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THE STRUCTURE OF THE HURWITZ
TRANSFORMATION

A.N. Sissakian V.M. Ter-Antonyan
JINR,141980 Dubna,Russia

Abstract

It is shown that the Hurwitz transformation consists of two structural elements:
the Levi-Civita transformation and the SU(2) transformation acting in the space
of Cayley-Klein parameters.

1 Introduction

The Levi-Civita (1], Kustaanheimo-Stiefel (2] and Hurwitz [3, 4] transformations are ele-
gant and useful mathematical constructions. These transformations made it possible to
solve a lot of problems: spinor regularization of the equations of celestial mechanics (5],
the problem of Coulomb-oscillator correspondence in quantum mechanics [6], some prob-
lems of quantum chemistry (7], functional integration [8], quantum field theory [9], boson
calculus {10] and geometrical quantization [11).

Hurwitz transformation (H) maps the 8-dimensional u-space onto the 5-dimensional
z-space:

o = ug+u¥+u§+u§—u3—u§—.—u§—u;
zZ; = 2(“0“4 — UjlUs — UglUg — u3u-,)
Ty = 2(“0“5 + ujug — ugur + ugus) (1)
T3 = 2(ugug + 17 + uguy — uzus)
- 24 = 2ugur — ujug + ugus + uzuy)

Here z; and u; denote Cartesian coordinates in z- and in u-spaces respectively.
The algebraic structure of the H is such that the Euler’s identity holds valid:

=g+l tal= (@l )=t 2

In the particular case u; = u; = u3 = ug = ug = uy = 0, the H turns into the
Levi-Civita transformation (z; = 23 = z, = 0)

Ty = ul—u}

3

= 2uguy ( )

Recently, the Hurwitz transformation has been connected with non-associative alge-

bras [12] and with the Fock-Bargmann-Schwinger representation [13]. Further, the Cayley-

Klein [14] and the Eulerian [15] parametrizations have been carried out and nonbilinear
version of the Hurwitz transformation has been developed [16].
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In spite of these achievements up to now there is no clearness in understanding of the
H’s structure, except the connection with Clifford algebra [12]. In this note, we discuss the
structure of the H-transformation. Below, we will obtain a representation in which the H
is determined by two structural elements: the Levi-Civita and the SU(2) transformation.
Spaces where these transformations operate will be specified somewhat later.

2 The Conformal Structure of the H

The coordinate o in (1) is distinguished in structure from other coordinates of the z-
space. The coordinates u can be classified into the groups (uo, u1, u2, ua) and (u4, us, ug, uz)
according to the role they play in forming the coordinate zo. Therefore, we will separate
the coordinate z, from the coordinates z,,z;, 23,24 and introduce the complex-valued
coordinates ) .

n=z1t+1z3 , 23=2T3+1I4

vo=uo+iu1 ) v2=‘MQ+iU3 ‘ (4)

vy =g +ius , ve=ug+iuy

Let us introduce the complex vectors g = (21, z3), f = (vo,v2) and g = (v4, vs) and denote
by |ul, |f] and |g| there modules:

(321 + 2323)/%

[l =
Ifl = (vivo+viva)'/? (5)
lgl = (":v4+";"e)m

With the exception of zo, transformation (1) can be represented in more compact form

(2)=2(2 ) (%) A
(5)=-2(% —)<) ™

Relations (6) and (7) are dual to each other in the sense that the transformation
matrix in (6) and the column which it acts on depend on the coordinates (uo, ) , 4z ,ua)
and (uq4,us,us,ur) respectively; whereas the transformation matrix in (7) is determined
by the coordinates (ug4,us,us,us) and the corresponding column,- by the coordinates
(uo,uy ) Uz, U3). .

The matrix of this transformation is unitary with weight, i.e.

(% 85)(m )=o) ®
(5 w) (o or)=wr(o h) o
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Now, it is followed from (6)-(9), that
L L z - - v
G (2) =reein ()

(o) (2 ) = dlalos.o0 (32

Combining these expressions with the formula for zy, we have

zo = |f* - lgf?
|l = 2Iflgl

Comparing (10) with (9} we conclude that pairs (zg, |1|) and (|f], |g|) are connected with
each other by means of Levi-Civita transformation which realize the conformal mapping
of a complex quarter plane |f} + ilg| on the complex half plane zq + i|y].

