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1. Introduction

The role of the isotropic harmonic oscillator is rather well known in physics. Many real
physical problems in their "zero” approximation lead to a problem of harmonic oscillator or
a system of interacting oscillators. Moreover, the problem of isotropic oscillator potential is
one of a small number of exactly solvable problems both in classical and quantum mechanics.
Therefore, it is natural that this problem found it own place almost in all text-books of classical
and quantum physics, and nowadays it is one of the best studied problems.

Though the problem of isotropic oscillator is important and characteristic, its solutions
have been studied only in the simplest systems of coordinates (such as spherical, cylindrical
and Cartesian). At the beginning of the eighties, the problem of isotropic oscillator has been
thoroughly considered in ref.{ll] in the prolate and oblate spheroidal and elliptical cylindrical
systems of coordinates. In contrast with the simple coordinate systems, these three systems
have a dimensional parameter R (which is pure kinematical for a potential of a harmonic
oscillator) which turn into simpler ones in the limit R = oo and R = 0.

As is known [2], in the three-dimensional Euclidean space there exist 11 orthogonal coor-
dinate systems admitting a complete separation of variables in the Hamilton-Jacobi equation
or in the Helmholtz equation. It is also known that an isotropic oscillator is the only potential
admitting a complete separation of variables in the Schrodinger equation in eight of eleven
systems of coordinates. These are ellipsoidal, prolate spheroidal, oblate spheroidal, spherical,
cylindrical, Cartesian, elliptic cylindrical and sphero—conical systems of coordinates.

In the present paper, the problem of an isotropic oscillator is solved in the ellipsoidal coor-
dinate system.

It is obvious that the most general and complex of all 11 system of coordinates is the
ellipsoidal coordinate system. It is a less degenerate system as three families of second order
confocal surfaces are the coordinate surfaces. In contrast with all simple systems, the ellipsoidal
coordinates are characterized by two dimensional parameters R? and R2. When the parameters
R? and R3 tend to zero or infinity from the ellipsoidal system, all the remaining 10 coordinate
systems are obtained in the limit [3]. In this respect, the solution of the problem with the
potential of the isotropic oscillator in the ellipsoidal system of coordinates unifies all seven
bases, and therefore, is of special interest.

The paper is organized as follows. The second section contains formulae relevant to the
ellipsoidal system of coordinates and to different degenerate cases that appear as a result of the
limiting transitions of the parameters R? and R3. In sect. 3, the separation of variables in the
Schrédinger equation is given, and it is shown that the problem of determining the ellipsoidal
basis of the isotropic oscillator is reduced to the solution of the generalized Lame’ equation
with four singularities. Sect.4 contains operators corresponding to two ellipsoidal separation
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constants which with the system Hamiltonian form a full set of commuting operators for the
cllipsoidal basis. By the limiting transitions of the parameters R? and R? we have derived all
seven nonequivalent sets of commuting operators corresponding to the remaining types of bases
for the isotropic oscillator. In sections 5 and 6 we have derived the solution of the ellipsoidal
cquation and constructed the ellipsoidal basis of the isotropic oscillator. Sect. 7 contains the
explicit form of the ellipsoidal basis for some small values of quantum numbers.

2. The ellipsoidal coordinates

Let us describe the ellipsoidal coordinate system in which the Schrédinger equation for the
isotropic oscillator potential admits a full separation of variables.

The algebraic form of the cllipsoidal coordinates has the forin

2 (M — a3)(ps — a3)(p3 — 63)
(02 - 03)(01 - 03)
2 _ (o1 — a2)(pz2 — a3)(pa a;)
v= (a3 = az){(a; — a3) ()
2 _ (g — ai){p2 — al)(l’a -a)
(a3 — a1)(a2 — ay)

x

where the parameters ay, az, a3 entering into definition (1) restrict the region of variation of the
ellipsoidal variables py, p,, p3:

0<ai<p<a;<m<aa<p<oo

The inverse dependence of the cllipsoidal variables on the Cartesian ones is determined by
a third degree equation with respect to p; (i = 1,2,3), and can be derived from the following
system of three equations

(prtptm)—(a+ar+a3) = 22+ +2°
(p1p2 + prpa + p2p3) — (@102 + aya3 + aza) = (a2 + a3)2® + (ar + @)y + (a3 + ay).r?
P1p2p3 — 418283 = ayaya” + ayazy® + agay:? (2)

