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Abstract

The motion of a quantum particle is investigated in the ring-shaped model when the
"bare” potential is equal to zero. Factorized in the spherical and cylindrical coordinates
bases of this model are derived. The generalization of the Rayleigh expression for the
plane wave expansion in the spherical waves is derived.

Formulation of the Problem.

Models with ring-sheped potentials are based on the Schrodinger operator with the potential
part supplemented with the term A/r?sin? §, where A is a nonnegative model parameter and 8
is the angle between the axiz z and radius-vector of a particle. Thus, the ring-sheped models are
models with a special axial symmetric addition to the "bare” potential. The most interesting
are cases when "bare” potential is taken to be either a hydrogen atom (the Hartmann model
[1-3]) or an isotropic oscillator {the Quesne model [4]). Recent intensive studies of these models
have mainly dealt with bases and interbasis expansions in separable variables [5,6] and search
for dynamic symmetries in the framework of ring-sheped potentials [7,8]. Note also that the
Hartmann model has its origin in spectroscopic problems of the benzene molecule [3].

The aim of our paper is to investigate the free motion in the framework of ring-sheped
potentials. We will derive wave functions of this model in terms of spherical and cylindrical
coordinates and then will connect these bases by mens of an expansion that can be considering
as a generalization of the Rayleigh expansion of the plane wave in spherical waves to the models
with ring-sheped potentials.

General Information.
An arbitrary model with the ring-shaped potential is described by the equation (k = m = 1):
AU + =2 o) = Ew 1
2 r T2 Sinz '] (;) - (7-") ( )

where U(r) is the central-symmetric "bare” potential.
It is known [9] that the solution of the equation (1) in spherical coordinates has the form

a ¥(r,0,%;6) = R(r; §)Zim(6,; 6)

where 6 = v/m? + 2A — |m/[, R(r;6) is the solution of the radial equation, Z,(8, p; 8is a
function which is convenient to call the ring-shaped (by analogy with the term "spherica]
function”). It is an eigenfunction of the operators M = ? + 2A/sin? 0 and i,, namely

[.Z1n(8,0;8) = mZin(0,0;6)
MZ1n(0,0;6) = (1+ 81+ 6+ 1)Zim(8,;6)
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The explicit form of the Z;,,(0,; §) function is given by expression
Zin(0,0:6) = Nin(8)(sin 8)/"H? CIT\71*/*(cos 6)e™

where Nj(6) is the normalization constant, and C¥(z) are Gegenbauer polynomials:

vy F(n+2v) 11—z
C"(‘)‘r(w)r(n“)’ﬂ( mnt vt 5y )

Under the normalization condition
[ 25:006.6:8) 210,181 = B

we have

L ymsied 1 (20 + 26+ (= |mi)! | *
Nin(8) = (-1)772 Mr(""”“2){4x2r(1+l'mt+25+1)}

The representation for the Z,,(0,y;6) function through the Rodrig’s formula is valid too:

— 1'1}"—'-[ ixé im %
Zun(8,9:6) = (-1) emteime | (21 + 26 + )I(1 + |m| +26 + 1) .
LI +8+1)214 4r(l — Im})!
x(sin @ """'s—ill(cosza — 1)+ 2
sinf) (dcos §)-Imi ) @

The information about the radial function R(r;§) depends on the concrete form of the "bare”
potential and is define of by the equation

d’R 2dR 2
F-i' ;-d_r+ (k +U(r) -

where k = V2E.

(E2TETE) PP

The Bases.
The free motion in the ring-shaped model is described by the equation

(_ga " ﬁ)w} = BY(7)

Let us consider the solution of this equation in the spherical and cylindrical coordinates.
The radial equation in the spherical coordinates has the following form

- FR 24R [, (+8)(+6+1)
—_ — 41k .____rz—__

dr? " rdr )R(r; 6 =0

The correspondin.g solution can be expressed via the Bessel function

Ru(rif) = 425,y kr)

Under the normalization codition

/ Vb7, 8,0 6) i (r, 8,5 6)dV = 218(k — k') 61y bpmm:
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Cu(8) = 2rk. The asymptotics of the radial function Ry(6) for small and large r is given by
the following relations: !

r—o0 2kI(I4+6+1) 145
Ru(r,8) = m(ﬂcr)

r—o0 2 . n
Ru(r8) % = sin [kr~§(l+6)]

These expressions go to the known results, if the parameter § is equal zero.
So, we see that the spherical basis of the free motion in the ring-shaped model has the form

/27rk
Vitm(r,0,¢; 8) = TJI+6+;—(kT)Zlm(0» ¥; 6) ) (3)

When 6 = 0, this result goes to the spherical wave.
In the cylindrical coordinates the scheme of separation of the variables corresponds to the
factorization :

ime
¥(p,0,2,6) = R(p; 8)e»
(p,0,2:6) = R(p; 6)e Toe

which leads to the radial equation

ER_1dR ([, (ml+6)\, .
F+;$+(w -T2 ) Res) =0 (4)

where w = +/k% — k2. The normalization condition is
/@:,,Hm.(p,cp, 2;8)®uk,m(p, 1, 2; 6)dV = 4726(w —~ W)8(k; — k)b

Then for the regular solution of the equation (4) we have the following representation in terms
of the Bessel function:

me(p; 6) =V 27"WJ|m|+6(‘~'P)
This solution has the asymptotic form
—oo 2,

Bon(5:8) % Zsin [ - % (1l 45~ )

The cylindrical basis is
Puksm(£, 90, 2;8) = Vfw Jymyy5(wp)eitereime
In the following the notation are more convenient:
k, = kcosy, w = ksinv, o<y<n~x

in which

Pirm (P, ¢, 2;8) = /k 8in 1 Jjmp4s(kpsin y)etts o 7eime (5)

Expansion.

