The choice of a coordinate system emphasizes which observables are considered to be
the most appropriate for a particular investigation. Actually, the number of coordinate
systems which can be found in a homogeneous space equals the number of sets of
functionally independent observables in this space. For instance, in a problem with spherical
symmetry, the total angular momentum operalgt, and theL. operator are sufficient
for a comprehensive understanding of classical and quantum moti®d mith spherical
symmetry and a preferred axis.

The incorporation of interaction, i.e. potentials or magnetic fields, generally reduces the
number of coordinate systems in which the Sclinger equation is separable. If it turns
out that the problem is separable in more that one coordinate system, it follows that there
are additional observables exceeding the numbers of degrees of freedom. If more than one
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such coordinate system exist, there will be different representations of the solutions of the
Schibdinger equation, and to each of them corresponds a set of commuting observables,
which may be simultaneously assigned definite eigenvalues. These systems are called super-
integrable, cf [3—6]. The most important super-integrable systems are the oscillator and the
Kepler—Coulomb problem, which are said to be maximally super-integrable, and in three
dimensions have five functionally independent observables. A comprehensive discussion of
super-integrable systems in two and three dimensions in spaces of constant curvature can
be found in [7] for the Euclidean space, in [8] for the two- and three-dimensional sphere,
and in [9, 10] for the two- and three-dimensional hyperboloid.

However, the investigation of separation of variables goes beyond the search of super-
integrable systems and the corresponding observables. Perturbing a super-integrable system
often leads to a problem which may be separable only in one coordinate system, and it may
even not be exactly solvable. Then, the unperturbed system may serve as a starting point for
a perturbative investigation, and the energy-levels of a perturbed system may be classified
according to the dynamical symmetry group of the unperturbed system. Because the algebra
of the angular momentum operatdr and the Pauli-Lenz—Runge operatB&r (suitably
rescaled) closes for constant energy, the dynamical gradp, @here the corresponding
homogeneous space §§”, describes the discrete spectrum, and the Lorentz gra@piQ
where the corresponding homogeneous space is the three-dimensional hypexlsd|dite
continuous spectrum [11, 17]. For instance, the ellipso-cylindrical system is of interest
because it enables one to set up by means of the elliptic obsemalseequation (2.20),

a complete classification of the energy levels of the diamagnetic Kepler problem, i.e. the
guadratic Zeeman effect (cf Herrick [13], Lakshmann and Hasegawa [12], Solov’ev [14],
Brown and Solov’ev [15], and Gutzwiller [16]). We will make some further remarks
concerning the quadratic Zeeman effect in section 6.

Furthermore, the ellipso-cylindrical bases as investigated in this paper are very useful
for physicists, because we can on the one hand study the global properties of the bases, and
not only the separating equation with the corresponding wavefunction as expansions over
sn, cn or dn as in [17]. On the other hand, the ellipso-cylindrical bases in the form of
an expansion over the spherical or cylindrical basis is useful for the calculation of matrix
elements for the Kepler problem in external (magnetic) fields with the approximate third
observable, as mentioned above.

The ellipso-cylindrical coordinate systems are also useful for the investigation of the
two-centre Kepler problem on the three-dimensional sphere, because this problem separates
only in these coordinates [18, 19]; our investigations are also eventually useful in the theory
of special functions.

Furthermore, the spherical, the sphero-conical and a rotated version of the prolate elliptic
coordinate system [8] separate the Kepler—Coulomb problens®n and the ellipsoidal
system separates the Neumann model [20, 21].

A classification of the coordinate systems 8f?, including an enumeration of the
corresponding observables has been already performed in [17, 22]. The simpler case of
the two-dimensional sphere is due to [23, 24]. Whereas on the two-dimensional sphere
the solution of the Sclidinger equation in spherical coordinates in terms of the spherical
functions Y;" (9, ¢), and in elliptic coordinates in terms of L&npolynomials [23, 24] is
sufficiently understood, including the corresponding interbasis expansions, not very much
is known in the three-dimensional case.

In order to solve the Schdinger equation in different coordinate systems there are two
approaches. The first consists of the separation of thet8iriger equation and a direct
solution of the emerging differential equations in terms of powers of the variables, say.
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In [17] a first attempt was made to characterize and classify the free quantum motion on
$® and the authors determined the ellipso-cylindrical wavefunctions by making an ansatz
in terms of powers of Jacobi elliptic functions, and called the emerging polynomial solutions
associated Lam polynomials

The second is based on knowledge of the complete set of observables. The first
investigation of this kind was done by Coulson and Joseph [25] for the basis of the
hydrogen atom in spheroidal coordinates by constructing an expansion in terms of the
spherical basis. This method was also used by Patera and Winternitz [24] for the sphero-
conical wavefunctions o8®. Mardoyanet al [26] used it for constructing the spheroidal
basis in terms of the parabolic basis for the Coulomb—Kepler problem, and I€ide{27]
analysed a generalized Coulomb—Kepler problem by this method.

The second approach is superior to the first because not only does it allow one to
calculate the wavefunctions, at least recursively, but it also determines at the same time
the coefficients of the interbasis expansion with respect to another basis. After obtaining
recurrence relations for the interbasis coefficients, they can serve as a starting point for an
algebraic perturbation description [28] of the construction of the wavefunctions.

The paper is organized as follows. In section 2 we discuss the two ellipso-cylindrical
coordinate systems afi®, and define the relevant observables. In section 3, we construct
the ellipso-cylindrical bases in terms of the hyper-spherical and cylindrical bases. In
section 4 we consider a perturbation theory for the ellipso-cylindrical bases. The cases
of the elliptic parameter & |a| < 1 anda > 1 are discussed separately. In section 5 the
interbasis expansions are used to establish path integral identities in the ellipso-cylindrical
coordinate systems. A first attempt to such a formulation was tried in [29], however only
on a heuristic level. In section 6 we give a summary and discussion of our results. Some
results concerning the matrix elements of operators with respect to the cylindrical and
hyper-spherical bases are compiled in two appendices.

2. The Schiddinger equation and the integrals of motion

The Schédinger (Helmholtz) equation for the free motion on the three-dimensional unit
spheres®

sf+s§+s§+s§=1 (2.2)
embedded in four-dimensional Euclidean space has the form
% R
—— AV =_—J(J 4+ 2V J=012.... 2.2
oM o’ 2 (2.2)

A is the Laplace operator which is given by
1
A= —hjz(L2 + M?). (2.3)

L; andM;, i = 1,2, 3, are the six generators of the groupdPwhich have the following

form:
h 0 h 0 0
L= eins: M= (si— —s4— i =1,2,3. 2.4

L [ (S ds4 S43Si> l @4

They satisfy the commutation relations

[Ll', LJ] = iﬁél’jij [M,', MJ] = iﬁé,‘jij [Ll‘, MJ] = iﬁél’jij . (25)
Equation (2.2) is separable in six coordinate systems which we list in table 1, together with
their corresponding characteristic observables.
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Table 1. Coordinate systems on the three-dimensional sphere.