The second order surfaces on which p; = const. represent complete families of confocal
ellipsoids and one - and two-sheeted hyperboloids whose equations are written, respectively. in
the form

2 2 2
x 2
+ -2 .-
p3—az py3—ae; p3—a0
2 22 12
y - = | 3
p2—a; pr—ar @G —p
22 y? 72 -

Pr—6 G—py az3—p

It immediately follows from formulae (3) that the ellipsoidal coordinate system has a distin-
guished axis z. Four focuses of the ellipsoidal system arc on the axis = with the coordinates
z=1R =4va;—a; and z = R = +/ay— a;, and two focuses are on the axis y with
the coordinates y = +R; = +\/a3 — a;. The quantities R, Ry, R arc dimensional parameters
determining the ellipsoidal coordinate system and connceted by a simple relation

R+ R =R
which results in that only two parameters of the ellipsoidal system are independent. for ex-

ample Iy and R;. Clearly, a choice like that is not unique and is connected with conerete
parametrization of ellipsoidal coordinates.
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Relations (1) and (2) connecting the Cartesian and ellipsoidal coordinates are not in the
one-to-one correspondence as p; (i = 1,2,3) depend only on (22,32, 2?) and, consequently,
take the same values at eight points (£z,%y,+2). To obtain a one-to-one correspondence
between the Cartesian and ellipsoidal coordinates, one can introduce uniformized variables
7, #, ¥ determining the position of the point in space by the following relations:

=0+ (a;—a;)cos’y, p=ay+ (a3 — a3)sin*v, py=ay+ (a3 — a;) sinh? . 4)

Using (4) one can write down the ellipsoidal coordinate system in the trigonometric-hyperbolic
form

z = Rsinhyy/1 - k?cos? pcosv
¥y = Ry\/k?+sinh®ysinpusiny ' (5)
z = Rcoshycospuv1— k?cos? v

0<v<2r, 0<pu<r 0<y<o00

where " 2
k2=a_3-_a_l=ﬂ k12=a3_a2=& k2+kl2=l
as — ay R” a;—a RZ’ ’
The trigonometric-hyperbolic form of the ellipsoidal coordinate system is not used in the lit-
erature. Note that alongside with the algebraic form (1), the parametrization through the
elliptical Jacobi and Weierstrass functions is used in the mathematical literature [4].

It is clearly seen from formula (5) than in particular cases k? = 0 and & = | the ellipsoidal
coordinate system turns into the oblate spheroidal coordinates with the symmetry axis along
the axis z and into the prolate spheroidal coordinates with the symmetry axis along the axis
z, respectively. If the parameter R will further be tending to zero or infinity, we can obtain
either a spherical or a cylindrical coordinate systems, respectively. The limiting transition to
the remaining coordinate systenis can easily be traced from the system of equations (2) in terms
of the variables p; = p; — a;. Now if we let R, and R; tend to zero and the ratio R;/R is put
finite equal to k%, then one can easily see that the ellipsoidal coordinates degenerates into the
sphero—conical one and upon substitution k2 = 0 or k% = 1 turns into the spherical coordinates.

Further, as Ry — oo we arrive at the system of an elliptical cylinder, whose particular cases
are the Cartesian and cylindrical coordinate systems. Thus, one can obtain all seven possible
degenerate forms of the ellipsoidal coordinate system (see the table) without shifting the origin
of coordinates. ’

If the center of the Cartesian system of coordinates is placed at the focus of the ellipsoidal
system of coordinates Ry, i.e. one make translation 2/ — z — Ry in (1), then in the limit
Ry, Ry — 0o we obtain the paraboloidal coordinates a particular case of which is the rotational
parabolic and the parabolic cylindrical coordinates.

The volume element and the Laplacian in the ellipsoidal coordinate system have the form

i VP 8 8 VPe) 0 9
A= 4{(#1 = p2)(p — p3) O; P(pl)apl * (o2 = p3)(p2 — p1) Bpa P(p’)apz

VPl o m%}

(P2 — p1)(p3 — p2) Bps



Table: The degenerations of the ellipsoidal coordinate system

where

8 \/—P(PI)P(Pz)P(Ps)

