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1 Introduction

As is known {1, 2, 4], in the three-dimensional space of constant positive curvature there
exist 6 orthogonal systems of coordinates admitting a complete separation of variables
in the Hamilton—-Jacobi equation or in the Helmholtz equation. These are hyperspher-
ical, cylindrical, sphero-conical, two elliptic cylindrical and the ellipsoidal systems of
coordinates. The most complex of these systems of coordinates is the ellipsoidal one,
which contains all the rest five in the limiting case [3]. The Helmholtz equation has
been investigated in the ellipsoidal system from different points of view in the papers
(5, 6] as well.

The present paper is devoted to constracting the ellipsoidal basis for the Helmholtz
or the Schédinger equation on the three-dimensional sphere.

2 The ellipsoidal coordinates
The algebraic form of the ellipsoidal system of coordinates is [1}

2 (p1—a1)(p2 — a1)(ps — a1)
(v o= o= )
2 P1— G)\p2 —az2)(p3 — az
(as = az){as = az)(a — on) W

2 (p1 — a3)(p2 — a3)(ps — aa)
(as — as)(az — as)(a1 — a3)
! = (p1— a4)(p2 — a4)(p3 ~ a4)

! (a1 — a4)(az2 — as)(as — ay)

where the constants 1,2,3 entering into the definition of the ellipsoidal system of coor-
dinates restrict the region of variables py, pz, p3

0 <pm<a;<ps<a3<ps<ay

The coordinate surfaces on which p; = const. are obtained as a result of intersection
of the three-dimensional unit sphere z} + 23 4 z3 + 2 = 1 with three families of conic
surfaces are

2 2 2 ' 2
Ty T3 T3 Ty
+ +

=0 (:=1,2,3 2
pi— G pi—QC pi—az pPi— a4 ( 3) @

and represent complete families of confocal nonruled, ruled and nonruled ellipsoids [1].

Relation (1) connecting the Cartesian and ellipsoidal coordinates is not in the one-
to-one correspondence as p; depend only on (22, z2,23,23) and, consequently, take the
same values at 16 points (£z1, £z2, 25, £x4). To obtain a one-to-one correspondence
between the Cartesian and ellipsoidal coordinates, as in the case of elliptic system of
coordinates on the two-dimensional sphere [7], one can introduce uniformised variables
v, i, v determining the position of the point on the three-dimensional sphere by the
following relations:

p1=a;+ (az —a;)cos’ 4, pa = a2+ (as —az)sin’v, p3 = a3 + (as — a3)sin’y, (3)
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As a result, the ellipsoidal system of coordinates can be written down in the trigono-
metric form as

1 :
o = gV (8 + Kt )1 - kcosty) cos
_ 1 2 1 1.2 2 o) i
= (k§+k§)1/z\/(kz+kasm 7)sin psiny
1 ‘ -
s = iy + Hsinu)cosvsiny )

1
Ty = W\/(kg + k2 cos2)(1 — ki cos pu?) cosy

where 0 <v <2m,0< pu<m, 0<y <7 and

az; —ay a3 — a2 a4 — a3
k¥= ) k§= s k§= y
ay — ay a4 — Gy ay — 4
2 2 2
ki+ki+ks=1 (5)

As is seen from the definition (4), the ellipsoidal system of coordinates is determined
by three parameters (ki, k3, k3) and the binding condition (5). It is the most general
system of coordinates which turns into simpler coordinates at particular values of the
parameters k; [3]. In particular cases k} = 0 and kJ = 0 the ellipsoidal system of coordi-
nates turns into ellipso-cylindrical systems of coordinates of types I and II, respectively.
Further vanishing of the parameter k2 or kZ may result, respectively, in the spherical
or cylindrical system of coordinates. Then, if we let k7 and k3 tend to zero simulta-
neously and the ratio k2/(k? + k2) is put finite equal to k? , one can easily see that
the ellipsoidal system of coordinates degenerates into the sphero-conic one and upon
substitution k? = 0 or k2 = 1 turns into the spherical system of coordinates. In more
detail these transitions are given in the table.

