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Abstract
We study the interbasis expansion of the wave-functions of the Kaluza-Klein
monopole system in the parabolic coordinate system with respect to the spherical
coordinate system, and vice versa. We show that the coefficients of the expansion
are proportional to Clebsch-Gordan coefficients.

1. Introduction

In the framework of quantum mechanics magnetic monopoles have been first discussed
by Dirac in his classical paper [1]. He described them as quantized singularities in the
electromagnetic field, the quantization condition being

2ge = nch, (n € IN) (1.1)
(e - electric charge, g - magnetic charge, c - velocity of light), arising from the singleval-
uedness requirement of the wave-function. The corresponding Schrédinger equation can
be straightforwardly evaluated, and leads to a pure continuous spectrum of an electron
moving in the field of a magnetic monopole. More general is the Dyon problem, where a
Coulomb-interaction term « eg/r is included, and bound states can appear. This problem
has been discussed by several authors, see e.g. Barut et al. [2], Jackiw {3], or Zwanziger
(4].

More elaborated monopole models have been developed since and monopole solutions
seem to be inevitable in grand unified theories [5]. Important examples are the (Bogomol-
nyi-Prasad-Sommerfield) BPS monopoles, e.g. [6], which move along geodesics in a curved
space, and Kaluza-Klein monopoles, e.g. [7]-{10}, the latter emerging from the former by
means of a static solution, i.e., large spatial separation, of the classical field equations of
five-dimensional gravity (Taub-NUT limit, “Euclidean limit”). Then, the relevant metric
for the (full) Kaluza-Klein monopole system is given by (x = (z,y,2) € R [7)

K 1 +1 - z/r
Y 2 2 . 2 = —
ds® = A(r)dx + A(r)(dz} +4m A - dx)* , A S Sy

, (1.2)
with z5 = 4m; the metric term A and the p-component of the magnetic interaction in
spherical coordinates (r,¥,¢) are given by

A(r) =

Fpra A, =4m(*l —cosd) , A, =Ag=0. (1.3)
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The additional angular variable 3 describes the relative phase. This form of the Kaluza-
Klein monopole system is the simplest solution of the classical field equations. The sin-
gularity at the origin vanishes if the coordinate % is cyclic with period 4= [8, 9]. The
quantity A in the metric (g45) represents the effects of gravity, and A is identified with
the electromagnetic field interaction. 4m is the only parameter that characterizes the
Kaluza-Klein monopole system, seen as a test particle in the Taub-NUT space, and the
coupling g = 4m < 0 generates a discrete energy spectrum. Similarly as in the classical ex-
ample of the o(4), respectively o(3, 1) dynamical symmetry algebra in the Kepler problem,
the total angular momentum operator J and a suitable rescaled Pauli-Runge-Lenz vector
K close into an o(4) or o(3, 1) algebra, depending on the sign of the energy, which can be
extended to an o(4,2) symmetry [2, 8, 10]. On the corresponding homogeneous spaces of
the groups O(4) and 0O(3,1), i.e., the three-dimensional sphere and the three-dimensional
hyperboloid, a convenient coordinate space representation may be chosen for perturbation
investigations for the discrete spectrum, respectively scattering phenomena in particular
channels, e.g. [11] for a review concerning coordinate systems in homogeneous spaces, and
their corresponding path integral representations and solutions.

The dynamical symmetry allows for a complete algebraic description of the classical
as well as the quantum motions for the Kaluza-Klein monopole system. It was shown
by [7] that these specific monopole problems admit due to their symmetry properties a
solution in spherical and parabolic coordinates. However, the third separating system,
prolate spheroidal coordinates have not been taken into account until now.

By Barut et al. [2] it was found that quantum systems with an O(4,2) symmetry can
be related by the Kustaanheimo-Stiefel transformation to a four-dimensional oscillator, a
fact which has been extensively exploited in path integral evaluations concerning Kepler-
Coulomb, e.g. [12, 13}, and Dyon problems [14]-[20], and references therein.

In this contribution we investigate the interbasis expansion of the (discrete and con-
tinuous) wave-functions in parabolic coordinates with respect to the spherical basis, and
vice versa. We show that the the coefficients in the interbasis expansion are proportional
to Clebsch-Gordan coefficients.