P(p) =

(p — a1)(p — a2)(p — a3)

prolate =871 —n?)cosg | R2 0 Py — %1(r,’ -1)
spheroidal | y = ﬁ\/(fz —1)(1 — n?)sin ¢ = R4 |p,— R;;' sin? ¢
system | 2= By 7 B 1)
oblate z= g—ﬁ R0 — —R?}sin’ ¢
spheroidal | y = B\/( + 1)(1 ~7%)sing | RE=F'/4 |5, - E1 -7
- 2

system = ’—f\/(e +1)(1 = 7)cos ¢ - R+
Spherical | z = rsinfcos ¢ R0 — —Rlsin? 6
system y = rsinfsin ¢ R0 P2 — Risin’g

z=rcosd RR: >0 |fy—1r?
Sphero - | z = rcosypy/(1 — k%cos?¥) | R? -0 — —Risin’y
conical y = rsinysiny R} -0 Pz — Risin’y
system z =rcos /(1 — k2cos? ) | R2/R? — k* | 3, — r?
Circular | z = &sinh psinv R? > o = (22 - R’)
elliptic y = Zcosh pcos v RE=R4 |p, - Bcos?v
system =2 Ps — 54- cosh? u
Circular | z = psin ¢ R} - o0 P — (2~ R}
polar y = pcos ¢ R0 P, — Ricost ¢
system 2=z 73 — pl
Cartesian |z =2’ R} 5 0 — (22 — R})
system |y =y Ri—soo |7 — (2" +R))

=4 R/R{ =0 |5y —y”?

dv = 1(pa = p1)(ps — p2)(ps — )dpx dpa dps
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To separate variables in the Schrédinger equation in the ellipsoidal coordinate system, a
potential is to be of the following form:

Vo1, p2.03) =

Vi(p)

Va(p2)

Va(pa)

(1~ Pz)(ﬂl - Pa)

(P2 = pa)(p2 — ;1)

(ps — p1)(p3 — p2)

In particular, for the isotropic oscillator potential in the ellipsoidal variables we get the following

expression:

it

V(z,y,2)

il

mw

Tz{(m

mZ(IZ +y2 +22)

2
Pi(p1)

Pa(p3)

R P

Pa(ps)

—p)pr—p3)  (p2-

p3)(p2 — ;1)

{ps—,1)(p3 —

Pz)}
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It is to be emphasized that if the Schrédinger equation with the potential V(z,y,z) admits
separation of variables in the ellipsoidal coordinates, it is also separated in all seven limiting
coordinate systems (this fact does not concern boundary conditions imposed on the wave func-
tion).

3. Separation of variables

Having written down the Schrédinger equation for the isotropic oscillator potential

K? mwr?
Hyp = {—mA+—2—}¢=E¢

in the ellipsoidal coordinate system (1) and using the identity

3

2mE _ 2mE Z o}

BT OR i=1 ni=1(/’i — Pn)
we arrive at the following equation

2 1 [ ] 9  2mE, ml?
; m{“\/}mamg’; L TP(P.')}tb = 07
which after the substitution
¥(p1, P2, p3; 01,02, 03) = Y(p1; a1, az,a3)(pa; a1, a2,a3)¥(p3; a1, a3, as)

and introduction of the ellipsoidal separation constants A; and Az is divided into three identical
differential equations

4 P(p;)%;\/l?(p—g)j—f: + {2a§ep,? —pi— A — d,‘,P(p,-)}n/:.» =0, i=1,23 (6)
or in a more standard form (p = p;)

&y l{ 1 + 1 1 }él_b. l{2a",ep’—A1p—z\2—a3P(p)
)

4 "2\ p—a p—as p—asfdp " 4\ (p—ar)(p—a2)(p - a3)

}¢=o )

where the notation ¢ = E/hw and a2 = mw/k has been introduced.

Equation (7), derived by separating variables in the ellipsoidal coordinate system, falls into a
class of the generalized Lame’ equations [5] and has four singularities {a;, a3, a3, 00}; moreover,
the points (ay,a,,a3) are elementary singularities with indices (0,1/2) and a singularity at
infinity is irregular. Apart from the algebraic form of €q.(6), like in the theory of Lame’
equations, there may exist either the Jacobian form or the Weierstrass form.

Asw — 0 (ao — 0, a0¢ # 0) eq.(7) turns into the differential equation for the ellipsoidal wave
functions [4], known in the mathematical physics, (this equation is derived after the separation
of variables in the Helmholtz equation in the ellipsoidal coordinate system).

Equation (7) can be considered as a degenerate form of the Fuchs equation with seven
singularities (5]. It is a general enough equation that can lead, after different limiting transitions
of the parameters a,,az, a3 (or confluence of singularities), to many second-order differential
equations known in the mathematical physics.

Each of the separated equations (7) contains apart from the energy ¢ also two constants
A1 and A, depending in the general case on three dimensional parameters a;, a;, a3 (or Ry, R;)
determining singularities of the given equation. Therefore, unlike the standard one-dimensional
spectral problem, the main problem consists in calculating stmultaneously (or quantizing) the
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energy spectrum of the isotropic oscillator and ellipsoidal separation constants.

4. Integrals of motion

Let us explicitly write down the operators (ellipsoidal integrals of motion) A; and A; whose
cigenvalues are the ellipsoidal separation constants A, and A, . Eliminating the energy from
the system of equations (6), we derive for A; and A, as functions of the parameters (a;.az. as)
the following expressions in the cllipsoidal variables p;:

Wea + )V Pe) D s 8 Apa+ p)V/Plpa) 3 a

Moo o) = - (ps — 2)(p2 — ;1) Opy dp, (p3 — p2)(p1 — p2) dp, P(m)a_ﬂ;
{2 — ps)(p — ps) Dps 9
+ ot = P)P(p) + (Pl - A)YP(p2) + (03 = p}) P(ps) -
(1]

(ps — p1)(p2 — m)p2 - p3)

4papa/ Plp) imi 4pspV/Plps) D F J

Azlar.az,00) = (3 = p1)(p2 — ;) op * (02)5;;

B~ (ps = p2)(pr — p2) Opa
4p2p\/Plps) 9 V) 2
(11— pa)pr - p3) Opa ¥ P g
o P3pa(p3 — p3) Pp1) + pspi(p3 — 1) P(pa) + papr(pr — p2) P(ps)
(p3 = p1)(p2 — P ) (P2 — p3)
Passing in (8) and (9) from the variables p; to the Cartesian ones. after long and tedious
calculations we arrive at the following expression for the ellipsoidal integrals of motion:
Ai(ar,az,a3) = (L} + L]+ L3) + (@2 + a3)Sa3 + (a1 + 3)Sp + (a1 + 2) Sy,
Azay,a3,a5) = —01” - ang - GaLg — 4323533 — 1835y, ~— 0148y, {10)

&)

where L; are the components of the orbital moment opcrator. and Sit ik = 2oy 2) is the
symmetric tensor (Yu.N.Demkov [6]) that is an additional integral of motion for the isotropic
oscillator:

1 0 ad 9?
=L = —i(Tpm— — Tyee), Sk = — 4 atyore
L; Qkalel: My 1(71:6:” g ) Sa e + agr;r;

[Li,H] = [Su.H] =0
(M, M) = iMyéi + iMLS, — iMkjfu — 1Myby;
[Sie, Sit] = iagiMijéu + Mk + Mi;6 + Miéy)
[Sikes My} = 1Si;60 + iSi;bu + i Subs; + 18,6,
Instead of the system of operators (10) it is more convenient Lo use new operators A and
it that depend only on two parameters R? and 1} and arc counccted with the old \, and A\,
according to

N . 4 . 42
A = Ay(ay,az,a3) ~ Gz%ﬂy jt=a:Mi(ar,az,a3) + Ay(ar.az,as) - "-f‘,'—;l"f
1]

Thus, a completc set of commuting operators corresponding to the ellipsoidal basis of the
isotropic oscillator is the system of the following three operators:

h?
H = 2—m[S|| + S2‘l + S_‘-’“‘]

A3, R3)
(R, R

, , 2 ’ ,
I+ H2Sy, - R2S,, + ﬁ(n; oy (n
B2 - R 4 RS,



212

From the system of operators (11) one can easily derive for particular values of the pa-
rameters R} and R} all the rest of possible (or equivalent to them) sets of diagonal operators
{M,£:,L,} corresponding to different bases of the isotropic oscillator.

L. The case R} — 0, R? = R?/4. Prolate spheroidal basis.

N R? mR? MR2,0)
Li=MR},0)= L7+ — S — = H, (,=2"00_ s
1= AR 4 "B g2 2 R? 3

I1. The case R — 0, R} = R?/4. Oblate spheroidal basis

. R R 3(0, R2
Li=30,R) = 1"~ 5+ ';‘?H, Ly = —“—(EL) =12

II. The case R} — 0, R} — 0 and R?/(R? + R2) = k. Sphero—conical basis

=i =72 T ﬂ(R?,R;)_ 272 2
Li=3(0,0)= L% £;= lim Gy = L3 - 7L
n.3~a
IV. The case R} — 0, R — 0 and R3/R? = 0. Spherical basis
. A(R?. R?
L=30,0=1% £ = lim E(R;i'TR’) y

Rl —0 1

R2—0

V. The case R} — oo, R} = R?/4. Circular elliptic basis

. MR}, R m . (R}, R3) R
b gm TR T Seogptt L= gim Bopioni s,

VI. The case R} — 0o, R2 — 0. Circular polar basis

_ o MR m . p(RL0)
b TR T Sem gt L= lim S

VIL. The case R} — oo, R} ~ oo and R?/R? = (. Cartesian basis

L MRLRY) m - e g AR RD)
Ot T R TSt L= Jm lim St - s,

Note that other particular cases, for instance R} - 0and RZ — 0 , do not lead to new sets
of diagonal operators as these cases either directly or by renaming the axes reduce to the cases
mentioned above.

Thus, by means of different limiting transitions of the parameters R} and R? we have
obtained all seven nonequivalent sets of operators corresponding to separation of the variables
in the Schrédinger equation for the isotropic oscillator in simpler coordinate systems.

5. The solution of the ellipsoidal equation

Choosing a wave function ¥(p; a1, a3, a3) in the form

2
a
¢(p) ay, 03, a3) = eXp{—%P}Z(p, ay, az, 63)
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after substition into (7) we arrive at the equation for the function Z(p; a;,az, a3):

2z 1 1 dZ 1| 2a%p~\p— A 3 a
el L O D e — p% § S 0 i) Q.. Ny O/ YD)
&7 2{§<p—a.-) °}dp 4{(p—al)(p—az)(p—aa) Lm0

The solution of equation (12) is sought for as a power series around one of the singularities

262N (p;a1,02,03) = (p = @1)™X(p — a3)"*(p — a) 1 Y By _ gy (13
t=0

where a; (i = 1,2,3) may take one of the values (0.1). Substituting series (13) into equation
(12) we derive the four-term recurrence relations that are to be satisfied by the coefficients b,

RIR3(2t + 2)(2t + 20, + Dbeyr + (e + 2a2ea? — ay) - A2)b; + (8, + 4aleas — Xy )by,

3
+ 203{e~2(t-2)- Y 0, ~3/2}b, =0 (14)
i=1
where
Y = R2+a;+as)’ - Rt +a + ap)? + oo RIRI(4t + 20, + 1)
3 3
& = (2: + Za,-) (2: -3+ Za,—) +2-2a3{R}(2 + oz + a3 - 1)
i=1 =1

—2a5{Ri(2t + a2 + @ ~ 1) ~ R3(2t + o + ag — 1)}

Using the procedure of studying series cvonvergence, suggested in ref. [8], one can show that
series (13) will be finite in the whole region of the variable p only if they are truncated.

Let all the coefficients of the four-term recurrence relation (14) starting from by, be zero
at any integer N, i.e., the following condition is fulfilled:

bN+l = bN+2 = bN+3 Rl TTTOI =0

Substituting t = N + 2 into the recurrence relation (14) and taking into account that by # 0 ,
we have .

, .
€e=2N+) a;+3/2, N=0,1,2, -
=1

and, consequently, arrive at the formula for the energy spectrum of the isotropic oscillator
which is well known in the literature [7]

E = hw (2N +) o +3/2) = hw(n + 3/2),

where n = 2N + Zi;l @; is the principal quantum number.
Thus, we finally get that the expansion coefficients b, satisfy the four-term recurrence rela-
tions

RIR3(2t + 2)(2t + 202 + 1)bees + (% — p)by + (8 — A)byey + 4a2(N — t + b2 =0 (15)

which are to be added by the conditions _; = b_; = 0 and by = 1 . The constants p# and A are
determined by the relations

A= /\] bl 483602, p= az/\l + Ag - 2(136(1;
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and are eigenvalues of the operators in formula (11).
If series (13) are truncated, the four-term recurrence relation (15) turns into the system of
(N + 2) homogeneous equations with respect to (N + 1) coefficients (bo, by, . .. , 0N ):

(o —ph + Boby =0
(61=- V)b + (n~-u)b + Bib, . =0
4a2Nb, + (62— X8, + (2 —w)b, + B2bs =0
43-3bvs + (Bwei—Nbvos + (v pas 4 Brsby <0

4a-2bny-2 +  (8n—A)byo, + (w—pby =0
4ang_1 + (6[\”.1 - Aby =0

Consequently, the latter is overdetermined, and the corresponding matrix is rectangular:

Yo —p Bo 0 0 ... 0 0 0 0
=X m—u B 0 ... 0 0 0 0
462N & -2 Yo—p By ... 0 0 0 0
A= : : : : : : : :
0 0 0 0 ... 4a2-3 éy_;— 2 IN~1 =4 BNy
0 0 0 0 ... 0 4a? -2 =X gy—p
0 0 0 o ... 0 0 4a? Sngr — A

As concerns a homogeneous system of equations of that type, it is known that a necessary
and sufficient condition for the existence of a nontrivial solution [9] is equality to zero of all
determinants of order (N +1). As aresult of this procedure, we arrive at the system of (N +2)
algebraic equations of the (N +1)th degree from which eigenvalues of two separation constants
A and g are determined. Using the exclusion theory [10] for the system of algebraic equations
with many unknowns, the solution of this system of algebraic equations with two unknowns A
and u can be reduced to the solution of an algebraic equation of degree (N +1)(N +2)/2 for one
of the variables and one coupling equation for A and 4. As a result we obtain (N+1)(N + 2)/2
pairs of different solutions {\, 1}. Now let 91,92, 93 be integers equal to the number of zeroes of
the ellipsoidal wave function (13) in the intervals (a1,a3), (a3,@3) and (a3,00). As the general
number of zeroes of the polynomial (13) in these intervals equals N, the ellipsoidal quantum
numbers ¢;, g;, g3 are connected with each other by a simple relation

nt@tea=N, ¢=01.N, (t=1,2,3)

and can be chosen to enumerate the ellipsoidal separation constants {’\zm.q:’ ,u:l’)qms}.

Thus, we have obtained eight types of polynomial solutions of the ellipsoidal equation of
the isotropic oscillator: ’

1

N
uEyly (061, 02,a5) D6 p — gy, n=2N

919293
~
cE:;}::;: (pia1,a3,03) = Z bso'l'o)(P —a)* nooN +1
t=0N
SESNY (pa1,a0,05) = VP=a ) 8% ~a), n=2n4i
=0

f

N
VP=a3 3 8"p—ay)t, n=2N41

=0 "

2N+1¢
qu,q,q; (py a,,4as, 03)




(]
b
wr

INE2
esky M2 (pray, ag, a3)

N :
Ve —a be”‘o)(i’—az)“"’, n=2N+2
=0

[

P2N+2 |
cdE (0 ey, ay,a3)

N
Vr=a3 ) " p~a)*?  n=2N 42
t=0
N
Vie-a)lp—a3) 3 6'""Np—a). n=2x42
t=0 .
N
Vie—a)lp—as) 3 6" (p—ag)*13 w=2v 43
=0

A pINE2Z
sd I F2 (piay. ag, a3)

NS
csdELTE (s . ay.ay)

6. The ellipsoidal basis

According to the afore-said in sect.. the ellipsoidal basis of the isot ropic oseillator is divided
into eight classes:

Ws:,’::ﬂ;w = C(O'O'O)uﬂegﬁ”s(p,;a,,a,,a;;)uHe:zm(pg;al,a,,a;,)ulI(:l"\;m(p;;:a,;n,.a;,).
n=2N, D=(N+IL(N+2):(12+2)8(71+4)

“’%.‘3,'21,,1, = C“'O'O)C”C:x;,l_,(m;ah“z-a:i)"”‘"‘:xg(ﬂzl01v02-“:;)“’11‘::\,;;,1(/13:a..ag.a;;).
n=2N+1, D=(N+I§N+2)=(n+l)8(n+3)

5\‘,’;;;‘2”3 = C(o'"o)sHe:qu;,;(p,;a.,az,a;,)sl'lc:ﬁ:’i(p-z;a.,ag,a;,).gllm*:;x,;m(m:a..ag.u;,).

n=2N+1, D=(N+I?2(N+2)=(n+l)8(n+3.)

Ui = COOVAHEEN (51101 az,a3)dHeNH (pyia,. ay. a;;)du(-;j;‘,;;q; (psi . az.ay).
n=2N 41, D=(N+l?2(N+‘2)=(n+ll‘(n+3)

‘I’%,‘.:,".Z% = C(I'l'())"sll"’:mv‘i(l’l;“Iv“'lv“-’l)"‘”":zm(ﬂ'ziