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METHOD OF VARIATIONAL PERTURBATION THEORY
A. N. Sissakian!, I. L. Solovtsov2

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, Head Post Office P.O. Box 79, Moscow 101000, ‘Russia

and O. Yu. Shevchenko?

Laboratory of Nuclear Physics, Joint Institute for Nuclear Research,
Dubna, Head Post Office P.0. Box 79, Moscow 101000, Russia

Approximation of a quantity under consideration by a finite number of terms of a certain
series is a standard computational procedure in many problems of physics. In quantum field
theory this is conventionally an expansion into a perturbative series. This approach combined
with the renormalization procedure is now a basic method for computations. As is well-known

Nevertheless, at small values of the coupling constant these series may be considered as asymp-
totic series and could provide a useful information. However, even in the theories with a smali
coupling constant, for instance, in quantum electrodynamics there exist problems which can-
not be solved by perturbative methods, Also, a lot of problems of quantum chromodynamics
require nonperturbative approaches. At present, a central problem of quantum field theory is
to go beyond the scope of perturbation theory.

A. great amount of studies is devoted to the development of nonperturbative methods.
Among them is the summation of a perturbative series (see reviews [1,2] and monograph {3])-
The main difficulty is that the procedure of summation of asymptotic series is not unique, which
is generally a functional arbitrariness, and the correct formulation. of a problem of summation
is ensured by further information on the sum of a series [4]. At present information of that
kind is known only for the simplest field-theoretical models [5).

In refs. [6-10] approaches are proposed which are not directly based on the perturbative
series. Thus, the method of Gaussian effective potential has recently become rather popular
[11-14]). Many of nonperturbative approaches make use of a variational procedure for finding
the leading contribution. However, in this case there is no always an algorithm of calculating

and what is the range of applicability of the obtained estimations. However, even if the algo-
rithm of calculating corrections, i.e. terms of a certain approximating series, exists, it is not
still sufficient. Here of fundamental importance are the properties of convergence of a serjes.
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In this paper, we consider a method of variational perturbation theory (VPT) [15-17].
Despite the word "perturbation” being present in the name of the approach, the VPT method
does not use any small parameter. The additions in the VPT method are calculable because
this method employs only calculable Gaussian functional quadratures. Besides, a VPT series
can be written so that its terms are defined by the usual Feynman diagrams. In this case,
the VPT series will surely differ in structure from the conventional perturbation theory, and
diagrams will contain a modified propagator.

Here we will apply the VPT method to Green functions of the ¢%-model in the Euclidean
d-dimensional space. To this end we write the 2v-point function in the form

Gy = /D¢{w2"}eXP(—Slvl), (1)

where
{0} = p(21)..-0(xn)
and the functional of action looks as follows:

2
Sle] = Solel + T5-Saliel + ASdliel,

Silel = 3 / dz(0p),  Sylel = / dz . @

We shall construct a VPT series by using the following Gaussian functional quadratures

/Dgpexp{—[% <gpk<p>+ < pJ >]} =

i

it

K N L
= (det :m) exp[E <JK'J >]. (3)
The VPT series for the Green functions (1) is constructed in the following way:
qu = Z G?v.m (4)

n=0

n!

G = 8 [ Do} (351 5101 exo (=Sl - ol - S10l). ()

The variational functional S'[tp] will be taken to be dependent on certain parameters, but the
total sum (4) surely will not depend on these parameters. Their choice can be such as to provide
the expansion (4) being optimal.

The functional S'lcp] should be defined so that the terms of the VPT series (4) be calculable,
i.e. the form of S[cp] should be such that the functional integral in (5) can be reduced to
the Gaussian quadratures (3). This requirement does not mean that the functional S-'[ap] must
be quadratic in fields. We can pass to the Gaussian functional integral by using the Fourier
transformation.

We choose here, for example, the sum of harmonic and anharmonic functionals being

Slelie.:

- M?

Slel = —5-Sale] + 0’5314, (6)
where M and 6 are the certain parameters through which the VPT series is optimised. We
obtain ’

2
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where
i 1 v * 1. X
Hn0) = i [ Dote™)(-35401)" exp [l + Xsild)). (®)
The latter expression can be written as follows
i =0+ X7
00 = det | L] ) (0

where ggt)ﬂ(xz) are calculated on the basis of diagrams of the & — i order of conventional
perturbation theory with the propagator A(p, x?) = (p? + x*)7. A new mass parameter y?
is depended on u and variational parameters M? and 0. Thus, the N — ¢4 order of the VPT
expansion (4) can be constructed with the same diagrams as the conventional perturbation
N —th order is made up.

Let us consider a case of the quantum-mechanical anharmonic oscillator ( AQ ) as an
example of exploiting the VPT method. The AQ from a point of view of the path integral
formalism is a one-dimensional @*-model. The connection between the ground state energy E,
and the dimensionless four-point Green function G4(0,0,0, 0) takes the form .

0B .
By = A6, | (10)

For calculating Green function G4 we will use the two-parameters anharmonical VPT functional

Sle] = 18Sole] + xSafi]?. (11)

The application of the asymptotic optimization that requires the contribution of the remote
terms in the VPT series to be minimal allows one to find the relation between the parameter 4
and x : 160x® = 9. The remaining variational parameter js fixed on the basis of a finite number
of VPT expansion terms. For the ground state energy in the first order of VPT we get the
strong coupling expansion

E§Y = N790.663 + 01407 — 0.0085,,¢ +--, (12)

where the dimensionless parameter w? = m?2)A-213, W, have to compare the obtained result
with the exact value [18)

E57 = AV/[0.668 + 0143707 — 0.0088,,¢ +o-]. (13)

We can also calculate the mass parameter u? connected with the two-point Green function:
B = Gy(p = 0). In the strong coupling limit we obtain #® = 3.078)%/3 whereas the exact
value is p2, . = 3.0090%/3, We can estimate the energy of the first excited level E,. Defining
the energy shift 4, = E;—E; and using the spectral representation for the Propagator we arrive
at the following estimate for e < P where

1 =26z = 0)/Gy(p = 0). (14)

By analogy with the sum rules, we may expect a sufficietly rapid saturation of the spectral
representation, which brings y; and pﬁ” closer to each other. In the first order of the one-
parameter VPT in the strong coupling limit we get u{*) = 1.763)1/3 , whereas exact value is
uiTeet = 1.726)1/3 (18]. The effective potential and corresponded numerical characteristics for
AO was computed in [16].
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Now consider a massless L,)(l_“ theory in the four-dimensional Euclidean space. For the
generating functional of the Green functions W/[J] with the variational addition taken in the
form gt S3{yp] we obtain the following VPT series

WJ}

// D¢ exp{—5[¢l+ < Je >} = ZWn[‘Lt]v (15)

n=0

WalJ, 1) Lﬂ/m,: [fé— - tSS]':exp{—So ~gtSi+ <y >}.

nt

Here we made use of the constant C, = 4!/{167)? from the Sobolev inequality (see, for instance.
refs. [3,19]):
Silel/Sslel < 4C. (16)
and set A = g/(4C,).
In the given case we are interested in the problem of convergence of the series. Asymptotic
estimate of remote expansion terms can be made by the functional saddle-point method (1-3,20].
To this end, we represent W, [g, ] in the form

WalJ t}=(-9)" -::—: / Dupexp{—nS,“ — a5 + 0t < Jyp >}, {17)
where
Sesslel = gtSilel —inDiegl,
Do) = S ts3t) )

The main contribution to the integral (17) in the leading order in the large saddle-point pa-
rameter n comes from the functions o obeying the equation 8S.ss/6p = Oi.e.,

. a |,
Pepo 4 3~!¢8 =0, (19}

and leaving the action functional to be finite. Their explicit forr: is as folluws

Po{*) =

U L @)
1Solga}{1 + gDlipo]} ‘ '

Arbitrary parameters £o and g in (20) reflect the translational and scale invariance of the theory
under consideration. From (20} and (21) it follows that o = g (327%)%; as a resuit we obtain

) [ B AN n \ ,
Waldit] ~ (-1)" ) (—t—--) exp{—n - ‘\/;__t+ nift < Jog >f. {22)

From this expression it is clear that irrespective of the values of the coupling constant g, the
VPT series (15) absolutely converges when ¢ > 1/2 and when ¢ > 1, as follows from the Sobolev
inequality (16), that series is of positive sign. In the interval 1/2 < t < 1 at large n the series
(15) is the Leibniz series. Here again the value ¢ = 1 corresponds both to the change of the
regime of the VPT series and to its asymptotic optimization. Note is to be made that the
expression (22) determines only the leading contribution to the functional dependence of W,
on the large parameter n. In particular, in (22) we do not reproduce a certain multiplier that
appears in the next to leading order in n. However, the properties of convergence of the series
can be quite well analyzed in the leading order in n.
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Let us consider the VPT method in view of point of connection between the VPT and the
method of Gaussian effective potential ( GEP ) [11-14]. In the following, we shall have in mind
the dimensional regularization setting n = d — 2e, where d is an integer number. We séparate
the classical contribution in the generating functional of Green functions W/[J] by writing

W[il} = /D‘PexP{i[S[‘P]+ < Jp >]} = exP{i'[SIS°c]+ <Jp. >] }DM’ (23)

where
DlJ} = /Dgaexp{—iP[tp]}, (24)
1 .
Ply] = / dz [§¢ (8 +m? +120¢%) o + dAg.0® + Apt] (25)
and the function . satisfies a classical equation of motion 8S16p. = —J.

In the standard classical approximation one would retain only the addends quadric in fields -
in expression (25) for the quantity P[p]. In this case the functional integral for D[J] becomes
Gaussian and for W[J) the ordinary one-loop representation arises.

Let us now calculate the quantity D[J] by using the anharmonic variation of the action
functional. We choose the VPT functional in the form & l¢] = R?[], where

Rlp] = ﬁ / dz p*(z).

The space volume 0 appears here because Vess is derived from the effective action by using
the constant-field configurations. Thus, the parameter x, optimizing the VPT series, does not
depend on .

Any power of R*[y] in the VPT expansion can be obtained by the corresponding number
of differentiations of the expression exp(—ie B*p]) with respect to ¢ with putting € = 1 at
the end. As to the addend R[] in the exponential, giving rise to a nongaussian form of the
functional integral, the problem is easily to solve by implementing the Fourier transformation,
due to which only the first power of R[] emerges in the exponential.

As a result, the VPT series takes the form

by} = g(—n";(,ﬁ—‘_‘);—)]:—,[%]"’“
< VA [ e enfint i) 2 ]
x [/\/dz(4<pc¢3+ gb‘)]kexp[—% < jAj >]j=0’ (26)

where

]

A(p) = (¥ " M? +i0)7,

P(z) = im,

M =m?4 12X00? + Vexv.

The integral over v in (26) contains the large parameter ) and, hence, can be evaluated by
using the method of a stationary phase. Then, the effective potential in the first nontrivial
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VPT-order looks as
Veir = i+ W+ W,
| x* 2
Vo = ;M AO"TAm (27)

X
i = —TA3+31\A?,,
where A is the Euclidean propagator Apua(z = 0, M?) written with the help of the dimensional
regularization. Here M? is the massive parameter taken at ¢ = 1 and v = vo, where vy is the
stationary phase point in the integral (26). The corresponding equation reads

M =m? +120p% + x*Ao(M?). (28)

One can apply now the following optimization versions (see [15,16]): (i) The requirement
min [V (here there exists the solution to the equation V; = 0); (ii) BV.sp/8x* = 0. It is easy
to find out that these different versions give rise to the same optimal value of the parameter
x* x* = 12X As a result, the effective potential (27) with the condition (28) yields the GEP
in n-dimensional space [21].

It is interesting that the first order of the VPT for D|J] give us GEP by various ways of
constructing the variational procedure. However, despite the same result in the first order,
other properties of the series are different. In the case of the harmonic variational procedure
the VPT series is the asymptotic series. In the case of the anharmonic VPT procedure we can
obtain the convergence series. It is important in the point of view of the stability of the results
obtained as the leading contribution.

When the variational addition is harmonic, the VPT series is asymptotic and its higher-
order terms behave like the terms of standard perturbation theory. Nevertheless, the harmonic
variational addition produces a certain stabilization of the results for the further radiative
corrections. In the regions where the partial sums of conventional perturbation theory suffer
of oscillations specific for asymptotic series, the VPT series gives a stable result. However,
the harmonic way of varying the action though rather making pass to large coupling constants
does not lead essentially off the weak-coupling region. This can be achieved by passing to the
variational addition of the anharmonic type, which can be explained as follows: For higher-
order terms of the VPT series the major contribution to the functional integral comes from
the field configurations that are proportional to the positive degree of the large saddle-point
parameter. Therefore, the effective interaction AS,[p] — §[¢] is dominated by the conventional
term AS,[¢] that, as in perturbation theory, leads to an asymptotic series. A different picture
arises when the action is varied with the help of an anharmonic functional. Here the degrees
of fields in AS4[p] and §{p] are the same and the variational addition greatly influences the
asymptotic behavior of higher-order terms of the VPT series. In this paper we have shown
that there exists a finite region of values of the variational parameters where the VPT series
converges for all positive coupling constants. We would like to mention one more interesting
possibility of the VPT method, namely, construction of the Leibniz series as the VPT series.
When a searched quantity is represented by this series, even and odd partial sums of the series
define the estimates of upper and lower bounds. In other words, for a case under consideration
we can obtain nonperturbative estimates of the upper and lower bounds; and which is more,
when we have free parameters defining the VPT series terms, we can govern the accuracy of
estimates.
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Researches (93-02-3754)
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