2. Quantum Mechanical Solution

If the cyclic variable 1 is separated off, the observables in the (reduced) Kaluza-Klein
monopole system are given by a suitably chosen angular momentum operator J and a
Pauli-Runge-Lenz operator K which can be cast into the form, e.g. [8, 10, 21]-[23]

J = xx1r—4mhq|:—| ,
2

K ﬁW(WxJ—Jxr)—%m&[(H—%—) )

where 7 = p — ¢qA, p = —1AV. They satisfy the commutation relations

@2.1)

' 242
[Ji, Je] = ihemdy,  [Ji, Ki] = theaa K, [Ki, Ki] = ik (% - 2H) €ir i (2.2)

Here, summation over repeated indices is understood, and €;, is totally antisymmetric
in the indices 1,k,l = 1,2,3. On the fixed energy eigenspace H¥ = EV¥ one defines the
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res.ca.led Pa.uli-anz-Runge operator M by means of

h2 2 -1/2
M= (W}- — 2E) K for E < h*¢*/2M ,
M=K for E = h%q*/2M , (2.3)

hz 2 -1/2
= (2E - ﬁ) K for E > i%¢*/2M .

The operators M and J close to an o(4) algebra for E < %%¢?/2M, to an o(3,1) algebra
for E > h%q?/2M, and to an o(3) ® R® algebra in the case E = h’¢*/2M, e.g. [8].
The property of five functionally independent observables characterizes the (reduced)
Kaluza-Klein monopole system as a super-integrable systern [25, 26] in three-dimensional
Euclidean space. A vomplete set of observables of the full system is given by, e.g. {10],

{q7 H’ A21 A3’ Bza BS} 9 (24)

where A = 2(J + M) and B = }(J - M).

We consider the spherical and the parabolic coordinate system which separate the
Kaluza-Klein monopole system. The spherical coordinate system is given by (r > 0,0 <
Jd<7,0<p<2r) , et

z=rsindcosp, y=rsindsing, z=rcosy. - (2.5)
_ The parabolic coordinate system has the form (6, >0,0< < 21)

. 1 .
g =¢ncosp, y={nsing, z—-(fz-n’) L (26)

In terms of these coordinates the line element ds ta.kes on the form (dzs = 4mdt/) 1/) €
o4m) - e e T

ds? =

()(dr + r2(d9? + sin? 9dy )) (4m)2A(r)(d1/) +;‘(i1.:.éosﬂ)d¢)2 @

= )((52 ) + dn?) + Ede? ) + (4m)*A(r) [d¢ + (ﬂ:l gz 'l’) d(p] 2(2.8)‘

In the following we only take into account the “+”-sign which is sufficient for our purposes.
Therefore we obtain for the Hamiltonian operator H in the two coordinate systems

Polar Coordinates: )

2 2 : 2 s r : 2

rar 392 89 " sind 0p?

( 1 (1—coso)2)i_31-cosﬂig_]

(4mA)? risin?d JOW? 1 sin’d Op Y

Pa.rabolic Coordinates: N o
1 ¢ 18 8 19 1 &

a8 (){eun (36 £ 5+ vn) B 0

14t -\ 2 ( €-7\0 8
+l:(4mA)2+§_21?(1"£2+,72) ]6'1’2 52”2(1 £2_’_"2‘)3‘Pa } (2.10)

(2.9)
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In the spherical coordinate system the time-independent Schrédinger equation

HY(r,9,0,%) = EV(r,9,0,9) (211)

is solved by making the Ansatz for the wave-functions according to

\

U(r,9,0,9) = R (2.12)

(2 eilve+kv)
r _—
) )47r\/2|m| ‘
Hereare v € Z, q = k/4m = sf/4m, 2s = 0,%1,+2, ..., and the operator §, conjugate to
v, corresponding to the quantum number g is conserved and identified with the relative
electric charge [7, 10, 23].

