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Abstract. We study the interbasis expansion of the wave-functions of the Kaluza-Klein monopole
system in the parabolic coordinate system with respect to the spherical coordinate system, and vice
versa. We show that the coefficients of the expansion are proportional to Clebsch-Gordan coeffi-
cients. We analyse the discrete and continuous spectrum as well, briefly discuss the feature that the
(reduced) Kaluza-Klein monopole system is separable in three coordinate systems, and the fact that
there are five functionally independent integrals of motion, respectively observables, a property
which characterizes this system as super-integrable. ’

1 Introduction

In the framework of quantum mechanics magnetic monopoles have been first dis-
cussed by Dirac in his classical paper [1]. He described them as quantized singulari-
ties in the electromagnetic field, the quantization condition being

2ge = nch, (neIN) ' (1)
(e — electric charge, g — magnetic charge, ¢ — velocity of light), arising from the
singlevaluedness requirement of the wave-function. The cormresponding Schrodinger
equation can be straightforwardly evaluated, and leads to a pure continuous spectrum
of an electron moving in the field of a magnetic monopole. More general is the
Dyon problem, where a Coulomb-interaction term o< eg/r is included, and bound
states can appear. This problem has been discussed by several authors, see e.g. Barut
et al. [2], Jackiw [3], and for discussions including spin, see e.g. D’Hoker and Vinet
{4].
More elaborated monopole models have been developed since and monopole solu-
tions seem to be inevitable in grand unified theories [5]. Important examples are the
_ (Bogomolnyi-Prasad-Sommerfield) BPS monopoles, e.g. [6], which move along geo-
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desics in a curved space, and Kaluza-Klein monopoles, e.g. [7-10], the latter emerg-
ing from the former by means of a static solution, i.e., large spatial separation, of the
classical field equations of five-dimensional gravity (Taub-NUT limit, *“Euclidean
limit”). Then, the relevant metric for the (full) Kaluza-Klein monopole system is giv-
en by x = (x,y,z) € IR?) [7]

1
ds’ = ——dx* + A(r)(dx} +4m A -dx)? , A

_El—z/r —xy
A(r) -

2_ 2
r‘—z
0

, ()

with x5 = 4my; the metric term A and the wp-component of the magnetic interaction
in spherical coordinates (r, 9, ) are given by

A(r) = A, =4m(£l —cos¥) , A, = Ag=0 . 3)

T4 4m
1+

The additional angular variable  describes the relative phase. This form of the Kaluza-
Klein monopole system is the simplest solution of the classical field equations. The
singularity at the origin vanishes if the coordinate v is cyclic with period 47 [8, 9].
The quantity A in the metric (g,) represents the effects of gravity, and A is identi-
fied with the electromagnetic field interaction. 4m is the only parameter that charac-
terizes the Kaluza-Klein monopole system, seen as a test particle in the Taub-NUT
space, and the coupling g = 4m < 0 generates a discrete energy spectrum. Similarly
. -as in the classical example of the o(4), respectively o(3, 1) dynamical symmetry al-
gebra in the Kepler problem, the total angular momentum operator J and a suitable
rescaled Pauli-Runge-Lenz vector K close into an o(4) or o(3, 1) algebra, depending
on the sign of the energy, which can be extended to an 0(4,2) symmetry [2, 8, 10].
On the corresponding homogeneous spaces of the groups O(4) and 0(3,1), i.e., the
three-dimensional sphere and the three-dimensional hyperboloid, a convenient coordi-
nate space representation may be chosen for perturbation investigations for the dis-
crete spectrum, respectively scattering phenomena in particular channels, e.g. [11] for
a review conceming coordinate systems in homogeneous spaces, and their corre-
sponding path integral representations and solutions.

The dynamical symmetry allows for a complete algebraic description of the classi-
.cal as well as the quantum motions for the Kaluza-Klein monopole system. By Barut
et al. [2] it was found that quantum systems with an O(4,2) symmetry can be related
by the Kustaanheimo-Stiefel transformation [12] to a four-dimensional oscillator, a
fact which has been extensively exploited in path integral evaluations concerning
Kepler-Coulomb, e.g. [13-15], and Dyon problems [16-18], and references therein.