3 Separation of variables and integrals of motion

The Helmholtz or Schrédinger equation for particle motion on the three-dimensional
sphere of the unit radius can be written down as (A =m = 1)

AV+J(J+2)¥ =0, J=0,1,2, - (6)
where A is the Laplace operator determined as follows: v -
A= (I + N?) @
and L; and N; are six generators of the group 0(4) (
L;= —is;klz;-aaTk, N;= —i(:c;c,)iz4 — 3:46%;), 1=1,2,3, - (8)
which obey the commutation relations
(Li, L;] = ieiuLj, [Ni, Nj] = ieijeLj, (L, Nj] = ieijeN;, 9
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Table: The degenerations of the ellipsoidal coordinate system

k ellipso- |z = /1 —k3cos?Esinbeosyp | k2 =0 e
cylindric | & = /1 —k3cos?€sinfsing | K2+ kE =1 v—6

system 23 = cosfsin oy — €

type I T4 =1/1—k}sinfcosé
ellipso- [z = /1 —kZcos?fcosep k20 p—

cylindric | z; = sinésinpsind B2+ kl=1 v— 0
system z3 =sinsinpcosd - =€

type II | z4 = cosé&y/1 —k¥cos?p

Spherical | z; = sin xsinfcos k-0 p—

system z, = sin xsinfsinp k2 -0 v— 8
z3 = sin ycos 0 K2 /(k3+ k=0 |y—x
T4=cCOSX

sphero - | z; = sinxv/1 — k?cos?fcosy | k] — 0 p—p

conical zy = sin y sinfsin¢p k2 -0 v

system | z3=sinycosf/T—klcosp |ki/(kI+Kk})=k*|v— X
T4 =cOSX ke +k2=1

Cylindric | z, = sin acos ¢y k2 —0 u— Py

system | z3 = sinasing,; k3—0 v—a
Z3 = cOs asin p; ¥ — 3

T4 = COS QCOS (P2

If in the Helmholtz equation (7) one passes to the ellipsoidal system of coordinates,
after the substitution
¥(p1, p2, p3) = PY1(p1)¥2(p2)¥3(p3)

and introduction of ellipsoidal separation constants A;, Az one arrives at three identical
differential equations

WP L [Py d”' {J<J+z)p?—m.--xz}¢.~=o, i=1,2,3

or equlva.lently (p=pi)

dp* " 2 Z ~aidp {(p —a)(p— az)(p - Ga)(P — ay) }’/’ 0 (10)

where

P(p) = (p — a1)(p — az)(p — as)(p — as)-
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Equation (10), derived by separating variables in the ellipsoidal system of coor-
dinates, is the generalized Lame’ equation and falls into a class of equations of the
Fuchsian type with five singularities [8] {a,, az, as, a4,00}; moreover, (a,,a;, a3, a4) are
elementary singularities with indices (0,1/2 ) and a point at infinity is regular.

Each of the separated equations (10) contains besides hypermoment J also two
constants A; and A, depending in the general case on four dimensional parameters
(a1,03,03,a4) or (ki, k2, k3) determining singularities of the given equation. Therefore,
unlike the standard one-dimensional spectral problem, the main difficulty consists in
calculating simultaneously (or quantizing) the energy spectrum of both the ellipsoidal
separation constants.

Let us explicitly write down the operators (ellipsoidal integrals of motion) A; and A,
whose eigenvalues are the ellipsoidal separation constants A; and \,. Eliminating the
hypermomemt J from the system of equations (10), we derive for A, and A, as functions
of the parameters a = (a,, a2, a3, a4), the following expressions in the ellipsoidal variables

Pi:

4(pa + p2)\/P(m) 8 a 4(p3+p1) P(p2) 8 i}

M@= = e —m 3V P50 ~ e p) e ) 30V )5
4pz + p1)\/P(p3s) & F:}
- (Pz - Ps)(Pl ke Ps) 3_1’3 P(ps)a_ﬂ? (11)

_ dpsp/P(;m) 8 0 4p;yP(p) o o
B e R LA i CErS e LI R

4p2pi\/P(p3) 8 = @
(p2 — p3)(pr — Ps)g;:; P(pa)a_Ps (12)

Passing from the variables p; to the Cartesian ones, we arrive at the following expression
for the ellipsoidal integrals of motion
Ai(a) = (a1 +aq)L}+ (az+ as)Li + (a3 + a,)L?

