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METHOD OF VARIATIONAL
PERTURBATION THEORY IN QCD

A.N. Sissakian, I.L. Solovtsov, O.P. Solovtsova

Bogoliubov Laboratory of Theoretical Physics
. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

In recent years great efforts have been made to develop methods which somehow
make it possible to go beyond perturbation theory. For this purpose here we consider
the method of variational perturbation theory (VPT). Within this approach the original
action is rewritten using some variational addition .and an expansion in the effective
interaction is made. Therefore, in contrast to many variational methods, in the VPT the
quantity under study from the very beginning is written in the form of a series which
makes it possible to calculate the needed corrections. The VPT method thereby allows
for the possibility of determining the degree to which the principal contribution found
variationally using some optimization principle adequately reflects the problem in question
and of determining the region of applicability of the results obtained. The possibility of
performing calculations using this approach is based on the fact that the VPT method,
like standard perturbation theory, uses only Gaussian functional quadratures. Here, of
course, the VPT series possesses a different structure and, in addition, the Feynman rules
are modified at the level of the propagators and vertices. The form of the diagrams does
not change, which is very important technically. The auxiliary parameters arising in
the VPT expansion allow the convergence properties of the series to be controlled. The
scalar models have been considered in Refs. [1-3]. In this paper we will concentrate on
applications of the VPT method to quantum chromodynamics and give a brief review of
the results obtained.

In the case of QCD it is not immediately obvious how to introduce a useful variable split
between bare and interaction Lagrangians which respects gauge invariance. A solution
was found in Refs. [4,5] using as an intermediate step the device of an auxiliary y—field.
Let us write the QCD action functional in the form

5(A,q,0). = S3(A) + Si(q) + Sa(v) + 953(4,9,¢) + g*S4(A), (@)

-where S3(A), S2(g) Sa(ep) are free action functionals of the gluon, quark, and ghost
fields, respectively; the term S3(A) also contains a term fixing the covariant ag-gauge.
The term S3(A, ¢, ) describes the Yukawa interaction of gluons, gluons with quarks, and
gluons with ghosts

Sa(A,q,¢) = Sa(A) + Ss(4,q) + sa(A,<p>L 2)

The terms S3(A), Sa(A, ¢) and S3(A,p) generate, respectively, three-line vertices (AAA),
(3Aq) and (pAyp); whereas the term S4(A) in (1), four-gluon vertices (AAAA). We
will transform the latter term by introducing auxiliary fields x3, [4]. Upon the x-
transformation, the diagrams of the Green functions will consist only of diagrams of
the Yukawa type. In addition to the usual three-line vertices of QCD, vertices of the



514 -

type AxA will appear. Thus, a certain Green function of QCD can be represented in the
following functional integral form

G- = /DXchn ()
x exp{i[5(4,0) + $ua) + Sule) + Si00) +9S(4a0)] ), @)

where

S(Ax) =3 [ dady 43() [0 i) Alw) @

with the gluon propagator D(z,y|x) in the x-field

ab .
.[D_l (w,ylx)]"w = [(— 9w 0° +08,0,) 5“? + gV2 x5, + gauge te_r:msj] 5z —y). (5)
and the term (- --) is a set of » gluon, quark and ghost fields. Integration measure Dqcp
in (3) defines standard integrations over gluon, quark, and ghost fields.
Following the ideas of the VPT method, we introduce auxiliary parameters ¢ and ¢
and rewrite the action in (3) in the form :

S(A,q,0,%) = S(Aae:X) + SiA6ex), (6)

where

S A0 ex) = CS(AX) + Sa() + Sa(@)] + €7 S200), ")
§Y(A,0,0,%) = 953(4,4,0) = (71 =1) [S(A,x) + 5:(9) + Sa()] = (671 —1) Sa(x) - (8)

The exact value of the quantity under consideration, for instance, the Green function
does not depend on the parameters { and ¢. However, the approximation of that quantity
with a finite number of terms of the VPT series, that results from the expansion in powers
of the action S}(A, ¢, ¥, x), does depend on those parameters. We can employ the freedom
in the choice of the parameters ( and £ for our aim, construction of a new small parameter
of the expansion. '

It is more convenient to rewrite S)(A, ¢, ¢, x) in (7) by replacing {(~* to [l +x (¢1-1))
and ¢~ to [1+ x (67! — 1)] and putting & = 1 at the end of calculations. In this case, any
power of the expression ((~! —1)[S(4, x) + Sa2(q) S2()} + (€71 —1) Sa(x), , appearing

in the factor of the exponential upon expanding the Green function in powers of (8), can

be obtained by differentiating with respect to the parameter x as many times as required.
Then, the integrand in the factor of the exponential will contain only the powers of the
action g Sa(A, ¢, ) that generate the QCD Yukawa diagrams with modified propagators
defined by appropriate quadratic forms in the new “free” action S5. The VPT series for
the Green function is given by

n—k -k

= 1 a i
G(+) = ngFa—K) o

x [ DxDaoo(-) [s5(A0,61" expliSilArap0] O
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with the above replacement in Sg(A, ¢, ¢, x). Further, it is convenient to rescale the fields

(A,q,9) X ' (10)

(A’q’w)#—\/l_ﬁﬁ y X = \/H-_K.(f—l——l)

As a result, the propagators acquire the standard form and only the diagram vertices get
modified. Integrating then over the field x we obtain for the Green function
4 B "kt 1

hd 1
SO = X et @ TR

n

X /DQCD (-4 [ga Ss(A,q,s’)]keXP{ i [SO(A’Qv‘P) + 93 54(A)] } - {(11)

Here So(A, g, ) does no longer contain the term describing the field x and represents a

usual functional of the QCD free action, whereas g and g, in the Yukawa and four-gluon

vertices are defined as follows:

g = o = . (12)
[T+ -1)]* C [+ k=]

TR TR I

TR
7 TAnalysis of the structure of the VPT series shows (4] that we will succeed in construct-
ing the small expansion parameter if we put £ = (% and if the parameter ¢ is connected

g\with the coupling constant by the equation
- 92 1 a2
A= ;7 = = 3,
(4m) C (1-a)

Ta=1-g, (13)

where C'is a positive constant. As follows from (13), at any values of the coupling constant
g, the new expansion parameter a obeys the inequality 0 < a < 1. It is interesting that
the connection between the initial coupling constant g and the expansion parameter a,
given by Eq. (13), is the same as for the anharmonic oscillator [6].

. Inagenuine field theory such as QCD the coupling constant run in a way determined by
- the renormalization group method. A momentum dependence of our expansion parameter
. a = a(Q?) is given by the following transcendental equation [5,7]

@ =@t ep{ 3 [ () - f(e0)] }, (14)
where -
flay=2 -3 _4a1 a—gl—i—ﬁ%m(i—a)ﬁu%“-m(uga) (15)

and bo = 11 — 2 Ny, N; is number of flavours.

The parameters C has been determined from the condition that the renormalization
group A-function at large enough values of the coupling constant behaves as B(A) ~ -
This behaviour corresponds to the singular infrared behaviour of the invariant charge
as(Q?) ~ Q=% and ensures the linear growth of the nonrelativistic static quark-antiquark
potential at large distances. Thus, we fix parameters C on the basis of data of hadron
spectroscopy, which gives C' = 4.1 [5]. To determine all parameters, we use the condition
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Aei(Qo) = Ao at some normalization point Qg with an experimental value of the coupling
constant Ag.

In Ref. [8], the process of ete™ annihilation into hadrons at low energies has been
analyzed in the framework of the given approach. We applied the smearing method {9] to
compare the obtained theoretical prediction for R.+.--ratio with experimental data and
found a good agreement of the first order of our approximation down to lowest energies.

Recently, the problem of “freezing” the QCD coupling constant at low energies has
arisen. This freezing is required in many models based on QCD ( for detailed discus-
sion, see [10] and references therein ). As the “experimental” value, for comparison it is
convenient to use the integral independent of the fit of data [10]

1GeV 7 ‘
/ TS @ Lorgev. (16)
0 :

s

In our case, this integral equals 0.237 GeV.

The 7 decay process with hadronic final states represents an important test of quantum
chromodynamics. Due to the inclusive character of the process, the ratio R, is a very
¢onvenient quantity both for a theoretical investigation and for the definition of the QCD
coupling constant o,(M?). A detailed theoretical analysis of this problem has been given
in Ref. [11] ( see also Refs. [12-15}, in which different aspects of the problem are discussed ).

The starting point of the theoretical analysis is the expression

M? 2
T ds s 2s ~
re=2 [ (1-3) (1+3m) B, )

where

i

e [TH(s i) — (s ~iq)]
Y Waal (Mg} + Thaga(s)) - (a8

g=d,s

R(s)
I1(s)

The normalization factor N is defined so that in zeroth order perturbation theory ~(‘:),t =
3. In the framework of standard perturbation theory the integral (17) cannot be evalu-
ated directly since the integration region in (17) includes small values of momentum for
which perturbation theory is invalid!. Instead of Eq. (17), the expression for R, may be
rewritten, using Cauchy’s theorem, as a contour integral in the complex s-plane with the
contour running clockwise around the circle |s| = M?2. It seems that this trick allows one
to avoid the problem of calculating the nonperturbative contribution, which is needed if
one uses Eq. (17). However, the application of Cauchy’s theorem is based on specific

analytic properties of II(s) or the Adler D function

D(¢*) = (- %)Nn(qz)- (19)

The function D(¢?) is an analytic function in the complex g*-plane with a cut along the
positive real axis. It is clear that the approximation of the D-function by perturbation

In Ref.[16), the integral (17) has been calculated within the method of optimized perturbative series
17]. .
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theory breaks these analytic properties. For example, the one-loop approximation for
the QCD running coupling constant has a singularity at Q% = A%ou, the existence of
which prevents the application of Cauchy’s theorem. Moreover, to define the running
coupling constant in the timelike domain, one usually uses the dispersion relation for
the D function derived on the basis of the above-mentioned analytic properties. In the
framework of perturbation theory, this method gives the so-called 7?-term contribution
which plays an important role in the analysis of various processes [18-22]. However, the
same problem arises: the perturbative approximation breaks the analytic properties of
A (¢?) which are required to write the dispersion relation. In addition, there is the
problem of taking into account of threshold effects. As follows from Eq. (17), the initial
expression for R, “knows” about the quark thresholds. But all the threshold information
is lost if one rewrites this equation as a contour integral and uses a fixed number of flavours
for the calculation of R(s) on this contour.

Here we will concentrate on both aspects of the problem. In the framework of our
approach there exists a well-defined procedure for defining the running coupling in the
timelike domain which does not conflict with the dispersion relation [23,24]. We will use
the following definitions: A*f = aqgp/(47) is the initial effective coupling constant in the
t-channel ( spacelike region ) and A is the effective coupling constant in the s—channel
( timelike region ). From the dispersion relation for the D—function we obtain

®  ds off
(s—¢)*""

Thus, the initial running coupling constant A*¥(¢?) is an analytic function in the
complex ¢®-plane with a cut along the positive real axis. This function does not exist for
real positive ¢2, so the definition of the running coupling constant in the timelike domain
is a crucial question. Here we use the standard definition of A:f(s) in the s—channel
based on the dispersion relation for the Adler D—function. In this case, parametrization
of timelike quantities, for example Re+.-(3) or R(s), by the function Af(s) is similar to
parametrization of spacelike processes by the function A*¥(g?).

The inverse relation of Eq. (20), given the analytic properties of A*®(¢?), is of the form

() = —¢ (s) . (20)

1 stie dqz .
56 = =g [ @, (20

where the contour goes from the point ¢> = s — ie to the point ¢* = s + i€ and lies in
the region where A*f(g?) is an analytic function of ¢%. Equation (21) defines the running
coupling constant in the timelike region which we must use to calculate R(s) in Eq. (17).

To write Eq. (21), it was important that the function A*(¢?) had the above-mentioned
analytic properties. For example, to use the one-loop approximation, one needs to mod-
ify its infrared behaviour at @2 = A? in an ad hoc manner so that the singularity at
@* = A? is absent in the new expression for A(Q?) . A self-consistent formulation of
the analytic continuation problem is, however, possible within the scope of a systematic
non-perturbative approach. Within this approach we can maintain the mentioned above
analytic properties [23-25]. Taking the experimental value R, = 3.552 [26] as an input,
we obtain a,(M2?) = 0.37 and a(M?) = 0.40. The values of the coupling constant in the
s- and t—channels are clearly different from each other; the ratio is a,(M2)/a(M?2) = 0.92.
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The experimentally measurable quantity R, can be parametrized both by the function
a,(s) defined in the time-like region and entering into the initial expression for R, and
by the running coupling constant a(q?) used in the contour integral. The perturbative
expansion does not allow one to perform the integration in Eq.(17) directly because it
involves a non-perturbative region. Instead, one usually uses the perturbative formula
to evaluate the contour integral. However, we believe this to be jnconsistent because the
analytic properties which are required to write down the Cauchy integral are not respected
by the perturbative formula. The method proposed allows one to evaluate both the initial
integral for R, and the expression obtained by the use of Cauchy’s theorem. Of course,
as it should be, they are equal. We have also demonstrated that the distinction between
the functions a,(s) and a(q?) is not simply a matter of the standard 7% terms, which may
be important for understanding certain discrepancies [27] arising in the determination of
the QCD coupling constant from various experiments.

The authors are deeply grateful to Professor H.F. Jones for the fruitful collaboration.
We are also indebted to Professors D. Ebert and D.I. Kazakov for their interest in the
study and useful discussions of the results obtained. This work was carried out with the
support of the RFBR under the grant 93-02-3754.
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