As already observed by Zwanziger [19] a monopole problem with Coulomb cou-
pling constant o a = e;e; + g,2,, a magnetic interaction o U =ejg2 — eagy, and an
additional scalar potential o %2 /2MP?, cf. also [18], has the same dynamical sym-
metry as the Coulomb problem and admits separation of variables in spherical, para-
bolic and prolate spheroidal coordinates.

A thorough study of the classical and quantum properties of the BPS monopoles is
due to Gibbons and Manton [7], and they have shown that these specific monopole
problems admit due to their symmetry properties a solution in spherical and parabolic
coordinates, i.e., the Taub-NUT limit leads surprisingly to a Coulomb-like Schridin-
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ger equation which is exactly solvable in spherical as well as in parabolic coordi-
nates. Prolate spheroidal coordinates have not been taken into account until now.

The metric (1.2) was used by Bernido [20] and Junker and Inomata [21] to estab-
lish a path integral solution of this problem in terms of polar coordinates. In Ref. [23]
the corresponding path integral solution in parabolic coordinates was derived. The
path integral solutions in Refs. [20~23] all made use of the Kustaanheimo-Stiefel
transformation in order to obtain the propagator, its spectral expansion, respectively
and the energy-dependent Green function.

In this paper we investigate the interbasis expansion of the (discrete and continu-
ous) wave-functions in parabolic coordinates with respect to the spherical basis, and
vice versa. We show that the coefficients in the interbasis expansion are proportional
to Clebsch-Gordan coefficients.

The contents of the paper are organized as follows. In the following section we
briefly define the Kaluza-Klein monopole system in spherical and parabolic coordi-
nates. This includes the statements of the relevant line element ds?, the metric (gq),
the Hamiltonian H, and the constants of motion, respectively the observables, which
are stated in the form of the total angular momentum J and the Pauli-Runge-Lenz
vector K. We then just cite the relevant steps to obtain the properly normalized
wave-functions, suitable for the interbasis expansion analysis. A simple separation
Ansatz for the wave-functions yields ordinary differential equations in the variables
(r,¥) and (&,n). We do not dwell into the corresponding path integral evaluations
which make use of a space-time transformation within the path integral. For the prop-
erly normalized wave-functions in spherical coordinates we refer to [20, 21] for the
discrete spectrum and to [24] for the continuous spectrum; in parabolic coordinates
we rely on [23, 25].

In the third and fourth sections we present our principal results, i.e., we derive the
interbasis expansions coefficients for the wave-functions of the Kaluza-Klein mono-
pole systems for the parabolic basis expanded in terms of the spherical basis. Our in-
vestigation is done for the discrete as well as for the continuous basis, the latter often
being neglected. The inverse expansion yields in the case of the continuous basis an
integration with respect to the parabolic separation parameter . The fifth section con-
tains a short discussion of our results, and we briefly introduce the prolate spheroidal
coordinates as the third separating coordinate system for the Kaluza-Klein monopole
system.

2 Quantum mechanical solution

If the cyclic variable y is separated off, the observables in the (reduced) Kaluza-
Klein monopole system are given by a suitably chosen angular momentum operator
J and a Pauli-Runge-Lenz operator K which can be cast into the form, e.g. [8, 10,
26-28] v

X

J=xxn—4mhq|;| ,

| 2 (4)
K=2—lﬂ(nxJ—an)—4m|—§—l<_—q27h> ; ’
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where n=p — gA, p = —i#V. They satisfy the commutation relations

i, Ji] = ihewsd;
(i, Kk) = iheK; |
(5)

242
. h
(Ki, Ki] = if (q—M— - 25) i1

Here, summation over repeated indices ‘is understood, and ¢ is totally antisymme-
tric in the indices i,k,/ = 1,2,3. On the fixed energy eigenspace H¥ = E¥ one de-
fines the rescaled Pauli-Lenz-Runge operator M by means of

h2 5 —1/2
M=(ﬁ——2E) K for E < H*¢*/2M

M=K for E = g’ /2M | (6)
hz 2\ —1/2
M= (2E—7§—> K for E > H*¢q*/2M .