(a2 + a3)N? + (a1 + a3)N? + (ar + a3)N3? (13)
Ag(a) = —a1a4Lf - az(hL; - a3a4L§ - a2a3N12 - a1a3N,2 - alagNg (14)

—+

Instead of the system of operators (13) and (14) it is more convenient to use new
operators A and i that depend on three parameters (K%, k2, k2), (only two of them being
independent, according to (5)) and are connected with the old A1 and A, according to

A= (aq—a)™? {Ai(a) - 2a;,A}, G=(ay—ay)” {azAl(“) + Az(a) — a] } (15)

Thus, the ellipsoidal basis is the system of three operators {£ = —A, X i} where

Mk} k3, D) = K3LY+ (K3 + kD)L + L3+ kIN? — KINZ + (B2 — kD)L (16)
a(k}, B3, K3) = K3(K3 + Kk3)L? — k3(k2 + k2)LE + kKN

From the system of operators (16) one can easily derive for particular values of the
parameters ki, k and k} all possible, or equivalent to them, sets of diagonal operators
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{L, Ly, L;}, corresponding to different bases for free motion on the three-dimensional
sphere.

I. The case k2 — 0, k2 + k2 = 1. Ellipso-cylindrical basis I.
L1 = MO,k k2) = k2L + k2(L2 — N2) + k2L,
Ly = p(0,k3,k3) =~k3L] 17
IL. The case k7 — 0, &} + k% = 1. Ellipso-cylindrical basis II.
L1 = Mk},0,k) = L2 + k¥(N? ~ L}) — KL,
Ly = j(k],0,k3) = kjkL3 (18)
III. The case k? = k2 — 0, k2 = 1 Cylindrical basis.
Ly = M0,k},0) =L+ L2~ N2,
L = i0,k3,0)=~I2 (19)
IY. The case k§ =k — 0, k% =1 u k?/(k? + k2) = k*. Sphero-conical basis.
Ly X(0,0,k2) = L?,
& = m Fp

2 _,
k-0

i

= kL% — kL2 (20)

Y. The case k? =k — 0, k3 =1 u k¥/(k? + k2) = 0. Spherical basis.

L = X0,0,k%) = L2
— . ﬁ(k?,kg,kg) N & ]
L = m =g =k (21)

2 .
k2—0

Thus, by means of different limiting conditions of the parameters (k?, k2, k2) we have
obtained all five nonequivalent sets of operators corresponding to separation of vari-

ables in the Helmholtz equation on the three-dimensional sphere in simpler systems of
coordinates.

4 Solution of the ellipsoidal equation

Let us construct solutions of the generalized Lame’ equation. Search for the ellipsoidal
wave function 1(p) as an expansion in series round one of the singularities a,

HO) = (o= a) ¥ (o= ) F (o —a B (o - a)¥ T (222 (22)
where ‘

ai(a;—1)=0, i=1,2,3
Substituting (22) into the generalized Lame’ equation (10) we derive three-term recur-
rence relations for the expansion coefficients b,

Bibegr + {p — 1}be + {A — 6:3be—y +wibi_2 =0 (23)
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where

A=(a—a)) 200 (J +2) = M, p = (a0 —a1)*ar? T (T +2) — ax)y — Ag]

and
Y = [4+ (4t + 1)(az2 + aq) + 20004}k2k2 + [48% + (4t + 1)(az + as)
+ 2a03)kf (K] + k2) — (482 + (4t + 1)(az + 1) + 2a30q]k3(K2 + E2)
6 = —2k¥oz03 + 004 + azay + (t+1)az +as+a)+ (t+1)(¢—1)]
+ 2k§[a2a1 + Qialey + Q104 + (t + 1)(&2 + g + (14) + (t + 1)(t - 1)]
+ 2(k§ + kg)[agal + Q03 + Qg + (t + 1)(02 + (23] + (13) + (t + 1)(t - 1)]
we = J(T+2)-{4¢-1)(t-2)+[4(t - 2) + 3] Y i + Y oy}

i i
Be = 4(t+1)(t+ g+ 1/2)kIk}(k] + k3)

Now we consider polynomial solutions of the ellipsoidal equation (10). Let all the
coefficients of the four-term recurrence relation (23) starting from by, be zero at any
integer N, i.e.

by = bN+2 = bN+3 = e =0 (24)

Then, from the recurrence equation (23) under substitution ¢ = N + 2 and from the
condition by # 0, we have

J=2N+Y e (25)

As a result, a polynomial solution of the ellipsoidal equation (10) can be written down
as

o 22 2 o —az\!
#6) = (o= a)H(o - an) (o - @) ¥ (o - a)® Tob (222 (26)

where b, obeys the following four-term recurrence relation:

Bebiyr + {p— b+ {A =6} by + 4[N -t +2)[N+t -1+ Zai]b¢—2 =0 (27)

Now we have to solve the problem of eigenvalues of the constants A, u. Let us write
down the four-term recurrence relation (27) as a system of homogeneous equations

