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NONPERTURBATIVE EXPANSION TECHNIQUE IN QCD
AND ITS APPLICATIONS

H.F. JONES
Physics Department, Imperial College, London SW7 2BZ, United Kingdom

A.N. SISSAKIAN and I.LL. SOLOVTSOV

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, Moscow region, 141980, Russia

A nonperturbative technique in QCD based on a new small expansion parameteris constructed and the connection
between the perturbative and nonperturbativeregimesis investigated. We argue that a renormalon representation
is obtained as a particular renormalization group improvement of the lowest order radiative corrections which
takes into account both the analytic properties and the structure of the operator product expansion. Application
to the inclusive semi-leptonic decay of the 7 is considered.

1 Introduction

There are many problems in QCD requiring a
nonperturbative approach. Here we consider a
method based on the ideas of the § expansion and
variational perturbation theory. The method leads
to the so-called “floating” series, the convergence
properties of which can be controlled by special
parameters. The idea of constructing such a se-
ries in quantum theories was suggested and ap-
plied to the anharmonic oscillator in Refs. [1,2].
Within this approach, a certain variational prin-
ciple is combined with the possibility of systemat-
ically calculating higher-order, thus allowing one
to assess the validity of the principal contribution
and the region of applicability of the results ob-
tained. At present, this idea has found many ap-
plications in developing various approaches, which
all go beyond perturbation theory. Among these
are the Gaussian effective potential method 2, the
optimized §-expansion, and variational perturba-
tion theoryS:® In certain cases, there is a rigorous
proof of the convergence of such an expansion”®
The generalization of the method to the QCD
case has been suggested in Ref. [10]. Within the
method, the quantity under consideration, for ex-
ample a Green function, can be approximated by
a series different from the perturbative expansion
and which can be used to go beyond the weak-
coupling regime, thus allowing one to deal with
considerably lower energies than in the case of per-
turbation theory.

2 Small expansion parameter in QCD
Consider the QCD action

S(A,q,¢) = S2(A) + S2(q) + Sae)
+ 953(A,q,9) + ¢°Sa(4), (1)

where S2(A), S2(q) Sa(¢p) are the free action func-
tionals of the gluon, quark, and ghost fields, re-
spectively; the term S;(A) also contains a term fix-
ing the covariant ag—gauge. The term S3(4, ¢, ¢)
describes the Yukawa interaction of gluons, gluons
with quarks, and gluons with ghosts

S3(A,q,9) = Sa(A) + S3(4,9) + S3(4,9). (2)

The terms S3(A4), S3(4, ¢) and S3(4, ) generate
the three-line vertices (AAA), (§Ag) and (pAyp)
respectively; whereas the term S;(A4) in (1) gen-
erates the four-gluon vertex (AAAA). We will
transform the latter term by introducing auxiliary
x-fields® After making the x-transformation, the
diagrams for the Green functions will consist only
of diagrams of Yukawa type. In addition to the
usual three-line vertices of QCD, vertices of the
type AxA will appear. Thus, any Green function
of QCD can be represented in the following func-
tional integral form

G(--) = /DXDQCD(' --) exp i[S(A,x)

+  52(q) + S2(p) + S2(x) + 953(4, g, so)] /(3)



where
S(4x) =3 [ dedy A@D™ = 404w @

with the gluon propagator D(z, y|x) in the x-field,
and the term (---) is a set of v gluon, quark and
ghost fields.

Following the ideas of the VPT method, we
introduce auxiliary parameters { and £ and rewrite
the action in Eq. 3 in the form

S(A,q,9,x) =S0(A,0,9,x)+ S1(A,q,90,x) (5)
with

Sa(A,0,0,x) = ¢TH[S(4,x) + S2(q)
+ Sa(p)] + €71 S(x),
SHA,g,0,x) = 953(A,0,9) (6)

- (€ =1[S(4,x)+ S:(9)
+ Sa(p)] — (€71 = 1) Sa(x).

The exact value of the quantity under consid-
eration does not depend on the parameters { and
£. However, the approximation of that quantity
with a finite number of terms of the VPT series
resulting from the expansion in powers of the ac-
tion S7(4,¢, 9, x), does so depend. One can em-
ploy the freedom in the choice of the parameters ¢
and £ for our aim, the construction of a new small
expansion parameter.

It is convenient to rewrite Sy(A,q,9,x) by
replacing ¢~ by [1 + x(¢"! — 1)] and £! by
[14 & (6~1—1)] and setting & = 1 at the end of the
calculation. In this case, any power of the expres-
sion (™! — 1)[S(4, x) + S2(g) + S2()l + (€7* -
1)S2(x) appearing in the expansion of the corre-
sponding exponential can be obtained by differen-
tiating with respect to the parameter x. Then, the
integrand will contain only powers of the action
9 S3(A, g, ), which generate the QCD Yukawa di-
agrams with modified propagators defined by ap-
propriate quadratic forms in the new “free” action
SY. After rescaling of fields and the Gaussian in-
tegration over the x, the VPT series for the Green
function is given by

. n 1 PR
1
[1+IC(<—1 - 1)]1//2 /DQCD(---)

[9353] k exp{i[So + 9254] } (7)

X
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Here So(A, g, ) no longer contains the term-de-
scribing the field x and represents the usual func-
tional of the QCD free action, whereas g; and
gs in the Yukawa and four-gluon vertices are
defined as follows: g5 = g[l+&(¢™! - 1)]—3/2,
ga=g[l+x(E1 - 1)]-1/2.

Analysits of the structure of the VPT series
shows ? that we will succeed in constructing the
small expansion parameter if we set £ = (3 and
if the parameter ¢ is connected with the coupling
constant by the equatiomr

)= g2 _ l a2
T n)} T Ca-a®’

azl_C) (8)

where C is a positive constant. As follows from
Eq. 8, for any values of the coupling constant g, the
new expansion parameter a obeys the inequality
0<ax<l

Consider the connection between the pertur-
bative and non-perturbative regimes of the run-
ning coupling constant o,(Q?). To fix the pa-
rameter C we will use non-perturbative informa-
tion from meson spectroscopy and derive a,(Q?)
in the perturbative region at large @2. In other
words, we will find the connection between the
universal tension ¢ in the linear part of the quark-
antiquark static potential Viin(r) = o7, which can
be determined from meson spectroscopy, and the
description of high energy physics. If, as usual,
we assume that the quark potential in momentum
space can be written as V(g?) = —16ma,(¢%)/3¢?,
where «,(¢?) describes both large and small mo-
mentum, and that &,(¢?) has the singular infrared
asymptotics a,(g?) ~ ¢~2, we obtain, by tak-
ing the three-dimensional Fourier transform, the
large-distance linear potential in coordinate space.
The corresponding singular infrared behaviour of
) = a,/(4r) conforms to the asymptotics of the
Gell-Mann-Low function: #(A} — — A for a large
coupling constant.

In the framework of this approach consider
the functions 8, g3, %) and B®) that are
obtained if we take into consideration the terms
0(a?), O(a®), O(a*) and O(a®) in the correspond-
ing renormalization constant Z,. As has been
shown?, the values of — 8¥)(X) / A as functions of
the coupling constant for parameters C = 0.977,
Cs = 41,Cy = 104 and Cs = 215 goto 1
at sufficiently large A. The increase of C; with
the order of the expansion is explained by the
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necessity to compensate the high order contribu-
tion. A similar situation takes place also in zero-
and one-dimensional models. The behaviour of
the functions — B(¥)(1)/\ gives evidence for the
convergence of the results, in accordance with the
phenomenon of induced convergence. At large
coupling, — B*)(X)/X =~ 1, which corresponds to
5(Q?) ~ Q-2 at small Q2.

The value of the coefficient o in the linear part
of the quark-antiquark static potential Vin(r) =
or is ¢ ~ 0.15 <+ 0.20 GeV2. At a small value
of Q? the corresponding behaviour of a,(Q?) is
as(Q?) =~ 30/2Q* Here we will use this equa-
tion at a certain normalization point Q¢ and the
value ¢ = 0.1768 GeV? which has been obtained
in Ref. [10]. The renormalization group method
gives the following equation for the @Q*-evolution
of the expansion parameter a:

Q? = Q exp[¢(a, Ny) — ¢(ao, NJ)]  (9)
with
A
'y
B(A)

In an appropriate region of the momentum,
the value of 0(Q?) = 2/3Q?a,(Q?) is almost
independent of the choice of Qo and lies in the
interval 0.15 = 0.20 GeV2. This result agrees
with the phenomenology of meson spectroscopy.
Thus, we have found all the parameters and can
now consider the behaviour of the effective cou-
pling constant at large @?. For example, we find
aea(mz) = 0.126. It should be stressed that we
have obtained this result by evolution of the ef-
fective coupling starting from a very low energy
scale. Taking into account this fact the value of
aer(mz) obtained in such a way seems to be quite
reasonable.