Coordinate system Coordinates Observaliled,
I. Cylindrical s§1 = COSy COSg1 I = M?
y €[0,7/2] 52 = COSy Singy =13
¢12 € [0, 27) s3 = siny sing,
s4 = Siny COSy2
Il. Sphero-Elliptic 51 = siny sn(e, k) dn(B, k) I = L?

x €0, 7] 50 = siny cn(e, k) cn(B, k') I =13+ K?L3
o €[-K, K] s3 = Siny dn(e, k) sn(B, k')

B e[—-2K’',2K’] S4 = COSY

1. Spherical s1 = siny sin® cosp Iy = L?

x €0, 7] s = siny sin® sing =12

% € [0, 7] s3 = Siny cosy

¢ € [0, 2r) s4 = COSY

IV. Oblate elliptic

s1= SN(u, k) dn(v, k") cosgp

I =(1-k)L? - k>M3

w € [0, 2K] s2 = sn(u, k) dn(v, k') sing I =L2
vel[-K', K s3 = cn(u, k) cn(v, k)
¢ €[0,27) s4 = dn(u, k) sn(v, k')

V. Prolate elliptic  s1 = cn(u, k) cn(v, k') cose I = L? + k’M?

wel[-K, K] 52 = cn(u, k) cn(v, k') sing I =13
ve[-K', K'] s3 = sn(u, k) dn(v, k)
¢ €[0, 27) sa = dn(u, k) sn(v, k')

. . —a —a —a
VI. Ellipsoidal 52 = ((ii = ai;gig = ai;gi; = ai))
52 — (01— a2)(02 — ap)(03 — az)
27 (ag — az)(az — az)(a1 — az)
52 — (01— a3)(02 — a3)(03 — a3)
87 (a1 —az)(az — az)(as — az)
52 — (01— a4)(02 — aa)(03 — aa)
47 (a1 — aa)(az — aa)(az — as)

Iy = (a1 + ag)Lf + (a2 + ag) L3 + (a3 + as) L3

ap <01 <az<g3 +(az + az)M? + (a1 + az)M3 + (a1 + a2) M3

<az <4 <as = a1a4L% + a2a4L% + a3a4L§

+a2a3M12 + a1a3M22 + a1a2M§

a1234 € R

2.1. The ellipso-cylindrical coordinate systems

On the three-dimensional sphere there are two ellipso-cylindrical coordinate systems, the
oblate elliptic systemalso called the elliptic-cylindrical 1 system, and thelate elliptic
system also called the elliptic-cylindrical 2 system.

2.1.1. Oblate elliptic coordinates.Let us start with the oblate elliptic system. In terms of
the Jacobi elliptic functions ¢rsn and dn [41, p 910] it has the form [8]

s1 = sn(u, k) dn(v, k') cosep
s2 = sn(u, k) dn(v, k') sing
(2.6)
s3 = CN(u, k) cn(v, k')
s4 = dn(u, k) sn(v, k')
where 0< u < 2K, —K' < v < K, 0< ¢ < 2n. k is the modulus of the elliptic

functions, withk’> = 1— k2. K andK’ are the complete elliptic integrals. In what follows,
if not explicitly stated otherwise, we usually omit in the Jacobi elliptic functions the explicit
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dependence on the modulkisThe coordinates (2.6) are a one-parametric coordinate system
depending ork. In the limitsk — 0 andk — 1 simpler coordinate systems emerge.
In the limiting casek — 0, i.e.k’ — 1 we obtain
cn(u, k) — cosy O <
2.7)
sn(v, k') — tany = cosy 0< x <.
Therefore the oblate elliptic coordinate system in this limit yields spherical coordinates:
s1 = Siny sin® cosy
s2 = Ssiny sin® sing
. (2.8)
s3 = Sinx cosy
54 = COSY.

Alternatively we can consider — 1, i.e.k’ — 0, and for the Jacobi elliptic functions we
obtain

sn(u, k) — tanu = siny OKy<nw 2.9)
2.9
cn(v, k') — sing, 0< ¢ <.
Hence oblate elliptic coordinates yield cylindrical coordinatesS6h (¢ = ¢1):
s1 = Siny cosy;
s2 = siny singy
. (2.10)
$3 = COSy Sing;
§4 = COSy COSg;.
Finally, the Laplace operator in oblate elliptic coordinates is given by
1 92 cnudnu 9 92 » SV CY
A= : B T e B
k2crép + k'2créy \ 9u? s opn dv? dnv  dv
1 32
(2.11)

+ srép dry anz

2.1.2. Prolate elliptic coordinates.Next, we consider prolate elliptic coordinates which
have in terms of the Jacobi elliptic functions the form

s1 = cn(u, k) cn(v, k') cosy
s2 = cn(u, k) cn(v, k') sing
s3 = sn(u, k) dn(v, k)
sa = dn(u, k) sn(v, k).

Here— K < u < K, —K'<v <K', 0< ¢ < 2r. In comparison with the oblate elliptic
coordinate system, the prolate elliptic system has the same limiting coordinate system for
the two limiting casek — 0 andk — 1 (for whichk’ — 1 andk’ — 0, respectively),
namely the spherical system. In the lirit> 0 we find the coordinates (2.8). For the limit

k — 1 we find that

sn(u, k) — tanu = cosy 0
0

(2.12)

b
(2.13)

NN
NN

X
sn(v, k') — cosy <
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and we therefore obtain the coordinate system representation
s1 = Siny sin® cosy
s2 = Siny siny sing
(2.14)
§3 = COSY
s4 = Sinx cosy

where the coordinates ands, are interchanged compared with (2.8).
We finally note that both elliptic coordinate systems can be transformed into each other
by the substitution

ik 1
k—>P k/—>P w— K — . (2.15)
The Laplacian in prolate elliptic coordinates has the form
B 1 92 smudnu 9 92 smwdmw 9 N 1 92
~ k2crép + k2crév 2 cnu  du 92 cnv v créu ety gg?’

(2.16)

2.2. The observables

We consider the Schdinger equation of the free motion o$f® in oblate spheroidal
coordinates (2.6). We make the following ansatz for the wavefunctions:
img

e
W, v, 95 k) = Ya(p; k)ga(v; k)E meZ (2.17)

and obtain the two coupled ordinary differential equations

Py cnudnu dyy )

T sy de [k } V1= —Aq (k)Y (2.18)
2

T2 _esmemdiz [J(J F2dty 2 m’ ] W2 = 40y (V. 2.19)
dv dnv  dv

The quantum numbey labels the eigenvalues of the observables of the oblate elliptic system.
In order to determine the operatar corresponding to the eigenvaluewe eliminate the
guantum numbey from the equations (2.18), (2.19). This yields

1 92 Cn/L dnudrév 9
A=—— " (drf kK2sfp— + 41—~
kZsréy — dréy < v 2 T 9?2 s o
o2 Sven sn’-,u 0\ k*srfu+ drfv 9 (2.20)
dnv v srudrey  gg?’ '

If we re-insert the coordinate in (2.20) it follows that the operatak can be represented
as
R2A = (1 — k*)L? + k*(L5 — M3) + k°L;. (2.21)
Here £, = —h%A. We can introduce another operai®s by defining
_ 1
2 poblat 2 2 272
hﬁg ae:m[h A_k£1+k L3]

k2

=L?—dM? d=1"15 € [0, c0). (2.22)
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After the transformation (2.15) we obtain for the prolate coordinate system the corresponding
operator

R2LOO%® = L2 4 kM3, (2.23)
Both operators (2.22), (2.23) can be cast as one operator, yielding
R%Ly = L? —aM3 (2.24)

where nowa € [—1, o0). Fora positive we have oblate elliptic coordinates, foe [—1, 0]
prolate elliptic coordinates. Therefore the operaigr= L»(a) is a continuous function of
the parameted. It is possible to analytically continue the dependence tmthe entire real
line by means of the mapping — 1/k? which maps the domain [@0) — (—o0, —1].

The Laplace operatof; = —h?A, the elliptic operatorl,, £3 = —h%3%/9¢? and
the parity operatorgls : T[l3(s3) = —s3, 14 : Tl4(s4) = —s4, form a complete set of
commuting operators and fix the elliptic basis uniquely.

The limiting cases ofa - o0, @« — 0 anda — —1 give us the corresponding
observables for the cylindrical and hyper-spherical systems, i.e.

lim Lo = L2

a—0

H . 2
lim £y = L2+ M3 (2.25)

a—-1

L
lim =% = —M2.

a—o0

3. The ellipso-cylindrical bases

3.1. Expansion of the elliptic basis with respect to the cylindrical basis

Let us construct the elliptic basis in terms of the cylindrical basis according to

T—m]
\Iqum (u, v, @ a) = Z Tquz(a)\DJmmz(ﬁ7 @1, ¢2) (31)

ma=—(J—|m|)

with the wavefunctions¥,,,., (9, ¢1, ¢2) as defined in (A.1), where:, is even or odd
depending on the parity of — [m|, and we usen = m; in the cylindrical basis. Inserting
the expansion (3.1) into the operator equation

ACZ"IJqu = )\qﬁz“qum (32)

taking into account the orthogonality of the cylindrical wavefunctidng,,,,, and using
equations (2.24) and (A.6), we obtain

1 J—|m|
Org + am3) Trqna(@) = = > Trgmy @ (L) m, (3.3)
mhy=—(J—|m|)
where
(L) oy, = / dQ W5, (v, 91, 92) LY s (v, 01, 92) (3.4)

and d? denotes the invariant volume element §?. For example, using

L?=3(LyL_+L_Ly)+Lj (3.5)
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and the formulae in appendix A, we have the following expression for the matrix elements:

%(Lz)mzmé = —Apy—28mpmy—2 + BinySmamt, — AmySmpmy 2 (3.6)
with the coefficients4,,, and B,,, being given by
Apy = 2T —ma—m)(J —ma+m)(J +ma+m+2)(J +mp—m +2) (3.7)
By, = 3[J(J +2) + (m® — m3)]. (3.8)
The coefficients4,,, and B,,, satisfy the recurrence relations

Ay, =Ap,—2 B_,,, = B,,. (3.9

Inserting equation (3.6) in (3.3) we obtain a three-term recurrence relation for the coefficients
Tqmz = qumz(a):

Aszq.m2+2 + (amg + Aq - Bmg) Tqmz + Am272Tq,m272 =0. (3.10)

These recurrence relations can be rewritten in the form of two sets of homogeneous linear
equations, one for each parity class, depending on whether the quantum nugribesven
or odd, respectively. On the one hand, for- |m| = 2k we have

0= (Bx —4ak® = 1Ty — An—2Ty 2
0= Ay_2T, 2 — (Bu—2 — da(k — 1)% — Ag)Tgok—2 + Agk—aTy 2ka

(3.11)
0= AoTo— (Bo—A)To+ A 2Ty 2
0=A T, ni2— (B —4ak® — 1,)T, .
On the other, for/ — |m| = 2k + 1 we have
0 = (Bat1 — (2k + 1)%a — ) Ty 2k41 — Azi—1Ty 261
0= Ap—1Ty 241 — (Bauer — (2%k — D)%a — Ag) Ty k1 + Ak—aTy 23
O0=A1T35—(By—a— )\.q)T]_ + A_]_Tq,_]_ (312)

0= A_]_Tq]_ — (B_l —da — )»q)Tq,_l + A_3Tq._3

0=A_p 1T, 21— (B_ak—2 — (2k — 1)%a — Ay) Ty —2i1.
The homogeneous systems (3.11), (3.12) satisfy the symmetry conditions
Tq,—k = quk p= +1. (313)

We can determine the classés p) = (£, +), wherep = +1 andr = (=D =
(—=1)’~I"l and we see that the recurrence relations forfihg can be put into four classes:

(i) J — |m| = 2k, my = 2n:
Vk=—myk+n+DJ —k—n)(J —k+n+1) (180T, 5»

+ kg +dan? — LI +2) + (J = 2k — 20)(J — 2k + 20)]} T 52
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+Vk+n)k—n+D(J —k+m(J —k—n+ DT 52 =0 (3.14)
(i) J—|m|=2k+1,my=2n+1:
Vk—mk+n+2)(J —k—n—D{J —k+n+ DT, 505+ {r +a@n+1)?

—[JU +2 + @k +1)J + 2k —n)k —n— D]} T, 52

+\/(k—n+1)(k+n+1)(1—k—n)(J—k+n)Tq(,_z;i)1

£ (J — k) (k + 18,0l ;™ =0. (3.15)

The homogeneous equations corresponding to the three-term recurrence relations
(3.14), (3.15) have non-trivial solutions if their determinants are equal to zero. These
conditions lead to four algebraic equations and give us the eigenﬂ@laekﬂ’,}{’,f (a) of the

elliptic observableA. For each class we have for the quantum numper

J — |m| = 2k:

qg=0,2,...,2 k + 1 states of clas§+, +) (3.16)
g=13...,2%-1 k states of clas§+, —) '
J —|m| = 2k + 1:
qg=0,2,...,2 k + 1 states of class—, +)
(3.17)

g=213,...,2k+1 k + 1 states of clasg—, —).

The quantum number labels the elliptic observable and counts according to the oscillation
theorem the number of zeros of the ‘angular’ elliptic wavefunctibi{u, k), and the
multiplicity of the degeneracy for fixed is (J + 1)°.

Therefore, we can write the interbasis expansions of the elliptic wavefunoﬁéfgf;#
in the following form:

(I—imp/2
WO vpia) = Y (1= 380T 50850 (v, 01, ¢2) (3.18)
n=0,1
+.-) UV g
‘I'JZ;n (. v, @1a) = Z T, o Y mon (Vs 91, 92) (3.19)
n=12
(- VIREY ) e
Wi wovigiay= 3 T (v e e2) (3.20)
n=0,1
(- UTREM ) o
Ui (v piay = Y T W (1 92) (3.21)
n=0,1
where
1
WD (v, o1 02) = 72[\111,%2”(% 01, 02) £V 20 (v, 01, 92)] (3.22)

_ 1
W (. 01 92) = 72[%,,",2”1(% 01, 02) £ Yy —20-1(v, 01, 92)]- (3.23)
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The ellipso-cylindrical wavefunctions are subject to the orthogonality relation
/ dQ WP (v, 01 @)W (10, v, @3 @) = 87800 S 818y (3.24)

and the following orthonormalization conditions hold:

(J—Im))/2 (J—Im))/2 (J=|m|-1)/2
OB T = Y T = S e
n=0,1 n=12 n=0,1
(J—=|m|-1)/2
= n;l T o " Tys) =844 (3.25)

The expansions (3.18)—(3.21) can be inverted due to their unitarity. Using, for instance, the
orthogonality conditions (3.24) one can show that

(TCP) ™ =T+, (3.26)

qmz qma
Hence we can write the inverse expansion of the cylindrical basis over the elliptic basis in
the following form:

WO @, @1.02) = Y TEP* (@)W (. v, 9 a) 3.27)
q

wheregq is given by (3.16), (3.17) and by taking into account the proper parity classes it
follows that

J—|m| J—|m|-1 J—|m|
1 () s () (H=) # (£ =) (—o) # (=)
Z (1_?8”°)qu2" Tq,Zn’ - Z Tq,Zn Tq,Zn’ - Z Tq,2n+1 Tq,zn'+1
q=0,2 q=13 ¢=0,2
J—|m|-1
(= =) % (=—)
= Z Ty o1 Ty 21 = Bnm (3.28)
q=13

Some results for the coefficienty’y”” andx;™” are listed in table 2.