Let us consider the expansion of the cylindrical basis over the spherical one. This expansion

must have the form o

Py (P9, 2:6) = Y W6 Wain(r, 6, ¢:6) ©)
{=|m|
Our purpose is to calculate the matrix W,7(§). The following steps must be executed for thig
purpose:



(a) substitute the expressions (3) and (5) into (6);
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(b) multiply both the parts of the expansion (6) by Z,,(0,; é), integrate over the solid

angle and use the orthonormalization property of the ring-shaped function;

(c) use the expansions

[mi+842s

i

2 (—1)* (Lkpsi
Jimi+s(kpsing) Z( ) (3kpsiny)
=0

o0 .
ikzcosy  __ (tkzcos'y)‘
D D

t=0

sIT(fm{+6+s+1)

(d) go to the spherical coordinates from the cylindrical ones in the left part of the

expansion (6).

Instead of (6), doing the mentioned steps we arrive of the expansion

) (%k sin 7)|m|+6+1:

2r Vsiny = (~1
Im(s) r Jl+6+%(kr) - F(lml +5+ 1)

=0
2 (1k €08 Y)Y pmissr2ett im

x 3 Cheos T imiessaniqin )
=0 .

where

Q) = | (cos) Ginayrmireeme 2, 0, )40

st(im| +8+1),

Using the expression (2) and subsequently integrate by parts we can be convinced that the
Q'™ (8) differs from zero only under the condition 2s +¢ + [m} — 1>0. Thus, all members of the

series contain r in nonnegative power of r, so as in the limit, when r — 0, we obtain

vrey _ sdefm], (51D T(t+6+3)

Wal® =" R 78+ 1

x[‘:;:ﬂ} (Gtan*7)’  Quijmi-(8)
2 (mi+ 6+ 1), (I - [m| — 29)!

=0

{~{m
[,_.ml}_{ AR
2 - I=|m]— N
2 Lo l—im|=2n+1.

where

When ¢ = [ — |m| — 25 the expression for the Q'7(8) is eas:i\ly ihtegrated:

i e i b))
Qs,l—|m|—2s(5) - ( 1) F(?I +28+ 2)

1

x{‘/r(2l +26 4+ 1)(! = [m])IT(E + [m| + 28 + 1)}’

If we substitute the last expression into (7) and use the formula

22t 1
I(2z) = 7 F{z)l (z + 5)

) (2 cos 7)™ (sin )™+ x

™
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we obtain

WE(8) = (~1) =7 -l {r(zz +26+ 1)12(Ilji|mm’|);c 26+ 1)sin‘,}a' y

5 (cos y)!~I™i(sin y)Imi+e I-|m| 1—|m|-1
2T (lm| + 6+ 1) > ° 2 2

Jm|+ 6+ 1;-ta.n27)

The matrix VV,’:(&) can also be expressed via the Gegenbauer polynomials. For this aim we
should be use the expression which connects the hypergeometrical function of the argument z
with the hypergeometrical function of the argument 1 — 2:

Ly —a~f)
Iy —a)l(y - 8)

JTONa+B-)
I{a)T(B)
and the representation of the Gegenbauer polynomials over the hypergeometrical function

(2z)"T'(v + n) nl = 9
AT i \"pgploronis

2F1(a1ﬂ17;z)= 2F1(0>ﬂva+ﬂ+l_7;1"z)+

(=28 R(y~ay-B,y+1— a—f;1-2)

Cilz) =
The final result has the form

' . 1
WE(6) = (~1)=it-mip (|m| 164 l) { (20426 + (1~ |m])!siny } )

2 kTl + |m|+ 26 + 1)
x(2sin y)ImHe C}:"Itf+%(cos v) (8)

The expressions (6) and (8) define completely, in the free ring-shaped model the expansion of
the cylindrical basis over spherical one.

It may easily be checked that when m = § = v = 0 the expansion (6) turns into the known
Rayleigh’s expansion for the plane wave over the spherical waves:

e"" = Z %\/1’(21 + l) \I’klo(rv 01 ‘P)

=0

/21rk
lI’klm(rv 91 ‘P) = —T— Jl+%(kr)},lm(0a ‘?)

The expausion (6) can be reduced to the form known in the theory of special functions. To
verify that, we substitute the spherical and cylindrical bases into (6) and expression (8) then,
turn to the spherical coordinates. We obtain the expression:

Here

kr sin Bsin y) ™8 Ji 1, 5(kr sin fsin )t cosBeoer
7 Iml+

1
= V3(kr)-Im-5-4p (|m| +6+ 5) x

o ' IP(2Im| + 26 + NI + & + 3)(I — m])!
T(ml+6+ DI+ |ml + 26+ 1)

I=|m|

|45+ 1 4L
x J,+5+%(kr)C,'_ll‘::+’ (cos 0)C}_,’;f+’ (cos v)
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Let’s introduce new notes

‘

y = kr, /\=|m[+6+§, n=1I1-|m|

So, our result turns into the expression

iy cos dcosy

ysin fsiny %_'\J,\_ y sin fsin v)e =
H

20T (A +3)

from the monograph [10]. Thus, firstly, we have convinced that our result is correct, secondly,
we derived the connection of free the ring-shaped model with the concrete region of the theory
of special functions. Remark additionally that for ¥ = 0 (9) turns into the expression from the
monograph [10] also:

= Vot =2 AA) g (1)C (cos 6)C (cos 1) ©)

o0

¢ =T0) (§) 7 L0 + N (C)

n=0

Conclusion.

We have obtained the generalization of the known Rayleigh’s expansion for the case of
ring-shaped potentials. Since that result can be used for the construction of the corresponding
phase scattering theory with the ring-shaped potentials, this expansion acquires a principal
significance.
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