The operators M _and J close to an 0(4) algebra for E < #*q*/2M, to an o(3,1) al-
gebra for E > #°q%/2M, and to an o(3) ® IR? algebra in the case E =k 7 /2M
(e.g. [8]). The property of five functionally independent observables characterizes the
(reduced) Kaluza-Klein monopole system as a super-integrable system [29, 30] in
three-dimensional Euclidean space. A complete set of observables of the full system
is given by (e.g. [10])

{q’H)A21A3aB21B3} ) (7)
where A = (J +M) and B = 1(J — M).

We consider the spherical and the parabolic coordinate system which separate the
Kaluza-Klein monopole system. The spherical coordinate system is given by

x=rsinv¥cosp , r>0,

y=rsindsing , 0<d<nm, (8)
z=rcos? , 0<p<2n .

The parabolic coordinate system has the form

x=¢&ncosyp , En>0,
y={&psing , 0<¢p<2m, 9

1
Z=§(fz—'72) -

In terms of these coordinates the line element ds‘2 takes on the form
(dxs = 4mdy, y € [0,4n) ’
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1

=30

dx® + A(r)(dx} + 4mA - dx)’ (10)

Polar Coordinates :

- ﬁ (dr2 + r2(d9? + sin? 19d<,02)) + (4m)*A(r) (dV’ + (1 - COSﬁ)d‘p)z (1)

_ Parabolic Coordinates

2

i &—r
=i ((52 +7?)(dE +dn*) + ézrlzdcpz) +(dm)*A(r) [d:// + (:tl o ”2) d<p] .
(12)

In the following we only take into account the “+”-sign which is sufficient for our
purposes. The metric-tensor in polar coordinates has the form

1 0 0 0
1 1o 7 0 0
@) =771 0 0 Psin?o+ (@mA)(1 - cos9) (4mAYX(1 - cos®) |
0 0 (4mA)*(1 — cos¥) (4mA)*
(13)
with
4mr? sind\ 2
y — = (=== 4
and its inverse (g?°) is given by
1 (1) 0 0
0 ) 0 L 0
by _ 0 1 _1—cosd _
€ =AON0 0 s Psin’ 9 19)

— 1 — cos9)
0 0 _l=cosd 1 (
rrsin?9  (4mA)* P sinTe

In parabolic coordinates we have
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1

aby _ _ =
g+ 0 0 0
0 45 0 0
x 0 0 &+ (4mA)? ( TJLZ) (4mA)2(1-—§72i:77—§)
0 0 (4mA)< —,——l) (4mA)?
(16)
with
¢ =det(ga) = (& + )(‘K"f;’) ,
(17)
8m -1
Alr) = (1 .
) ( +52+ﬂ)
The inverse (g°) is given by
(&”) = A(r)
1
T ) 0 0
0 0 0
&+ .
X 1 _ 1 _¢& -
°0 & (1 -557) 2
1 E—nq 1 1 _&- 2)
0 0 e (1 62+ﬂ) (4mA)2+227(1 E+n
(18)

Therefore we obtain for the Hamiltonian operator H in the two coordinate systems

Polar Coordinates :

a2 T T 902

1 (1-cos®¥)’\ 8 21-cos®¥ d &
* A 3t ) 2T 2 w29 Bedu (19)
(4mA) r2sin’d JOy? r* sin?d Opdy

H ? 20 1/( 8 d 1 &
H=- A()[aﬂ rar+g( +cotd )
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Parabolic Coordinates :

——A(r) ;<ﬁ+li+ﬁ+lﬁ>+_}_a—2
2M E 4+ \og LA o non)  Enrog?