3.2. Expansion of the elliptic basis with respect to the hyper-spherical basis

Let us consider the interbasis expansion of the elliptic basis with respect to the hyper-
spherical basis

J
W ym (s v, 930) = Y Nygr(@W i (X, 9, 9) (3.29)

I=|m|

with the wavefunctionsW,,,(x,?, ¢) as defined in (B.1). Performing the same
manipulations as in the previous subsection we obtain

1 1 <
Ik AU+ DINg(@) = 5 Y Nogr(@) (M) (3.30)
I'=|m|
where
(M3 = f dQ w3, (6, 0 @) MEW 10 (X, 0, @). (3.31)

Using the formulae of appendix B we have

1
hTQ(M??)”, =—Cr 2812+ Eidir — Ciy142 (3.32)
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Table 2. Coefficients for the interbasis expansion (3.1).

For (r, p) = (+, +)

(+,+) (+,+)
J m n Tq_zn Ag
0 0 0 Yv2 A =0
14 0 1 AT =2
(+,+)
A da -2
2 0 0 % [2—da -2 P][4a-2] =8
\ Ag +2a -3
(+,+)
2 0 1- (h)—*ﬂ' [2—4a -2 P[4-2"P] =8
205" +2a - 3)
2 £2 0 V2 A —6
(+,+)
A da -6
3+ 0 % [6—4a— 2" P][8—2"T] =24
\ Ag +2a -7
(+,+)
3 41 1 - (qur -8 [6 ~da— A,(,+‘+)][8 _ A(q+‘+)] —24
205 +2a -7
3 £3 0 Y2 AT =12
For (r, p) = (+. -)
2 0 1 1 WD =2—4a
31 1 1 M =6—4a
For (r, p) = (-, +)
1 0 0 1 PV
2 +1 0 1 o =2—a
rg P +9 -3 - _
3 0 St THTE [3oga-aP)Boa-2 ] =9
200" +5a - 3)
(=4
A -3 - -
3 0 1| TITF [3_gi 2 P)B-a-2T] =09
20" +5a - 3)
342 0 1 A =6-a
For(r, p) = (=, —)
1 0 0 1 AN =2—a
2 £1 0 1 AN =6-a
A(_’_) + 9 —3 —-) (—,—
3 0 0 | [B-%a-ai T ][1l-a-27]=9
200 +5a -7
a7 +a—11
3 0 1- |2 —— " [3-%-a"][ll-a-27"]=9
207 +5a -7
3+ 0 1 AW =12-4

1639
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with the coefficients’; and E; being given by
c \/(J—1—1)<J—l><1+z+2)<J+z+3)
l =

(21 +1)(2L + 3)2(2l + 5)

x /(I —m|+ 1) — [m| +2)(I + |m| + D + |m| + 2) (3.33)

E__U—I+DU+I+DG—WMU+WD
= 2 —1)(2 + 1)

n (=D +1+2U—|m|+ 1+ |m|+ 1)
(2 +1)(2 +3) '
Inserting equation (3.32) in (3.30) we obtain a three-term recurrence relation for the
interbasis coefficientd/,; = N, (a):
1
CiNg 142+ {a [l(l +1) — A.q] — FE }qu + Ci—2Ny -2 = 0. (3.35)

(3.34)

From the three-term recurrence relation (3.35) we see that the indereases by\/ = 2.
This means that we get four classes of coefficients which can again be classified according
to their parity. The first class emerges if the indestarts with! = |m|, the second for
I = |m| + 1. Their respective parity is given by = (—1)/~"I. The third (fourth) class
is obtained if/ is between|m| and J (between|m| + 1 andJ — 1). Their respective
parity is given byr = (—1)’/~1"l. Therefore the interbasis expansion (3.29) splits into four
contributions with parity classes = (—1)/~" andr = (—1)’ !, and they have the form

J

W piay = > NS W 0. 9) (3.36)
I=|m|,|m|+2
J-1
gy = > NS W 9. 9) (3.37)
[=|m|+1,|m|+3
J—1
WP v ey = Y NS 9. 0) (3.38)
I=|m|,|m|+2
J
Wi (v pa) = Y Ny T W, 9, 9). (3.39)
I=|m|+1,|m|+3

The interbasis coefficient®,; satisfy the following four sets of homogeneous equations,
and we have listed in table 3 some simple examples for small valugs! of:.

1. (r,p) = (+,4). J —|m| even,l — |m| even:
0 [|m|<|m|+1)—xq

a

—Em}%w+cwmwﬂ

(Im] +2)(jm| +3) — 24
a

0= C\y Ny, jm + [ — E|m|+2] Ny m+2 + Cimj+2Ny jm|+4

(3.40)

o [J(J+1)—Aq
a

- EJ1| Nyj+ Cyj2Ng j-2.
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Table 3. Coefficients for the interbasis expansion (3.29).

For (r,p) = (+.+)

J m I N;l+,+) A51+.+)
0001 AP =0
141 11 AP —2
(+.+)
Ay +4a/3-6 +H) (+)
2 00 |4 T~ [6-4a/3—25")[8a/3+ 1" ] = —3242/9
2()Lii+1+) +2a— 3) [ q ][ q ]
(+,4)
s 8a/3
2 0 2 g +8/ [6—4a/3— 25" "][8a/3+ 15" = —3242/9

\ 205 +2a -9

242 2 1 M —6

AP 4 8a/5—12

3+1 1 N m [2—12a/5 - 25" P][12 - 8a/5 - 2571 ] = 964?/25
3+1 3 w [2—12a/5 - 25" P][12 - 8a/5 - A{H 1] = 964?/25
20" +2a - 7)
343 3 1 AP —12
For (r,p) = (+.-)
2011 AT =2 —4a
3+1 2 1 AW =6—4a
For(r,p) = (- +)
1001 AP =
241 11 Ao =2-a
30 0 | MIES s g eeseeal ) - 162
200" +5a -3
Ao +5a-6 _ _
302 |2 " 45a)[-6+5a+a ] =160
205 +5a - 3)
32 2 1 A =6-a
For(r, p) = (=, —)
1011 AW =2—a
241 2 1 AP =6-a
301 w (A7 =24 4%/5][177) — 12+ 9a/5] = 14442/25
200 +5a-7)
30 3 M +%/5-12 [y +41a/5—2|[Ay 7 + 9a/5 — 12] = 1444?/25

20577 +8a -7

342 31 M =124
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2. (r,p) = (+,-). J —|m]| even,l — |m| odd:

0— [(Iml +D(m|+2) — A,
a

- E|m|+1} Ng.imi+1 + Cimj+1Ng,m1+3

(Im|+3)(Im| +4) — 24

a

0= Cin+1Ng, imj+1 + [ - E|m|+5j| Ny, imi+3 + Cim+3Ng, jm|+5

(3.41)

J—1J —x
0=C, 3N, 3+ [aq —Ej_1|Ng-1.

3. (r,p)=(—,+). J —|m| odd,l — |m| even:

0 [|m|<|m| +H—2
a

1 - Em} Ng.im| + Cim| Ng,jm+2

(Im|+2)(Im| +3) — A,
a

0= Cim Ny, jm + [ - E|m|+2] Ny imi+2 + Cimi+2Ng im|+4

(3.42)

JUJ -1 -2
w _ EJ—11| N, 1.
4. (r, p) = (—,—). J —|m| odd,l — |m| odd:

0— [(IMI +D(m[+2) — A4
a

0=Cy_3N; 3+ |:
a

- E|m|+li| Ny imi+1 + Cim 1Ny jm)+3

(Im| +3)(Im| +4) — 24
a

0= Ciu+1Ng imj+1 + |: - E|m|+3:| Ny imj+3 + Cim+3Ng jmj+5

(3.43)

JU+1) -2,

a

0= Cijq’2+|: —Ej:| qu.