¢(a, Ny) = (10)

3 Renormalons and 7 decay

In this section we will concentrate on a descrip-
tion of the inclusive decay of the 7 lepton taking
into account renormalon contributions®. Consider
the Adler D-function D(Q?) = —Q2dII/dQ? cor-
responding to the vector hadronic correlator in the
massless case. The two-loop perturbative approxi-
mation is given by D(¢, A) = 1+4A(u?), where t =

%Some applications of the method have been considered
also in Refs. [11-13].

Q?*/u?. Standard renormalization group improve-
ment leads to the substitution A(u?) — A(t, ),
which implies a summation of the leading logarith-
mic contributions. However, due to the ghost pole
of the running coupling at Q* = A%¢p this sub-
stitution breaks the analytic properties of the D-
function in the complex ¢ = —Q? plane, namely
that the D-function should only have a cut on the
positive real g2 axis. We may correct this feature
by noting that the above solution of the renormal-
ization group equation is not unique. The gen-
eral solution is a function of the running coupling
with the asymptotic behaviour 1 + 4A, for small
A. To maintain the analytic properties ® of the
D-function we can write it as the dispersion inte-
gral of R(s) = (1/7)ImlI(s + ic), and use RG im-
provement on the integrand rather than D itself.
This method leads to D(t, A) = 1+4Aa(t, A) with
7 = 5/Q%. The Borel representation of Aeg(t, )
has the form

o0 —
der(t,)) = / dbe=*/ 22 B(b) (11)
0

with B(b) = T(1 + bBy)T(1 — bfo). Here Fo =
11-2/3Ny is the first coefficient of the S-function,
and Ny is the number of active flavours. Thus, in
the Borel plane there are singularities at b8, =
—1,-2,... and bf = 1,2, ... corresponding to ul-
traviolet and infrared (IR) renormalons respec-
tively.

The first IR singularity at b3y = 1 is probably
absent since there is no corresponding operator in
the operator product expansion. Although this is-
sue is not currently settled, it seems reasonable
to assume that the first IR renormalon occurs at
b = 2/Bo, and we would like to use this property
of the operator product expansion as an additional
constraint on the choice of solution to the renor-
malization group equation. This can be simply
achieved (by judicious integration by parts), and
as result we obtain the following expression for
Aeff:

© A(kt, A)
den(t, A) = /o () ke Ao Tnr
(12

in which the factor k reflects the renormaliza-
tion scheme ambiguity and the function w(7) =

bRecently 14, it has been shown that requiring the cor-
rect analytic properties for the running coupling is indeed
equivalent to the inclusion of non-perturbative power cor-
rections of the form exp(—1/(M(Q?)5o))-



27/(1 + 7)° describes the distribution of virtu-
ality usually associated with renormalon chains.
The function w() coincides with the function used
in Ref. [15] and is numerically very close to that
found in Ref. [16]). The function B(b) in the Borel
transform of (12) has the form

B(b) = T(1 + bBo)T(2 — bBo).  (13)

Thus in this representation for Aes the positions of
all ultraviolet singularities remain unchanged, but
the first IR renormalon singularity at b = 1/, is
absent.

In order to render Eq. (12) integrable we must
combine this method with the nonperturbative a-
expansion in which from the beginning the run-
ning coupling has no ghost pole °. Separating the
QCD contribution to R,-ratio as A, and writing
R, = R%(1 + A,), where R? is the wel-known
electroweak factor, we obtain the expression

: ds (s 2 s
pemts [ 2 () (-2
(14

in which the factor k again parametrizes the renor-
malization scheme and A = a%(1+3a)/C. In what
follows we shall use the MS scheme, in which
k = exp(—5/3). Note that the renormalon rep-
resentation obtained for the coupling modifies the
polynomial in the integral so that the maximum
now occurs near s = (2/3)M2.

Taking as input the experimental value of
Re*P = 3.56 & 0.03 18, three active quark flavours
and the variational parameter C = 4.1 as in
Refs. [9,13], we find a,(M?) = 0.339 % 0.015
which differs significantly from that obtained
(as(M?) = 0.40 in leading order !3) without the
renormalon-inspired representation for the cou-
pling. The method, applying the matching proce-
dure in the physical s-channel and using standard
heavy quark masses, leads to Rz = 20.90 £ 0.03,
which agrees well with experimental data.
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