1 1 _fz—']2>2 82_ 2 (—52_”2)_6——(?_
+[(4m,\)2+§2,72 (1 gin) |87 gp\' T dre ) Bety | 2

In the spherical coordinate system the time-independent Schrodinger equation

HY¥(r,9,0,¥) = E¥(r,9,0,v¥) (21)
is solved by making the Ansatz for the wave-functions according to

ei(mp+kw)

Y(r,d,0,¥) = R(r})Z(¥) —=— . 22
(9,0, 9) = R(n)Z(8) ~ ol (22)
Observing
4n
$ e =9/ gy =5, n (23)
4 0 vq/h »

which yields the quantization condition of the monopole charge ¢ = sk,
25 =0,+1,42,... Note that in the Dirac monopole quantization we have
Bg/h=n/2 with B=1necIN, and in the Schwinger quantization condition
B =1/2, cfe.g. [22], and references therein. Therefore v € Z, g = k/4m = s/4m,
2k =2s = 0,%1,42, ..., and the operator ¢, conjugate to i, corresponding to the
quantum number g is conserved and identified with the relative electric charge [7,
10, 28].

The functions R(r) and Z(«}) are normalized, and the particular form of ‘¥ _guaran-

tees that the wave-functions are normalized to unity with respect to the scalar prod-

uct

oo r2dr n ) 2n an ’
f,2) =/ — sm19d19/ d(p/ 4lm|dyf*g . (24)
o A(r)Jo 0 ()}

Explicitly, this gives for the angular and radial variables the ordinary differential
equations

1 d . dz v (v-2k)

— S sin9ss - _ = 25
53Nt [J(J+1) Tl doos'? ]z 0, (25)
lirzd_R 2ME K +1 8mME K\ J(UJ+1) R—0
r2dr dr B lem? r\ 2m r T

(26)
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where J is the spherical quantum number. We see that a discrete spectrum can only
occur for

g=4m<0, E<hk/32m’M . (27)

The solution of these differential equations, respectively the wave-functions of the
spectral expansion of the corresponding path integral solution, are in terms of Jacobi
polynomials in cos1J, and Laguerre polynomials for the discrete and Whittaker func-
tions for the continuous spectrum in the radial variable. Thus we get for m < 0 the
bound state wave-functions W ;.4 in spherical coordinates [7, 20, 21]

eiugo+ikw

Ynivk(r, 9,0, W) = ——=—=Rny(r) Z;i(9) , 28
Navk(r, 9, ¢, ¥) poy ITIQYARIC): (28)

where the radial Ry,(r) wave-functions have the form

= [t =] (o) = (o) ()
(29)

and the functions Zj,,(19) are given by

Zou() <] @ DI = b1+ b = RO+ + o = 20t]
i 20 +5(Ivl = Jv = 2D = 1(v] - v — 2k
vt v—
x ( sing) (cos%)| M'Pgli'%{";ill‘l)_ 2k (608 V) . (30)

The bound state energy levels are

2 . R
Ey = hz sz—sz(:I:N—VNz—sz), N=|s|+1,|s|+2,--- .
(4m)"M
(31)

Here N=n,+1+ Mﬂ-z"_—zkl+ 1 is the principal quantum number, / the orbital, and
n, the radial quantum numbers, which have for fixed N and s, the values
0,1,---N —|s| — 1, respectively. The quantum numbers J and / are related through

J=1+Mﬂ'§:ﬂ. Note  that a=l/(N\/q2—2ENM/h2)= 4|m|/
[N(N - VNZ= )] is a “Bohr-radius”.

Gibbons and Manton [7] have argued that the energy levels with the “—- sign are
artefacts of the asymptotic approximation. The Ls,a)(x) are Laguerre polynomials {31,
p. 1037], and the PP (x) are Jacobi polynomials [31, p. 1035]. The levels with the
“+”- sign give for N >> |s]



152 Ann. Physik 6 (1997)

K s § 1
Eynoe——s— | —-—+ 0| — 32
a3 ol o

which exhibits a Coulomb-like behaviour.

The continuous spectrum has the form

hz
PRI 33
with largest lower bound Ey = #2¢%/2M = K?k?/32m*>M, and the continuous wave-
functions ¥, .« are
elmp-’HkW

p.luk(r 9 1 s V/) 4n \/—— pJ

with the radial wave-functions R,;(r) given by

(r) Zsk(9) (34)

T + 1 = 2i|m|(p? -
(2J + 1)V2nr

Rpy(r)= )/l P{ ;nl P - ‘12)] Myijm(p2—g2)jp. 11 (—2ipF) .