The following normalization conditions hold:

J J
> INPrP= 3 N

1 =
I=|m|,|m|+2 I=|m|,|m|+2
! 2 ! 2
(+,-) (=)
S SRl @
I=im+1 I=|m|+1

and the ellipso-cylindrical wavefunctions are again subject to the orthogonality relation
(3.24). As in (3.28) we have a unitary condition

r,p)\—1 r,p)*
(Ny”) " = Ny "™, (3.45)

If we take into account the parity of the hyper-spherical wavefunctions according to
W = \l/j’l’,ﬁ), we can obtain the inverse interbasis expansion of the hyper-spherical basis

in terms of the elliptic basis by means of

WP (x. 0.0) = Y NG (v, 01 a) (3.46)
q

with ¢ as in (3.16), (3.17).
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3.3. Symmetry properties of the wavefunctions

The interbasis expansions (3.18)—(3.21) or (3.36)—(3.39), together with their corresponding
three-term recurrence relations, completely determine the oblate and prolate elliptic bases.
Now we consider the symmetry properties of the elliptic bases under reflection. For the

cylindrical and hyper-spherical bases we have:

ReflectionIlz: s3 — —s3:

WP (v, @1 02) = pU5il (v, @1, 02) (3.47)
W52 (x, 9, 9) = p¥ i (x, 0, 9).
ReflectionIls: s4 — —sa4:
(r,p) _ (r,p)
a0, (Ve @1, 92) =W, 0 (Vs 01, 92) (3.48)

M7 (0, 0, 0) = r®%i? (x, 9, @).

Applying the reflection operators to the interbasis expansions (3.18)—(3.21) or (3.36)—
(3.39) we obtain the complete set of operators defining the elliptic bases which are given
by

LW (1, v, ;@) = R (T + 250 (1, v, ¢: @)

LoV (u, v, gi @) = B2y @530 (. v, 93 @) (3.49)
H3‘D§251)(:u" v, @; a) = p\y;};fn)(ﬂv v, @; a)

MaW P (., v, @1 a) = r¥y) (v, @; a).

3.4. Limiting cases

As we have seen in the previous section, the two ellipso-cylindrical systems are the
most general one-parametric coordinate systems$®@nand contain as limiting cases the
cylindrical and the hyper-spherical coordinate systems.

According to this, the elliptic bases in the limiting cases— oo anda — 0
degenerate to the hyperspherical and cylindrical bases. Therefore we must determine the
quantum numberg andni, which characterize the limiting hyperspherical and cylindrical
wavefunctions, fog fixed. Using the fact that the numbeiis independent of the parameter
a and the expression for the wavefunctions (B.1) and (3.22), (3.23), we obtain

lo=gq + |m| iy = iy ? (3.50)
where

iy =T —|ml—q=2%—q

~(+,—)

m =J—-|ml—-q+1=2k—qg+1

2 (3.51)

my D =J—ml—q-1=2k—gq
My =J—|ml—qg=2k—q+1

We analyse the two limits separately.
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3.4.1. The hyper-spherical limit.The limit ¢ — 0 can be analysed by means of the
recurrence relation (3.35). Ignoring all terms which depend explicitly: ave get

lim 2, (@) = lo(lo + 1) = (g + mD)(q + Im| + 1) (352)

liino Nyi(a) = dy, (3.53)
and in particular for the wavefunctions

liLnO Yigm (i, v, @5 a) = Wy (X, 0, @). (3.54)
Let us consider the expansion of the elliptic bases in terms of cylindrical basis;-a$®.

By means of the quantum numbets m, I, m»} we define the new quantum numbers

_ml+mp 1y M= m2
2 2 2
and the three-term recurrence relation (3.10) forfhg = 7,,,, takes the form

K1 J =25 l=j (3.55)

V01— p0) G+ )G+ 1+ D01 — p2+ D Ty,

+[iG+D =21+ D) — 2u1p2] Ty,

VU1 + )G — u)Grtpe + DG —p1+ D Tyy1p41=0  (3.56)
which coincides up to a phase factor with the three-term recurrence relation for the Clebsch—
Gordan coefficient$j; j izl j, 1 + n2) [30], and we find

lim Tyqm (@) = (=D 2(jajuapal j, w1+ pa). (3.57)
Therefore the expansion (3.1) yields
Wit OG0 0) = Y (=D 2y juapolj, pa + 12) Yy o (v 01, 92)  (3.58)

H1, 2

which is the well known expansion of the hyper-spherical basis in terms of the cylindrical
basis [31].

3.4.2. The cylindrical limit. For the limita — oo we find from the recurrence relations
(3.14), (3.15)

)L(r,[?)(a)

: q _ ~(r,p)12

lim = —[my "]

a>00  a (3.59)
i (r,p) —

all—>moo Tqmz (a) = (Sn';i(zr,p),mz

and therefore we get

Nim Wi v, gia) = WITL (v g1 g). (3.60)

~(r,p)
J,mz’ ,m

We consider the interbasis expansion (3.29). Using the quantum numbers (3.55) we can
rewrite the three-term recurrence relation (3.35) as folloMs=t N):

Cp—Jj=DCap—-NCha+j+22a+j+3
(2j +D(2j +322j+5)

XV =1 —p2+ DG —p1— p2+ 2G4+ 1+ 2+ 1)
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X /(j + 1+ p2+2) Niyo

(2j + D% = j3)(j2 = (u1+ 1n2)?)
+{(M1—M2)2—|: 41].2_1

+

(2j = D% = (i + DG + D2 — (na + 12)?) N,
2j+D2j+3) !

n Cn—j+HCh—j+DC2a+)HCa+j+D
2j -D@j+1D322j +3)

xy/(j—p1—p2— D — 1 — pu2)(j + p1+pz2— 1)

Xy (j+m1+p2) Nji—2 =0. (3.61)

This three-term recurrence relation coincides with the corresponding three-term
recurrence relation for the Clebsch—Gordan coefficients which can be obtained from
[32, equation 8.6.5(27)]. Therefore, in the limit—> oo we obtain

Jim Nogi(@) = (=172, j, s, pizlj. pa + o) (3.62)
and the expansion (3.29) yields
\IJ_]'].[L;[/,LZ (ya ‘Pl, (PZ) = Z(_l)j/z(,]la j’ Mlv ,lL2|j, I~’l'1 + H’Z) \Ij.ilxijZ"v‘Mz (X7 7-9’ (p) (363)

J
which is the inverse expansion of (3.58).

4. Perturbation theory

The determination of the ellipso-cylindrical wavefunctiohg(;ﬁ’f by using (3.14), (3.15) or
(3.35), respectively, and solving them recursively is related to the solution of higher-order
algebraic equations. In general, such algebraic equations cannot be solved analytically.
Nevertheless, the spherical and the cylindrical bases can be considered as a zero-
approximation for a perturbation expansion. We do this in what follows, first for

0 < |a| « 1, and then fou > 1.