(Yo — )b + Boby =0
(6 - N)b + (m—-mwb + Baby =0
waby + (62— )b + (72 —p)b2 + Babs =0
e (28)
wyaby-s + (Bno1—A)dvoz + (N —p)bva + Bn-aby =0
wnbv_y + (= Mbvar + (vl =
whpbvoy + (bvyr —A)by =0
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As is seen from (28), the homogeneous system obtained is a redetermined one since the
number of equations N +2 is larger than the number of unknowns, and the corresponding
matrix is rectangular. As concerns a homogeneous system of equations of this type, it is
known that a necessary and sufficient condition for the existence of a nontrivial solution
is equality to zero of all determinants of order (N + 1) {9]. However, as it is proved
in the appendix, for a system of equations of the type (28) it is sufficient that two
determinants, resulting from the system (28) by eliminating the last and the next to
last rows, be equal to zero.

Now let ¢1,¢2,93 be integers equal to the number of zeroes of the ellipsoidal wave
function (28) in the intervals (ay, az), (a3,a3) and (as,a4). As the general number of
zeroes of the polynomial (23) in the interval (a,,a4) equals N, the ellipsoidal quantum
numbers g1, ¢z, g3 are connected with each other by a simple relation .

91+92+413=N; q,‘=0,1,..-N, (1=1,2,3) (29)

and can be chosen to enumerate ellipsoidal wave functions and ellipsoidal separation
constants {A, u#}. As a result, we get that at a fixed N there exist (N + 1)(NV + 2)/2
pairs of different values of {), 1}, and depending on parity of the hypermoment J, the
following sixteen polynomials are given as an ellipsoidal wave function:

uE:f:m(p; @) = i bgo,o,o,o)(p —az), J=2N
t=0
B (P30) = ST U0y — it 2N 41
t=0
sEN (pa) = p—a f: KOO0 (5 gy}, J=2N +1
=0
dE:f::;:(p, ai) = Vp—as iv: bSO'O'l’o)(P — az)t, J=2N+1
t=0 .
PEN (pia) = Vp—a4 f: b0 (p —a,)f, J=2N+1
=0
csEN(pia) = Vo-a f: KOO (p — a2 J=2N +2
=0

N
dEMNpa) =  Vp—as B o), J=2N+2

919293

t=0
N
PEm(pia) = Vp=a LU o —a) T =2N 12

3dE2N+2 (p; ai)

19293

N
Vo —a)p—as) L6 -a), T=2N+2
t=0

N

spENY (pra;) = o —a)(p—as) L6V (p—ay)!, J=2N+2
t=0
N

WELa(piw) = o—a)e—a) LHo-a), J=2N+2
t=0



csdEN3(p- a))

919293

2N+43

e3PEy;g.0,(P3 ai)

cdpEg 13 (p; ai)

919293
8 dp E2N +3

E2N+4

csdp qxqzqa(p; a,-)

i

qmqa(P; a.-) =

i

N .

Vo —a)(p—as) Y6 p — )12, J=2N+3
t=0
Sy 1,1,0, 1

Vo —a)(p —ag) 6V (p —ap)t/?, T =2N+3
t=0
N 0

Ve —as)(p—ad) KU (p—ap)*?, T =2N +3
t=0

N .
Vo —a)p—as)p—a) Lo Np—ar), J=2N+3
t=0

N
VP —a)(p — as)(p — a)) LB (o — a) 1, T =2N +4
t=0

5 Ellipsoidal basis

According to the afore-said in sect.4, the ellipsoidal basis is divided into sixteen classes

(0,0,0,0)
¥y 191,92,93

(1,0,0,0)
‘I'N 191,42+93

‘I’(O,I,O,O)

N,g1,92.93

(0,0,1,0)
N,g1,92,93

(0,0,0,1)
N,q1,92.93

(1,1,0,0)
N, \01+42/93

(L0190

Nyq1,92.93

0,1,1,0)
N.g1,92/93

\11(0'1'0'1)

N.91,92.93

C(b,0,0,0)uEQN

J=2N+1, D

C(é,l,o,o) 2N+

J=2N+1, D

J=2N+1,

qxqzqs(pl; “-')"Emm(l’zi a‘)uszzva(p3; a‘)’
(N +1)}N +2) _ (J+2)(J +4)

J=2N, D= . -
CUROOGENH (5 0 )sENH (py; a:)s B (p3; ai),

_(N+D(N+2) _(J+1)I+3)