The functions R(r) and Z(J) are normalized, and the particular form of ¥ guarantees
that the wave-functions are normalized to unity with respect to the scalar product

00 rzdr L3 . 2% 47 .
(f,g)_:/o Xm/0 smﬂdﬂ/o dcp/d 4|m|dyf*g . (2.13)

Explicitly, this gives for the angular and radial variables the ordinary differential equations

1 d dZ v? (v — 2k)?
oG+ I +1) - - Z=0, (214
sind dd sin [ (J+1) ng 4cosz% (2-14)

1d ,dR 2ME k? 1/8mME k? J(J+1)
Fadr -(_17 [( O 16m2) + ;( B %) T E=0, (215

where J is the spherical quantum number. We see that a discrete spectrum can only
occur for g = 4m < 0, E < hk?/32m?M. The solution of these differential equations,
respectively the wave-functions of the spectral expansion of the corresponding path inte-
gral solution, are in terms of Jacobi polynomials in cosd, and Laguerre polynomials for
the discrete and Whittaker functions for the continuous spectrum in the radial variable.
Thus we get for m < 0 the bound state wave-functions ¥nJuk in spherical coordinates
[7, 17, 18, 24]
ww-{-lk\b

4r\/Zm|

where the radial Ry(r) wave-functions have the form

. _ (N-J-1)! 2e-r/aN 2\’ (§J+1) 2r
Rustr) =\ anmengi—ey\an ) alaw) o G40

and the functions Zj,x(9) are given by

Ynpi(r,¥,0,9%) = ——==Rns{(r) Z1x(9) , (2.16)

(20 + DI = 20wl + v — 26D + 301 + v = 2k|)1!]"’

Zyi(P) = [ 27 + (| — |,, —2kD'[J - 3(Jv] = v — 2k])]!

9 vl 9 lv~2 e :
x(sm —2-) (cos 5) PJ(I-l—I(lulz:B Zkl)(cos J) . (2.18)
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The bound state energy levels are

h2

= A NZA 2 -t - 2_ g2 =
En = Gmyar ¥V 3(N VN 3), N=|s|+1,]s| +2,--- . (2.19)

Here N =n, + 1+ L"_L‘tllé-_"”‘l + 1 is the principal quantum number, [ the orbital, and n,
the radial quantum numbers, which have for fixed N and s, the values 0,1,--- N —[s| -1,
respectively. The quantum numbers J and [ are related through J =1 + Mﬂg_—zﬂ Note,

that e = 1/(N\/q2 - 2ENM/TL2) = 4|m|/ [N(N - \/N"’—-—s"‘)} is a “Bohr-radius”.

The continuous spectrum has the form

hZ
E, = m(p2 +4%), (2.20)

with largest lower bound Eo = h%¢*/2M = h%k?/32m?M, and the continucus wave-
functions W, ;. are
ew~p+lk¢

‘I’pJuk(T,o,%'/J) \/———RpJ(r ZJuk( ) P (221)

with the radial wave-functions R,;(r) given by

[T 41 = 2iml(p® — ¢*)/Pll aimiz-a2)/p .
= emm M -2 . 2.22
Ryolr) = S e stmigrg 5, (~2P7) - (22)
The M x(z) = e7*/22**/2 Fi(3 — &k + X;2) + 1;z) are Whittaker functions [27, p.1059).
The functions (2.17,2.22) are orthogonal and form a complete set.
In parabolic coordinates one makes the Ansatz

ei(vetky)
(€, 0, 2.23
&med) = h £)fz(fi)4 o (2.23)
The wave-functions ¥ are normalized according to the scalar product
E” 2r 47
(ra) = [t [“an@ i [Cao [Tamignrg . 22y
This gives the ordinary differential equations
daf;  1dfi 2ME K\, (v—2k)?
—&6_2 + ZE + [ T 16m? & - 2 +bhji=0, (2.25)
d2f, 1df, 2ME  k* \ ,
o Ty +[(T—16m’)" _?H%]f’_o ’ (2.26)

where f; 2 are related through

16mME K
- (2.27)

B+ 8=
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The solutions of these ordinary differential equations, respectively the solution for the
corresponding path integral formulation, are for the bound state wave-functions Laguerre
polynomials in ¢ and rp, respectively. We obtain [7, 19] for the bound state wave-functions
(n1,n; e N; N =ny +ny + %(lul + v —2k]) +1)

ei"""'ik"’ { 2 n1!n2!