4.1. The O< |a| « 1 case

According to (3.50) we can label the coefficieg and, with the indexly instead ofy.
Let us setN,; = Ny, Ay = Ay-

For the calculation of the higher-order corrections we consider the perturbation
expansion

00
N,,O(a) = (Sllo + Z Nl(lz)as (41)
s=1
y(a) =lo(lo+ 1) + Y pa’ (4.2)
s=1

which fixesly as the angular momentum number corresponding taltheperator in the
limit « = 0. Inserting these expansions in the three-term recurrence relations (3.35) and
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comparing coefficients with the same powerafafter some algebraic manipulation we
arrive at the following equations fov,; andj):

(=10} +lo+ DN + CINSZD + CraNS 50 — EINg Y — Z MWUNY =0, (4.3)
t=0

According to standard perturbation theory, e.g. Landau and Lifshitz [33], we use the initial
conditions

N = du, NS =850 (4.4)

and we can expresg’’ for s > 1 in terms of the coefficientﬁ/&o‘l), N D, by means of

(s (s—1 s (s—
: CloNl +2;o EloNlE)I + Clo— le 210 (4-5)
Explicitly for s = 1 ands = 2 we have
o = (4.6)
W2 = CuN Yy + CromaNE '
1oV1g12,1, T Clo—21Vyg 210
and from (4.3) we obtain
Cio— C
L L VP U (4.7)

- b s
o = 220 — 1) 22 + 3) o2

for s = 1, which determines the second approximation zf(;yg(a) and A,,(a). Explicitly,
for A,(a) we obtain in second-order perturbation theory

A (a) — (q + |m|)(q + |m| + 1) —E .a _} C‘f‘Hm\ _ C‘f‘HmH’z az
9 gtiml 2g+2m|+3 2g+2m|—1

2

+0(dd). (4.8)

Substituting equation (4.7) in (4.1) and expanding (3.29), for the elliptic basis in first-order
perturbation theory with respect to the hyper-spherical basis we obtain

Co+im)
Wiom(, v, @;a) = Wi gpimm(X, V@) — 2 |:2q+;|m|+3 La+iml+2.m(Xs 0, @)
Cotimi-2 )
_W\DJﬂHmFZ,m(X, U, @) | + O(a?). (4.9)

Finally, the case of the prolate elliptic basis is obtained if we replasgth —a in all
relevant formulae.

4.2. Thea > 1 case

For the case ofi > 1 we consider the power expansions

o0
Tl @) = 850m ,, + Y TP Oa™ (4.10)
)\(r’p)(a) (r,p)12 >
q ~(r, rnp),(s), —s
=TT 4 YAV (4.11)

s=1
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where%g‘”) as in (3.50). Substituting equations (4.10) and (4.11) in the recurrence relation
(3.14), (3.15), by the same reasoning as for srdllin second-order perturbation theory

we obtain the following expressions for the quantiﬂé’s”)(a):

AP (@) = —a@k — )? + YIU +2)+ (T — ) (J — 4k +q)]

1| q@k+iq+D0 -2+ 19 - 1g+1
+a{q< g+ 1)( Y >(1+8k‘%q)

8(2k —q+1)

(g +2)(2k — l'c[)(] — l-q)(] — 2%+ ;CI +1)
- i 8(2k _2 1 : (1+81+) (4.12)

MWE @)~ —ak—q+ D+ 3[JU+2+ (T —qg+D(J —4k+q - D]

8(2k — g + 2)

a

+1{ G-k -+ DU -2%+1g-Hu—1g+9

G+D@k—2qg+HU -2k +2¢+H -+
x (1= 81,-1) —
k,3(q—1D 82k — q)

x (1= 8, 10441) } (4.13)

Mo @) = —a@k =g+ D2+ I +2) + 2k +1)J

+34(q =2+ =k +1d 1,

8(2k —q +2)

+1{ 92k — 3 +2)(J — 2%+ 1 - D — 19
a

@+Dk—g+ DU -2%+190 - 19
B 82— q) (1-8c1,) (4.14)

Moy~ —ak —q+ 22+ T(T +2+ 2k +1)J
+3@° =D = (J =k + D 1,1

1 @-D@k—39+3DU —2k+39 - DU —3q9+3)

a 8(2k —q+3)

@+ D@k =39+ U —2%+ 39 -5 —3q+3)
82k —q + 1)

(1=8e164-) (-
(4.15)

Therefore, to first order, we obtain the following expressions for the elliptic wavefunction

\Ifﬁﬁ;f,f(u, v, @;a):
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Wi (v ra) ~ WD (v, g1 02)

1 \/q(2k + g+ D0 - 2%+ - g+ 1)

4q V2@2k —q+1)

(+.+)
x (1+ 8k.%q+1) V) o gr2m (Vs 1. 02)

J@+2@ =100 - 30 -2+ 3+ 1)
V2@k—g-1)

XU (Vg1 02) (4.16)

+,— . ~ yit-
\pﬁqm )(,LL, v, 9, a) \p‘(]yzk_)qq_j_,m(y’ @1, 92)

1 [ V@@ -la+ DU -2+ia-Hu-1a+D

4a V22k—q+2)

(+.-)
X (1 + 3k,%(q+l))\lfj!2k7q+3’m(7/7 @1? ¢2)

Ja+D@k-3g+H0 - g+ HU -2k +1g+)
V22— q)

X W5 1, (o1 02) (4.17)

WS (v pra) = W0 (v en )

1 1 1
1 [ Ja@k-lg+d0 -2%+3-D0 -3

1 V2% —q 12 V) o giom (Vs @1, 92)
J@+ D@k - 3g+ D0 - 390 — 2+ 1g)
V2(2 - q)
X (L= 8, 1)¥S oy 0n(vs 01, 02) (4.18)

Wi v gia) = 0550 L (v 01 02)

1 Je-D@& -l DU -2+ Ja-DU-da+ D
V2(@2k—q+3

y
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X \Ifﬁ P q+3m(% %1, ¢2)

Ja+D@k -3+ D0 - 3g+HU -2k +1g- D
V2(2k —q+1)

X (1 - 81(,%((1_1))‘1/5,_2’1{_,)4,1,,"(7/, 1, 92) ¢ - (4-19)
Higher-order perturbation corrections can be calculated analogously.

5. Two path integral representations in ellipso-cylindrical coordinates onS®

Equation (3.1) describes the expansion of the elliptic basis in terms of the cylindrical basis,
where in addition the parity classes according to (3.18)—(3.21) must be taken into account
properly. Conversely, for the expansion of the cylindrical basis in terms of the elliptic basis
we have the expansion (3.27), which must be interpreted according to the parity classes of
the expansion coefficien®,,,,. However, we use the shorthand notation of (3.27) in order
not to make the corresponding formulae too lengthy.

The path integral representation of the propagator in cylindrical coordinates is given by
[29, 34] (note thaty € (0, ), ¥ € (0, ))

y(")=y" o1t =¢f ©2(t")=p}
K" y' 0], 01, 05, 05 T) = / Dy (t) siny cosy / Doy (1) / Ds(t)
)=y’ 1(t) =0} V2(t") =g,
x exp{ y 2+ cod y¢? + sirf y¢3)

1
8 (4+ cody smzyﬂ d }

3N/2N 1,2
) / siny; cos;xjdyj/ d(p(l)/ de?
j=1

(Ay,)z + o2y (Ag™)? + it y; (Ap®)?)

= Jim (2

X exp{ |

NI

Mz

h

1
1N

J

1
‘M <4+ cog y; sir? y,-)} ]

h I / ! " v i
= Z exp[ - 7J(J + 2)} Tmmy V' 010 O W g, (V" @15 93). (5.1)

Jmmy
Here we have formulated the path integral in the canonical way according to, e.g. [35-40],
by means of a ‘product lattice’ [29] which is used in what follows. We have used the
abbreviationspg” = ¢}, ¢’ = ¢{, etc,e = (¢’ —)/N = T/N, Ag; = q; — g; 1,
g =qt'+je) tj =t +¢€j,j=0,...,N), f2(q,) = f(gj-1)f(g;) for some function
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f(q) of coordinatesg, and we interpret the limitvn— oo as equivalent ta — 0, for
fixed T.