(35)
The M, ;(z) = e */2x**V2 F|(} — k + 2;24+ 1;x) are Whittaker functions [31, p.

1059]. According to Meixner [32] and Mukunda [33] the functions (29, 35) are
orthogonal and form a complete set, i.e.,

A Ir\(d; Ruy(r)Ry;(r) = dnn A :\2(‘13 pJ(r)Rp,J(r) =dé(p-p), (36)
and
iRNJ(”)RNJ(’”) + /000 Ry () Rps (r")dp = rlzé(r” -r). 37)
N=l

In parabolic coordinates one makes the Ansatz

el(vqp+k|y)

Y& n,0,w) =[()2(n) ——= poy =i (38)

The wave-functions ¥ are normalized according to the scalar product

. 6’7 2n 4n -
o= [ e [Tan@ e [ e [ amaurs. (39)

This gives the ordinary differential equations
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d’f 1df; IME K2\, (v-2k)’

it (i) - a0 0
df2 1dpp 2ME  k? v? _
ar (55 e )7 - mfpmo “

where B, , are related through

2
l6mME _ £ . (42)

m

Bi+B, =

The solutions of these ordinary differential equations, respectively the solution for
the corresponding path integral formulation, are for the bound state wave-functions
Laguerre polynomials in ¢ and #, respectively. We obtain [7, 23] for the bound state
wave-functions (nj,n; € IN;N =ny +m + (v + v —2k|) +1)

elmp+lkw 2 n |n2' 1/2
\Pmnzuk(é, n, ¥, '//) [ ! }
4n\/2lm]| L3 N3V NZ — 52 (m + v — 2k|)!(n2 + [v])!

ARNL AN E+7N w2 Sy w
(o) (&) oo (i e () () @

with the energy spectrum (31). The continuous states ¥ 4,4 are given by [23]

Hpalenow) = o[22 - )]
pBvk Mo, W -4nﬁm [

TGI8 K = i) T (P - iB)]
\272p Enlv — 2k|! [v)!

Miﬂ,,]"—}—l( lpéz) i jtl( ipﬂz)a (44)

where B, =% [4|m|(p — ¢*/p) £ 2B/p], B are the parabolic separation parameter,
and E, as in (33). The wave-functions (43, 44) are orthogonal (compare e.g. [23])

o] o] é dfd 2n 4n
/ dé¢ / (& + ) AT / dy / 4|m|dy ¥ nynpi(E, 1, 0, ¥)
0 0 A(r) Jo 0
o X T:’In’zl/k’(é’ n, ¥, '//) =5n|,n'15n2,n’25u,1/5k,k’ y (45)

00 [’} 2n 4n

g0 (&m0, w) = 0(p — P)O(B — B)00 Ok (46)

and form a complete set
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ZZ{ D Wannk& 10, 0) Wik (€5, 0 W)

2keZ veZ \ m m€elNg

+ /0 dp /]R dBY¥ ok (&1, 0, W) ¥4 (E 7, w’)}

A(r)

—_ 5 _ l(s _ /5 _ 15 _ / .
Amlen(@ 1) (o fp) (v —¥)o(E = &)o(n —n) (47)

3 Interbasis expansion for the discrete basis

Let us consider the interbasis expansion of the parabolic bound state wave-functions
(43) with respect to the spherical wave-functions (28), i.e.,

ny+n;

n,nzuk fa%‘P: Z "I"Z anVk r, 19 214 ) ) (48)
=0

where n, + n; = n, + [; we have included the dependence of y, and have re-inserted
the angular quantum number / and the radial quantum number 7, in the principal
quantum number N =n,+/+1=n+1+3(v|+|v—2k|)+ 1. The parabolic
variables can be expressed in terms of the spherical variables by means of

E=r+z=r(1+cos?) , q2=r—z=r(1—cosﬂ) ' (49)

We cons1der (48) in the limit r — oo. From the property of the Laguerre polynomials

L (x) (=1)"x?/n!, as x — oo, we see that the dependence on r cancels on both
sides of (48).