. 1/2
\I’mnzuk(fv 7,¢ 1/1) = . 2,__|m___l YN 3.3 (nl' ¥ IV — 2k|)'(n2 n Iyl)']

Je=an o o
Y™ (n)® _eH\ pamn (£ pn (1
><(aN> (aN xp 2aN L= aN Lo aN )’ (2:28)

with the energy spectrum (2.19). The continuous states Wz, are given by [19]

eivetiky . e
‘I’pﬁvk(§1 7]1 ‘f‘)ka '/’) = 4‘”\/2—|;| exp [WI;H' (p2 - q2)] ’
PG+ 15— K- is)T (4 - ig)|
vV 2x2pnlv — 2k |v|!

where 8, 2 = 1{4|m|(p — ¢*/p) + 28/p], B is the parabolic separation parameter, and E,
as in (2.20). The wave-functions (2.28,2.29) are orthogonal and form a complete set.

Alipl,L_J";" (_ipéz)Migzllgl(—imz) ’ (2‘29)

3. Interbasis Expansion for the Discrete Basis

Let us consider the interbasis expansion of the parabolic bound state wave-functions
(2.28) with respect to the spherical wave-functions (2.16), i.e.,

n+n2

‘I’nlnguk(g) 7, ‘PJ'/’) = Z Wyl;,nz ‘I’nrluk(r,ﬂr ‘P)"p) ’ (31)

=0

where ny + ny = n, + I; we have included the dependence of 1, and have re-inserted the
angular quantum number ! and the radial quantum number n, in the principal quantum
number N =n, + J+1 =n, + 1+ }(Jv| + |v — 2k|) + 1. The parabolic variables can be
expressed in terms of the spherical variables by means of :

§2=r+z=r(1+co§0) - ﬂz#r—2i=At(l—COSI9) . ' (3.2)

We consider (3.1) in the limit r —+ co. From the propefﬁy of the Laguerre polynomials
Ls.a)(z} — (=1)"z?/n!, as = — oo, we see that the dependence on r cancels on both sides
of (3.1).

Using the orthogonality condition of the angular wave-functions (2.18) we find the

following expression for the interbasis coefficients W},

I el ) (14 || + |v — 2k))! -
MRz T 9ng+ng+lvi-v—2k| (l + |y|)!(l +v = 2k|)! ) gt o

x\/[z{ $(0v1 + v — 24+ Dln Y + 20 4l + v — 2k +1)! (3.3)

gl (n + |7 — 2k)(nz + [])! mna 2
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with the quantity I’ . given by

nin2

"1 n2

/ dz (1 4 z)™ =241 - z)n2+IVIP(|V| l"-2’=l)( ) . (3.4)
Using the Rodriguez formula for the Jacobi polynomials [27, p.1035]
(a,8) ( l)n o —B a+n B4+n
R e R O I Y

and comparing with the integral representation of the Clebsch-Gordan coefficients [28,
p.243]

(~1)r+ma=i
1m0 b+l

x\/ (27 + 1)(5 + m)!(i +J2 +7+ 1)'(11 + j2 — j)!
(F2 = 31 + N1 = 52 + DG +ma)l(Fz — ma)l(G2 + ma)l(j — m)!

cin =bm

fimi,jama

j-m

x / dz (1 - z)Jx—mx(l + x)]z—mz dd p [(1 - z)]z-Jl'H(l + z)n—nﬂ] , (3.6)
-1

yields that the coefficients W} _  of the interbasis expansion (3.1) are given in terms of

nin2

the Clebsch-Gordan coefficients Chm 1 iama> 1€
Wllnz - ( 1)”20 fimy,Jamy 0 (3.7)
where
7 =_2J_ﬂ1fng+u—2k|, j22‘ﬂ1+n2+11’l ’<>j~=l_"_llll+~lv—2kl, 68)

1
m1=nl—n2+ly—2kl ’ m2=n2—n21+|u] , m___]ul+|;—2k] _

Using the orthogonality condition of the Clebsch-Gordan coefficients, we can invert (3.1)
yielding
nedl

‘I’n,luk(r?01¢1¢) Z nyn2 nlnzuk(ﬁ’ﬂ"‘Pa"ﬁ) 9 (39)

n1=0
which represents the expansion of the spherical basis with respect to the parabolic basis.
4. Interbasis Expansion for the Continuous Basis

Let us consider the interbasis expansion of the parabolic basis with respect to the
spherical basis, i.e.,

‘I’pﬁuk(fv 7,9 ‘l’) = Z Wﬁiwphk(ral’v ‘P"/’) ’ (4'1)

=0
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with the spherical wave-functions W, (2.21) and the parabolic wave-functions W50k
(2.29). We now consider the following expression