The path integral representation of the propagator in the hyper-spherical basis is given
by [29, 34] (note thaty € (O, 7))

X(")=x" P")=0" o(t")=¢"
K", x', 0", 0, ¢",¢;T) = /Dx(t) Sire x /Dz?(t) siny /Dp(t)

x@)=x' v (t)=v’ p)=¢'

. 1" M )
X exp{ }':l/ [2(X2+sinzxﬂ2+sinzxsin2ﬂ¢2)
.

o (4+ : (1+ ! ))}dt
8M Sir? Sir? o

IET / / A " " "
= Zexp[ — o+ 2)]w;,m(x WX 0" @), (5.2)
Jim

In [36] we have derived the path integral representation on the spiré which has the
form

7

Q=" ,
i [TM ., _(D—1(D-3)
KQ' Q. T)= DO _ il o LAY bl ) .
Q",Q;7) / (t)eXp[h/f [2 +h 8 ]dt} (5.3)
Q@)=Y

Here 2 is a unit vector on theD-dimensional sphere. The quanti€y? is defined in its
lattice representation by means Qf — (€2; — ©;_1)?/¢, which in turn can be restated,
yielding

1 2
(-9 0% = ~(1—cosy;; ) (5.4)

where y; ;_1 is the angle between two vectof3; and £2;_; on S°~P. The addition
theorem for cogr; » has the form

D-2 m
cosy = cosvy” costy” + Y " coswy P cospy" Y [ [ sinv” sinoy”

m=1 n=1

D-1
+ [ sinwy” sinvg”
n=1

= COSx1COSx2 + SiN x1 SiN x2[ COSY1 COSP, + SiNW SN, COL P2 — 1) |
(5.5)

where in the last line we have inserted the spherical coordinat§§’orin order to evaluate
the path integral, we need the expansion theorem [41, p 980]

o oSy _ <g>_” () ;(J + V) 1;4,(2)CY(cosyr) (5.6)
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for v = (D —2)/2. TheC, (x) are Gegenbauer polynomials [41, p 1029] andthe) are
modified Bessel functions [41, p 958]. By means of the addition theorem for the hyper-
spherical harmonics on thg?—Y-sphere [42]

% 1 2J4+D-2

SIS = 2?7 (cosy"") (5.7)
— ! QD) D-2 7

"
whereQ (D) = 27°/2/T(D/2), M = (2J + D — 2)(J + D — 3)!/J!(D — 2)!, we obtain
the following expansion:

«-Q) z cosy” 21 %(diz) X\ 12 /N oM ”
& =€ =2n (= > st@)sh« M4 10-2)(2)- (5.8)

2 T=0 p=1

In the short-time kernel of the path integral (5.3) we consider the quaritit§fe-1/ with
zj = M/ieh. Using the expansion (5.8) and the interbasis expansion (3.46) we obtain

. o 27\ 2
€ COVi-1i = 2 <Z> Z U (X1, 95-1, @~ DV im (X5 0, 9) 1y 42(25)
J Jlm

2
=2r (2”) SN NSNS

Zj Jim qq’

X WG (-1, V-1, 9513 @)W rgm (145 vjs @55 ) 1142(2))

2rie \¥?
o <M> D WS (1 Vi1, 91 W g (. V), @) @)
Jgm

(5.9)

C_(J+2?%— 1/4}
13/ —— .
2M

i M
xexp[—ﬁe—

In the last line we have applied the asymptotic expangijon) ~ (2rz)~Y/2 e~0*~1/4/2

|z] — oo according to [43], where a Wick rotation must be performed in order that
largz)| < m/2 [36]. The path integration of the propagator (5.3) starting from the
hyper-spherical basis is thus reduced to a multiple integration over the orthogonal basis

Wyam (1, v, @; a), yielding

ihT
K(x" x', 0", 9, ¢",¢"sT) = Zexp[ ~ oYUt 2)}1'71,"()(’, )W (X", 0", ¢")
Jim

IET ! / / " " 1
= E, exp[— 2MJ(JJrZ)] qu WG (W V05 @)Wy (10", 975 a)
(5.10)

for oblate elliptic coordinates; > 0O:

n(")=p" v(t")=v" p(t")=¢"
= / Du(t) / Du(r) (k% créu + k' crfv) sy dnw / Do(t)
n(tH)=w v(t)=v' )=y’

X eXp{ }l—l / [1‘24((k2 crPu + k2 erfv) (ji? 4 v?) + s drfvg?)
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G 1 (anvdnzv 4 Snzucnzp.):| ” inT

— — 5.11
+8M k2 crép + k'? crév srév + dréu + 2M } (5.11)

for prolate elliptic coordinates; € [—1, O]:

=" e O
/ Du(t) f Dv(t) (k2 crfu + k' crfv) cnu crw / Do(t)

u()=p' v(r)=v’ (=g’

’ exp{ hi‘/ [A;W crp + k2 crv)(a? + %) + crép crPvg?)

h? 1 ( srfvdréy , srPu dnzp,) ihT
+5 +k dr+ — ¢t .
8M k2 creu + k'? crév crév Creu 2M

(5.12)

In addition, we have included a direct implementation of the interbasis expansion (3.46)
in the propagator. Of course, a similar relation holds for the case where the interbasis
expansion with the coefficient,,,, is used.

6. Discussion and summary

In this paper we have discussed the solution of the @&ftihger equation on the three-
dimensional spherd® in terms of the two one-parametric ellipso-cylindrical coordinate
systems, i.e. the oblate elliptic and prolate elliptic coordinate systems. The elliptic
wavefunctionst,,,, (i1, v, @; a) have been constructed in terms of the cylindrical and hyper-
spherical wavefunctions, respectively. The coefficients of the interbasis expansions have
been found to satisfy three-term recurrence relations.

The two interbasis expansions (3.1) and (3.29) have allowed us to determine the elliptic
wavefunctions to any desired order. In analogy with the corresponding wavefunctions on
the two-dimensional sphe®?, whereLamé polynomialsare involved, following [17] we
may call the elliptic wavefunctionassociated Laepolynomials The improvement of our
solution compared with [17] lies in the fact that we have not just defined a power-series
expansion in an unambiguous way. Our approach at the same time provides the necessary
coefficients of the interbasis expansions which allows us on the one hand to determine the
elliptic wavefunctions and the corresponding observables to any desired accuracy, and on
the other enables us to switch from one basis to another, as appropriate for our purposes.

We have also developed a perturbation theory for the elliptic wavefunctigps for
the two limiting cases of the elliptic parameteri.e, for the cases & |a| < 1 anda > 1,
respectively. Equations (4.9), (4.16) represent first-order perturbation theory for the elliptic
wavefunctions. The perturbation theory for the elliptic parameter and the wavefunctions
are considered as asymptotic expansions. For higher-order contributions, the recurrence
relations (3.14), (3.15) or (3.40)—(3.43) can be used in perturbation theory by implementing
them in a symbolic computer program, like REDUCE, MAPLE, or MATHEMATICA.

The elliptic observable is contained in the approximate ‘third observable’ which
describes the diamagnetic Kepler problem (the quadratic Zeeman effect) [13-16], which
is not separable. The ‘third observable’ can be introduced having the form [13, 14]
A =4A2 —5A_ (A= M/(J + 1)? is the Pauli-Runge-Lenz vector). Thed, tommutes
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with the operatop? (= (J + D*5J(J +2) — 4+ L2 — 4L5}/2, p? = x? + y?, d = —3
in ann-layer, since the operatok is an exact integral of motion for the hydrogen atom in
the absence of a magnetic field. The eigenfunctions,,,,, are the correct wave functions
in the zeroth approximation for the hydrogen atom in a weak magnetic field’ [14], and
the elliptic observable can be used in the weak-field limit in an algebraic perturbation
investigation according to (4.11).