2 8

oo (P13 @) B (pa; ai)eEq i ta (ps; a:),

=(N+1)(N-_{-2) =(J+1)(J+3)
2 8

that bl 4 N N N ) ;
COONOGEIN (5): 0, )dEINHL (py; 0,)dELE (ps; ai),

D= (N+1D)(N+2) (J+1)(J+3)
= 5 =

8
C(O,O,D.l)pEZIIZ;},(PI; ai)PE:llg:;i(pﬂ a‘)pE:x;’;]: (Ps; a‘_),
J=2N+1, D= (N+1)2(N+2) _ (J+1)8(J+3)
COODea BN ;s Bt (pa; 0:)cs Byt (3 ),
J=2N+2, D= (N+1)2(N+2) _ J(J8+2)
COO10) sdERN A (p1; ai) sdEg ot (023 i) sdEG 1 (ps; i),
n=2N+2, D= (N+1)2(N+2) _ J(J8+2)
C©1.19 ch:f::;ﬁ(Pl; a;) ch?ﬁ;ﬁ (p2; @) Cdng;zi(Ps; a;),
J=2N+2, D= (N+1)2(N+2) _ J(J8+2)

C(O,l,ﬂ,l) CPE2N+2(P1;0-£) cpE2N+2(pg;a;) cpE2N+2(p3; ai),

919293 919293 119293
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s=owva, po (NN _JU+2)
Netones = CUOON spEL (01;a) spEN 2 (pa; a:) sPEXA (o ),

JaN 42, D=(N+1)2(N+2)___J(18+2)

‘II(O,O.I,I) = C(O,O,l.l) dpE2N+2(p1; a-’) dpE2N+2(pz; a-‘) dpE1N+2(p3; ai)’

N.g1.92.92 19293 19295 bl
J=2N+2, D=(N+IL(N+2)=J(JS+2)

Uimas = CMM csd B (o1 1) esd BNz i) esd BV IS s ),
J=2N+3, D=(N+1)2(N+2)=(J—1)‘§J+1)

Wi = OO copBL3 (o1 ) copEipet (oo o) cop Byt (s ),
Jo2W 43, D=(N+l)2(N+2)=(J—1)8(J+1)

¥ialan = OO cdp B o100 cdp BT s ) cdp B2 s ),
J=2N +3, D=(N+1)2(N+2)=(J—1§J+1)

Uoros = CUOMD sdpBINH (py; 0;) sdpENF3 py; a) sdpEZN (ps; i),
J=2N+3, D=(N+1)2(N+2)=(J-1§J+1)

Wit = O o B3 s ) codpE3 s ) codp B ),
J =2N +4, D=(N+1)2(N+2)=J(Js—2)

Here D is the number of states at a given value of the hypermoment J. The multiplicity £ )
of degeneracy of energy levels is determined by a sum of all states of even or odd fixed «5*

J and is correspondingly equal to (J + 1),
The coefficients CU##) where ¢, 5, k,1 = 0, 1, are determined from the normalization
condition of the ellipsoidal basis

1 rez pes pas i) 2 (pg — p1)(ps — p2)(p3 — #) '
Y \I’s‘l’.bl.' " (PI,PZ, P3) dp1 dpz dp3 =1 (30)
8 Ja; /62 /ﬂa s ] \/—P(Pl)P(Pz)P(Ps)

The complex form of the ellipsoidal basis for the Helmholtz equation on the three-
dimensional sphere finally depends on the degree of algebraic equations from which
eigenvalues for two separation constants {\, u} are determined.

6 Mathematical supplement

Let us find out conditions for the existence of solutions of the homogeneous system (28)
which satisfy the requirement by # 0. Rewrite the system (28) in the matrix form having
in advance divided the jth equation into w; # 0; j =0,1,---,N + 1. For this purpose
we introduce a rectangular matrix P = ||p;;||, wherei = 0,---,N+1; 7=0,---,N and

Dii = (7l'—"“)/wi1 t=01111N7

9
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Py
piisn = Bifwi, 1=0,1,---\N-1; (31)
Piics = (Gi—Nwi, i=1,---,N+1
piia = 1, =2, N+1;
pij=0,ati<j—2andi2j+3. We derive the equation
Pb=0 (32)

where b = (bo, bl, Tty bN)T.
Denoting by P; the matrix obtained from the matrix P by eliminating the first row,
we get the first condition for the existence of nontrivial solutions of the system (32)

detP, =0 (33)

To get the second condition and to solve the system (31), let us consider the latter
without the first two equations and transfer the elements of the last column to the
right-hand side. We derive the following inhomogeneous system of. equations