Using the orthogonahty condition of the angular wave-functions (30) we find the

following expression for the interbasis coefficients W,,ln2

Wl

mn; 2n|+n1+|v|+|v—2k|

(-1) (I + v + |v — 2k])!
(I + WY+ |v — 2k])!

1+ + v = 2k| + D]nd(n, + 20 + o] + v — 2k| + l)
X n w1 (50)
ni!npl(ny + v — 2k|)(n2 + fy|)! 1
with the quantity I} given by
| :
v— n+|v v, lv—2k
Io= /_1 doe (1 + x) 21 = et plAb=28D oy (51)

The integral I, , can be evaluated by means of [31, p. 841]
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2+ p)r(1+ o) (n+1+a)
WT(p+o+2)I(+a)

1) . (52)

However, using the Rodriguez formula for the Jacobi polynomials [31, p. 1035]

I
/ dx(1 + x)°(1 — x)P PP =
-1

( -n a+f+n+l p+1
3F
a+1 pto+2

PP (x) = (—;ln); (1-x)"*1+x)* % [(1 —x)*t™"(1 + x)”*"] (53)

and comparing with the integral representation of the Clebsch-Gordan coefficients
[34, p. 243]

l)]l +ma—j
cn

Jimy jamy m|+mzmm
(Zi + DG +m)Gy + ja +j + D1 + /2 = j)!
G2 =it + Wi — j2 + )G + mi)(2 — m2) !y + m)!(G — m)!

—m

& L p
_ 1—m 2—my V2t 1—j2+¢
/ dx (1 —xy"™™(1 + xY dxl"’[l xY (1+xy ] ,

(54)

yields that the coefficients W’ of the interbasis expansion (3.1) are given in terms

of the Clebsch-Gordan coefficients leml Jamp> 1€
nlnz ( l)nz Cj:"'"nlzmz ’ (55)
where
m+m+lv—2kl . nm+nm+y V| + |v — 2k|
= A ,]2 = ) = l+ ?
2 2 2
m _m —n2-+2-|u—2lf| -y _m —n21 + v m= |V|+|;——2k" . (56)

Using the orthogonality condition of the Clebsch-Gordan coefficients, we can invert
(48) yielding

ne+l

n,Iuk(r 9,0, ‘//) Z nns mnzuk(é, 0, '/') ’ (57)

n1—0

‘which represents the expansion of the spherical basis with respect to the parabolic ba-
sis.
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4 Interbasis expansion for the continuous basis

4.1 Interbasis expansion of the parabolic basis with respect to the spherical basis

Let us consider the interbasis expansion of the parabolic scattering basis with respect
to the spherical basis, i.e.,

00
\Ppﬂuk(cv n, ¥, W) = Z W[’;gc\}'pluk(r, 19, ©, V/) ) (58)
=0

with the spherical wave-functions ¥ ,..« (34) and the parabolic wave-functions ¥ pg,«
(44). We now consider the following expression

Wf:gc S Fi(a+ b+ 521 + |v| + v — 2k| + 2; 2ipr)
(=) |r@r®)] 2+ (v] + v - 2k]) + 1)!
T 2= T(] + a + b)| (lvD) (v — 2k|)!

\/(21 + U] + |v = 2k + DI + o] = v — 2k])!

16mp (I + [V + |v — 2k|)}!

% i (a)s(b)t (—ipr)s-H_l 6., , (59)

s,t=0(1 + v = 2k[),(1+v), st

where a = 3 (1 + |v — 2k|) — ilm|(p — ¢°/p) —iB/p, b= 3(1 + |v]) — ilm|(p — ¢*/p)
+iff/p and (z), denotes Pochhammer’s symbol [35]. The quantity @, is given by

1
@SI — /1(1 +x)|ll—2k!+.\'(1 _ x)l"l“""Pglulvly"Zkl)(x)dx . (60)

Using the Rodriguez formula (53) one shows that &;, is equal to zero for s+ ¢ > L
Therefore, we can consider the limit » — 0 on both sides of (59) and obtain

g __ () IP@T®)| 2+ v+ v — 2k +1)!
vk = AR |T(I + a + b)| [v|tfw — 2k]!

\/(21 + ||+ v = 2k + DI + | — |v — 2K))!