Using the results for the interbasis coefficierits,, and N,, we have derived path
integral identities for the propagator 6% in oblate elliptic and prolate elliptic coordinates
by a simple change of basis. Furthermore, in the two identities (5.11) and (5.12) we could
factorize the wavefunction,,,, according to (2.17), and separate off thgath integral.
This would yield path integral identities for potentials according to

R? m?—1/4 n? m?—1/4
Py Vo(u,v) = o ———————
2M srép drév 2M crép crév

andm? can be continued analytically to any real number [34, 43]. However, this is obvious,
and we omit the explicit formulae, cf [29], for the two spheroidal caseR3n

It is legitimate to ask whether the two path integral identities (5.11) and (5.12) are
of use from a practical point of view. Here one must keep in mind that all known
path integral relations and identities require approximate knowledge of the expansion
formulae, where some kind of higher transcendental functions are involved. Calculation
of the radial harmonic oscillator requires the expansion of plane waves into a product
of circular waves, i.e. spherical harmonics, and Bessel functions [43], while calculation
of the path integral for the (modified)oBchl-Teller potential requires knowledge of
expansion theorems on the &Y and SU1, 2) group manifolds [34]. In the cases of path
integration on homogeneous spaces in terms of (one-) parametric coordinate systems, i.e.
elliptic and spheroidal coordinates in Euclidean space [29], where Matthieu and spheroidal
wavefunctions are involved, or elliptic (conical) [29] and ellipso-cylindrical coordinates on
spheres, where Laenand associated Lampolynomials are involved, one has to accept
the fact that these unusual wavefunctions are simply another kind of higher transcendental
special function. Unfamiliarity does not imply unreasonability.

We have not explicitly included in our discussion the dependence on the rRdais
the three-dimensional sphere. In the flat-space limit the following identities must emerge
(up to normalization§ = pd/2, R — oo, k — 0, whereRk = d is fixed):

Vi(u,v) = meZ (6.1)

204+ 1(—m)!
A7 (I 4+ m)!

Y(us; k) — ps" (9; 8%)

(6.2)
Ya(v; k) — \/3 pS/" @ (coshe; §).

Here p$ and S, @ are prolate spheroidal wavefunctions in terms of spheroidal coordinates
£,9 in R® [44]. This would require an expansion of the quantity p € R*, where forx
appropriate prolate elliptic and fgr spherical coordinates are used)

éP® = exp[ipR(sinx sin® sru dnv cosp — ¥) + siny cosd cnp cnv + cosy dnu sm) ]
(6.3)

in terms of the ellipso-cylindrical bases;,,,, asR — oo. However, such considerations

go beyond the scope of the present paper and will be discussed elsewhere.

It is obvious that our methods lead to further investigations: (1) determination
of the interbasis expansion for ellipsoidal coordinates on the three-dimensional sphere;
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(2) determination of the interbasis expansion for the analogous one-parametric coordinate
systems on the three-dimensional hyperboloid; (3) calculation of matrix elements for the
diamagnetic Kepler problem. This would also include a detailed investigation of the limiting
cases, aRk — oo. We hope to return to these topics in the future.
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Appendix A. Matrix elements in the cylindrical basis

The wavefunctions in the cylindrical coordinates have the following form:

gdmip ; gmapz
W imam, (V> 1, 92) = Ecmlmz(y)ﬁ (A1)

and are normalized according to
/2 27 2
/ siny cosy dy / de1 doz W7, 0 (Vs 01, 02DV sy, (v, 901, 92)
0 0 0

= SJJ"Smlm'l(Smgm’f (AZ)
The cylindrical wavefunctiorC,ﬁlmz(y) is given by

cl (y)=/2<1+1>(% (7 — mal — maD)! (2 (7 + Imal + Imz)))!
" (5 (J — pmal + maD)! (£ (J + il — Ima)))!

x (siny)™!(cosy )| P((,'"il‘;‘ﬁi'fmz‘)/z(cos ) (A.3)
=2 +2)d]? (cos ). (A.4)

L(ma+my), 3 (mi—m2)

The P,*"(x) are Jacobi polynomials [41, p 1035], and i, (x) are Wigner functions
[32]. We have for the quantum numbers , € Z, where for fixedJ they vary according
to —J <mi1+mp < J,and(J — |my| — |my|) is even. The operators,, L,, L3 are given
explicitly by

h( . . 0 . a . a
Ly =—+ < Sing1 SN, — — tany sing; COSp, —— -+ COty COSyp; Sln(p2>
I dy dp2 091

h . d d . . 0
L, = —| cosp1 Sing,— — tany CoSgp; COSp, —— — COty Sing; Sing, —— (A.5)
i Ay A2 d¢1
Lo h a
T dp1’

The functions (A.1) are eigenfunctions of the set of the three oper&f@rswg, L%}:
LAY iy =BT (T + 20V jim,
L3 iy = B2 i, (A.6)

2 72,2
MS\I”Jmﬂnz = I’l mz\IJJmlmz.
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The matrix elements of the operatats have the following form(L. = L1 +iL)):

n
(Jmél_m/zlL+|]mlm2> = _Z\/(J —mi— mZ)(J +my+mp+ 2) am’l,ml-&-lam’z,mg-&-l

R
+E‘/ (J —my+ma)(J +my—mz + 2) 8y my+18mymy—1 (A7)

h
(Jmim5|L_|Jmymp) = —5\/(1 +may —m2)(J —my+ma+ 2) Sy my—18mymp+1

3
+E‘/ (J +my+m2)(J —my—mz + 2) 8y my—18mpmy—1- (A.8)

Appendix B. Matrix elements in the hyper-spherical basis

The wavefunctions in spherical coordinates have the following form:

Y (X, 0, 0) = Su()Y" (9, ¢) (B.1)

where theY," (9, ¢) are the usual spherical harmonics, and the(x) are given by
Gegenbauer polynomials, i.e.

20 +DHJ =D .
Sn(x) = 2’1!‘/% (siny)' C’(cosy). (B.2)

They are normalized according to

T 4 27
/ sir? x dy / sin? do / Ao W O D, @)W rim G B 9) = 800800 (B.3)
0 0 0

The functions (A.1) are eigenfunctions of the set of the three operaferd.?, L3}:
L1V = R2T(J +2) Wy
LW = B2+ D)W i (B.4)
L%"Ijllm = Ezmijflm-

The operatord/; » 3 in spherical coordinates have the form

n . d d sing 9
My = T siny coswa— + coty cosy coswﬁ — coty
X

sin® d¢
M _h siny sin 0 + coty cosy sin 0 + cot cosy 9
27 Yox X Yoo X'sing 9
3 3 d (B.5)
M3 = —| costy — — coty siny —
i dx ERs
. R oof . 0 d  .coty d
My =M +iM, =€ smz9—+cotxcosﬁ—i|.—x— .
I ax av sind dg
The corresponding matrix elements are given by
o B jl4+m+DU+m+2)(J +1+2)(J =)
JUm'\M|JIm) = ~ 8 1118w m
(JIm' | My |JIm) |\/ RN 1 14+10m m+1
Rll—m—-—D—m)(J+1+1DJ —1+1)
= 81 1-18m' m B.6
+i\/ 2+ 1)@ - 1) 1',1—10m’ ,m+1 (B.6)
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(J0'm'|M_| Jm) = -

(JUm|M3|JIm) = —

R ll—-m+DI-—m+2)J+14+2J =1
s 81’.l+18m/,m—1

@2+1EA+3)

rla 1 J+I+1)(J—1+1
_i\/( FmA DOm0 DU I+D B7)

2 +1@-1)

E\/(l—m+1)(l+m+1)(]+l+2)(J—l)
i

2 +1)2 +3) i
+E (l—m)(l+m)(J+l+1)(J—l+1)(S (8.9)
i 2+ 1)@ - 1) et '
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