Pb=f o (34)

where P, is the matrix obtained from P by eliminating the first two rows and the
last column, b= (b(hbh"'abN—l)T’ f = (fhf?y"')fN)Tv fl' =0, 1= 11"'7N - 31
fi = pipnby; i =N - 2,N — 1,N. Note that P, is the upper triangle matrix which
has units on its principal diagonal. Let us consider minors of the matrix P with the
corresponding signs

Pi+1i Pitvi+r 0 Pitrg-1
sy = (<1 | P Pniws TP ()
Piji Pii+1  *° DPij-1

at0<i<j<N+1l Itis to be mentioned that since p;; = 0 at ¢ <j—2andi>j+3,
and p; ;-2 = 1, the following relations hold:
Sij = —Pjj-18ij-1 ~ Pj-1,j-18i,j-2 ~ Pi=2,j-15ij-3 (36)

8ij —Pig1,i8is1,j — Pid1i+18i42, — Pit15429i43,§ (37)
Let us treat the upper triangle matrix S; = Py’ 1 1t follows from the lemma below
that the elements of this matrix, which are above the principal diagonal, satisfy relations
(36) and the principal diagonal of the matrix has units.
Lemma. Let A = ||a;;|[;-, be an upper triangle matrix with units on the principal.
Then B = A~ = ||b;]l},, is also an upper triangle matrix with units on the principal
diagonal, and at ¢ < j

Giit1  @iiy2 0 Gig-l Qa5
. 1 Girisz - Didlg Qins s .
. i J-1 Qi
by ==V T Ll (38)
0 0 e 1 aj-1;j

10
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Proof of the lemma. For ¢ < j we have

J
Y aibi; = &;; . ' : (39)
Hence for i < j°
J
bij=— Y aub; (40)
k=il

In the same manner the recurrence formula is derived from the expansion of the
determinant (38) over the last column. Since formulae (38) and (40) coincide at J + 1,
the lemma is proved.

Thus,

b=S.f (41)

Choosing as by an arbitrary nonzero number, we obtain from (41) a vector b that
satisfies all the equations of the system (32) starting from the third one. By virtue of
{(41) the vector b thus chosen also satisfies the second equation of the system (32). We
get

N N
Poo Y 51 i +pPn Y s2;fi =0, (42)
=t j=1
which is equivalent to the equality
Poo($1,N-2PN-1,N + S1,N-1PNN + SLNPN+1,N)
+po1(S2,N-2DN-1,N + S2.N-1PN.N + S2NPN+1.N)

Using the recurrence relation (36) we get

Poos1,N+1 + Po1sa,N+1 =0 (43)

Theorem. For the system (28) to have solutions, for which by # 0, it is necessary
and sufficient to satisfy the conditions (33) and (43). If these conditions are fulfilled,
the system (28) for any by # 0 has a solution determined by formula (41).

Thus, to determine eigenvalues of the ellipsoidal separation constant {A, u} one has
to solve the system of two algebraic equations

{detP, = 0,
PooS1,N+1 + P Sz v = 0.
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KBaHToBOE nBHXeHHE Ha TpexmepHoii cdepe. ‘ : '
Bnnunconpanbupiii 6azuc ' .

B nacrosiueit pabore nonyueno peenue 0606uenHoro ypasnenus Jlams B Biuie
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uLMEHTHI AQHHOIO PA3NIOKEHHS MOAYMHAIOTCH YETHIPEXWICHHBIM PEKYPPEHTHbBIM
COOTHOUIEHHUSM. Peliena npobieMa KBAHTOBAHMS SIUTMACOMAAIBHBIX KOHCTAHT pas-
ACNeHHs W MOCTPOEH 3IIUIMNCOMAATBHBIE Gasuc s ypastienns [enbmronsua
HIIH ypaBneHml Ulpeautrepa mis csoBoanoro ABHXEHHS Ha TpexmepHoii ciepe.
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Quantum Motion on the Three Dlmenswna] Sphere. v
Ellipsoidal Basis : .

The generalized Lame’s equation is derived as expansion around one
of the singularities of the equation and the coefficients of this expansion are shown
to obey the four-term recurrence relations. The problem of quantization of ellipsoidal
separation constants is solved and the ellipsoidal basis is constructed:
for the Helmholtz equation or the Schrodinger equation for free motion on the three-
dimensional sphere.

The investigation has been performed at the ‘Bogoliubov Laboratory
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