167p (I + |v|)!(I + |v — 2k|)!

’ (@),(6),_, 651
* Z‘; (I+v- 2kl)s(ll + V), st =) (61)

Using the integral (53) we can evaluate @;,_;, and therefore we obtain for the inter-
basis coefficients W7,
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wor () IT@T BT +b)
vk =Ty 2kl [T (I + a+ b)|T(b)
(21 + | + v — 2k} + 1) + |v = 2k + [y} + v — 2k])!
4rp V(I + V|

a I+ v+ |v—2k -l )
F 1) . 62
x32(1+|1/——2k[ 1—1-b ‘ (62)
Using a symmetry transformation for 3F5(1) according to [36]
-n b c|,\_(d=-0b), —n b e—c
3Fz(d e 1)_ (a), 3F2<e b—d—-n+1 1) » (63)
yields
pp __(=0) T(+a+b)|l@I'®)
Wluk =

|v — 2k|! I'(a + b)|T' (I + a + b)|
(F+ v + v = 2k} + D) + v = 2DI + v] + v — 2k))!
4np IY(I + [V|)!

a -1 1+|u|+|u—2k||>
F; 1) . 64
><3’2(1+|u—2k| a+b (4

Comparing (64) with the corresponding formula for the analytic continuation of the
ordinary SU(2) Clebsch-Gordan coefficients [34, 37]

m fy—m (il +j2 - m)'
qlmlJZmZ = (—l)ll lém'MI+m2m

(2 + D)2 —ji + )G +m)l(2 + ma)!(j + m)!
G — m)Na — m)G — m)Gy +ja — DV =2 + D +j2 +j+ 1!

- - 1
><3F2< .]H.-ml ) ]'+m Jms ll), (65)
—ht+tm p—jpt+m

we finally obtain for the coefficients Wﬁf}c of the interbasis expansion

o tea [T@TOT(0 =T (1=8) m
ng‘ - (_1)1 \/47rp I'la+b)I(1 —a-b) C’"”"’Z'"z ’ (66)

where

. vl—a-b . lw—2kl—a-b | + |v — 2k|
]l='_‘2‘—", = 3 1]=l+——2_—7
=2kl —a+b = T a=b W2k

my = 2 y = D) y = 2 (67)
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Thus we have established the interbasis expansion of the continuous basis in para-
bolic coordinates in terms of the spherical basis.

4.2 Interbasis expansion of the spherical basis with respect to the parabolic basis
Because the parabolic parameter f may have in general a complex value, we must

clarify the range of integration for § in C for the inverse interbasis expansion. Let us
consider the integral

O = /m Wt wetdp . - (68)

Using the form for the interbasis coefficient W,’ﬁ in terms of the 3F> function (64)
we have

l I v,k ' I
Ey (=0),I'+ 1+ v+ |v— 2k]|),
On = 3 E

4mp (]y._ 2k|1)? = (1 + |1/——2k|) I'la+b+s)s!

(=D, + 1+ +|v—2k]),
g Z(1 T e+ -2k —a—brpd (&)

where the quantity E;* is given by

Ef =@+ W+ v =2k + DQF + o] + v — 2k + 1)

8 I'l+a+b)I(l'+v|+|v—2kl—a-b+2)
r(+a+b)r(l+v|+v—-2kl—-a-b+2)

(I + v — 2k + [v] + [v — 2k + " ~0)
'+ n = 2K + o] + v — 2K + o)1

and the quantity A, has the form (z = if/2p)

A () /°° p(‘ £l il = ) +*Z)F(1 o imle? ) _ )

, 2 P 2 P
—100
_ . 2_ 2
Xr(1+|u 2k| ijm|(p q)+s—z)
2 p
_ H 2 _ 2
xr(lﬂ"2 2’L€|+llml(pp q)+t+z) dz . (71)

According to Bames’ Lemma [38, §1.19(8)]
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Ziin /r(a+z)r(ﬂ+2)r()’—Z)F(é—z)dz
_T(a+nI(e+d)lB+nI(B+9)

I'la+B+y+9) ’ (72)

if the path of integration is indented so that the poles of I'(y — z)I'(d — z) lie to the
right, and the poles of the expression I'(a+ z)I'(f + z) to the left of it, and it is
supposed that a, f, 7,0 are such that no pole of the first set coincides with any pole
of the second set. In our case the Lemma applies and we obtain

L = (D) 1+ ]+ = 2K)),

A=t vk
Q=T By o/ 2 TR AW+ v =2 £3)3!

5=0
z’: (=), (1 + 1+ v + v = 2k]),(1 + |v = 2k] + 5), 73)
(L +|v—2k),(2+ vl + |v - 2k| + 5), 1!
Using now the Saalschiitz Theorem [38, §4.4(3)]
i (a)p(b)p(_n)p — (C - a)n (C —_ b)n (74)
(c)(l+a+b—c—n),p! (c)(c—a-b), "’
we get
Ny Ul )L (=), + 1+ vl + |v — 2K]),
QO = (=)™ By (I + v = 2k])! §(1+ W+ v =2k +s+ DIF1 =I+s)
(75)

Because syax = I for the case // < I, we have for all s 1 —/ + s < 0, and it follows
that Q; equals zero. We get the same result in the case / > [ because the equation
for Qyy is symmetric with respect to / — /'. Thus, for / = /' we consider only the last
term with s = /', and it follows in (75)

Ow = / wo: Wi ag = oy . (76)
IR .

Thus we have for the inverse interbasis expansion of the spherical basis with respect
to the parabolic basis

\Ppluk(r: 19, ¥, W) = /IR dﬂ Wﬁ,p;c*\l’pﬂvk(éa n, e, '//) ) (77)

and the S-integration is taken along the real axis.
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5 Summary

In this paper we have derived the interbasis coefficients of the wave-functions of the
Kaluza-Klein monopole system which relate the spherical and parabolic bases with
each other. We have found that the coefficients for the discrete as well as for the con-
tinuous bases are proportional to Clebsch-Gordan coefficients; in the case of the dis-
crete basis we have found the difference is but a phase factor. An extension of our
results to the Dyon problem with an additional scalar potential o< hzuz /2M7r? accord-
ing to [18, 19] is straightforward and omitted.

We have not dwelled into the corresponding analysis of the Kaluza-Klein mono-
pole in the third separating coordinate system. Let us consider the prolate spheroidal
coordinate system, which is given by

d\/(é2 — (1 —n?) cosp = dsinhusinvcosy ,

y = d\/(@-1)(1-rP)sing = dsinhpsinvsing
z = dép = dcoshpucosy

X

(78)

E> Ll <L p>0,0<v<z @e[0,2n), and R = 2d is the interfocus distance.
For convenience we can also introduce the alternative representation of the coordi-
nates in terms of trigonometric and hyperbolic functions via & = cosh i, # = cosv.
Replacing z+—z = d(cosh pcosv + 1) gives the prolate spheroidal Il coordinate sys-
tem (c.f. [30] and references therein), which actually separates the Kaluza-Klein
monopole system and the usual Kepler-Coulomb problem as well. Note that the coor-
dinates (78) separate the two-center Coulomb problem [39]. The property that the
Kaluza-Klein monopole system separates in a third coordinate system is connected
with the fact that we have the five observables (8), and the observable corresponding
to the spheroidal system is a combination of the observables in the spherical and
parabolic coordinate systems.

In a forthcoming contribution we will analyse this case of the prolate spheroidal
basis, where matters are much more involved and the wave-functions can only be de-
fined recursively. The separating procedure in prolate spheroidal coordinates is simi-
lar as in the case of the Hartmann potential (c.f. [30] and references therein). As it
turns out, the interbasis expansion approach is most convenient in this case because
no solution in usually known higher transcendental functions is possible, similady as
for the pure Kepler-Coulomb problem [40]. After obtaining recurrence relations for
the interbasis coefficients, they can serve as a starting point for an algebraic perturba-
tion description [41-43] for the construction of the wave-functions. Also, interbasis
expansions relating parametric bases with, e.g., a spherical basis enables one to de-
rive path integral representations in parametric coordinate systems [11]. However, this
will be discussed elsewhere.
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