(10)

zo + ilu = (If| +ilgl)*

3 The SU(2) Structure of the H

To separate the second structural element of the H it is necessary to turn to the new
coordinates. Let us introduce the coordinates (zo, |u|,a1,a3), instead of (zo, 21, 23), by

the following way:
21 - ai
(2)=m(2). (1)

As it is followed from (5) and (11), the complex numbers a, and a3 obey to the condition

laaf* + faaf* = 1
Thus, we have only three independent real coordinates. In the same way (vo,v;) and

(v4,v6) can be changed by (|f{, a0, a2) and (|g], a4, as):
v a .
(2)=1n1(2) ol +leart =1 (12)

v, a .
(o) =101 ((2) o + o = 1 (13)

The complex numbers a; have the meaning of the Ceylc);rkl;‘in paramecters in the
4-dimensional spaces (z1,22), (vo,v2) and (v4,vg). Now, let us substitute (10)-(13) to
transformations (6) and (7) and use the second relation (10). We arrive to the following

transformations: -
@) _ [ a —a; a, (14)
az az a(‘, ag
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(2)=(5% ) -

As we can see from (11) —(13), the matrices in (14) and (15) are unitary and unimod-
ular, so that the second structural element of the H is the group of SU(2) transformation.

4 The Euler’s Coordinates

The change of the Cartesian coordinates by the Ceyley-Klein parameters allows us to find
the SU(2) structure of the H-transformation. However, it is often convenient to deal with
independent variables rather than with parameters a;.

The wide arbitrariness are in the choice of these variables. Below we use the repre-
sentation:

ﬂ _'ﬂ - ﬂ A L
a; = cos Ee 21 , @3 =sin L ,
2
ﬂl —iatn . ﬂl LS s’ ¥
Gp = COS —e 2, @=s8m—_;e 7 |
2 2
By _;jemtwm . ﬂz {92=72
ag=cos—-e”'"2 , ag=sin—e 7 ,
2 2

which demonstrated the spinor character of the H-transformation. Here a, B,~ and

@;, B;7; denote the Euler’s angles in z- and u-spaces. These angles vary in the following
ranges:
0<a<2r,0<B<7, - 2x<y<2x

0<a;<27r,0<8;<7,-2r<y;<2n

Substituting these formula into transformations (14) and (15) we arrive at the spinor
representation

cos ge"'u_;l R( 8 ) cos %le'io : ( )
. =Rla1,f1,m . 16
sin ge“z_l sin %-e"zz_’z
cos ge"‘g;ﬂ cos %lc“g‘y“
= R’(‘h ’ﬂ2 ’02) (17)
sin %eﬂ;_a sin %‘-e"‘u T

Here R is the matrix of finite rotations given by

[
2

sin %e' 7 cos %e' 2

—iate . b _—j8=c
COos 3¢ 2 —sm;e 2

R(a,b,c) =
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We see that, in the space of angles (a1, By, m, 2, B2,72) the H transformation acts ac-
cording to the scheme [15]:
5%(a, B,7) = R(as, By, N)R(az, B2,72)5%(0,0,0),

53(7) B, Q) = R(”h’ Ba, az)R(‘h , B, al)Sa(O, 0, 0) ,
Thus, from the given triplets (a, 81, 7) and (a3, Ba,72), the H constructs the matrices of

the finite rotations R; and R, which transform the northern pole of the three-dimensional
unit sphere into a point of the same sphere belonging to the z-space.

5 The General Structure of the H

Let us turn to the most general formulation of the H-transformation [3,4]:

o \ / Uo Uy U2 us U4 —U; —Ug —U7 ( Up
0 Y1 —U Uz —U; —Us uy Uy —ug Uy
0 U —Uz —uUy U3 —Ug —Uy Uy Ug U,
0 | ¥ u —w —uy —ur ug —us oy, us (18)
I Uy —Us —Us —U7y Uy —U3 —U; —Uj Uy
T2 Us U4y —U7 Ug Uy Uo Uz —uz Us
T3 Ug U7 Uy —Us Uz —U3z Yo Uy Us
\ Ty ) \ Uy —Ug Us Uy Uz Uz - Ug ) uy }

The discovered above structural elements are hided in formula (18). However, it is possible
pass to the representation where (10), (14) and (15) act as thejoin ¢ transformation,
mapping u-space on r-space. :

For this purpose it is necessary to introduce instead of Cartesian coordinates the
complex coordinates (zo + i|p), a;,,a3) and (|f] + ilg], ag, a3, a4, ag).

In result the H-transformation takes the form:

2o+ ilu] fl+igl 0 0 \ [ If]+ill
a = 0 a —aj ay , (19)
as 0 a; —ag ag

zo + ilu Ifl+igl 0 0 |f1+lg]
a; = 0 a, —ag ag , (20)
a3 0 ag a; a3

Starting from (19) and (20) we can, without any difficulty, return to the formula
(1) In this sense, our result is equivalent to (18), i.e. to the general form of the H-
transformation. Moreover, the expressions (19) and (20) include, in contrast to (18), the
information about conformal and SU (2) structure of the H explicitly.

-
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