- (=)
i+ —2k]
QU+ o] + v = 2K} + DR + |}~ lv —2E])! - [Déa)T(B)] -~
16rp(I+ |1+ |v - 2k|)' IT(I + a +b)|

x @4+ v -2k + 1) & E (@) (Zipr)=+t=
(D - D A (AT 2R+ |u|)¢ ot

WEE - Fi(a+b+ 5214 vl 4 v — 24| + 2 —2ipr) =

O, , (4.2)

where a = l(1 +1v — 2kl) —ilm|(p— ¢*/p) = B/p, b= 1(1 + |v]) — ilm|(p — ¢*/p) +iB/p
and (z), denotes Pochhammer’s symbol. The quantity ©,, is given by

1 .
(_)“ — /1(1 + x)lu—27k|+a(1 _ I)|u|+tPI(|”|v|"'2"D(z)dz k (43)

Using the Rodriguez formula (3.5) one shows that ©,; is equal to zero for s + ¢ > I.
Therefore, we can conmder the hmlt r— 0 on both sides of (4 2) and after evaluating
©,,_, obtain - R .
wee (=)' [+ vl + |y — 26|+ D)+ v~ 2kDI+ ] + v~ 2k])!
bk ™y — 2k arpll(l + )t -
LONOINEDR P P
T +a+8)T(6) > 2\ 1+ |v—2k| 1~1-b :

(4.4)

Using a symmetry transformation for 3F5(1) according to [29]

-n b ¢ (d— ), —n b e—c]|.
3F2( d e 1)= (@ 3F2(» e bed—n+l ¢ ll) (4.5)
yields _
W — (2L 4] + v — 2k} + 1)1 + |v = 2k))!(1 + |v] + |v — 2k|)!
M 2k|' amp (i + o))}

I‘(l+a+b)ll‘(a)I‘(b)| a U |+ |y — 24|
><F(a+b)lP(l+a+b)|“F*(1+|y—2lc| a+b 1) . (4.6)

Comparing (4.6) with the corresponding formula for the SU(2) Clebsch-Gordan coeffi-
cients [28, 30] )

m oms  (iHda—m)
Ciims iz = ,(_lf)” Yo, mtm G m) »
9 (25 + 1)(ja — 51 + )G + mll'(h + mz)'(] + m)‘ s
Yo — Wy — 1 — )t 1 l
(1 — m)l(j2 — ma)!(j — m)!(j1 + ja - =da+ NG +ia+5 + 1)
~ht+m  —j+m j4m41])
F: T - T 1}
X3 2(-']1—]2'1-771 J2=n+m l ) ’

*.7)
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we finally obtain for the coeflicients W’ﬁi of the interbasis expansion

jimygamz )

Wit = (-1ytrey [LOLONE =N =8, o g )01 - 0= 8O+ (48)
where - }.
= M—a_’b ,V j2’= |y.—2k!—fz—b =14 lv] + [v — 2k| ’
m1=lu-—2k—a+b, m2=|1/|+a-b’ m=lu|+|v—-2k[.

Thus we have established the interbasis expansion of the continuous basis in parabolic
coordinates in terms of the spherical basis.

In order to derive the interbasis expansion of the continuous basis in spherical coordi-
nates in terms of the parabolic basis one considers the expression

(4.9)

Qu = / W2 Wrehdg (4.10)

Because the parabolic parameter § may have in general a complex value, one must clarify
the range of integration for 3 in C for the inverse interbasis expansion. By means of a
straightforward but tedious calculation one shows that

Qu = [ Wit witds = s, (4.11)

and thus we have for the inverse interbasis expansion of the spherical basis with respect
to the parabolic basis, i.e., the inverse of (4.1) has the form

Vous(ri0,) = [ dBWEL UpnnEom ) (412)
and the B-integration is taken along the real axis.

5. Summary

In this contribution we have derived the interbasis coefficients of the wave-functions
of the Kaluza-Klein monopole system which relate the spherical and parabolic bases with
each other. We have found that the coefficients for the discrete as well as for the continuous
bases are proportional to Clebsch-Gordan coefficients; in the case of the discrete basis
we have found the difference is but a phase factor. An extension of our results to the
Dyon problem with an additional scalar potential o< A?u?/2Mr? according to [4, 16] is
straightforward and omitted. The interbasis expansion corresponding to the spheroidal
basis will be discussed elsewhere.
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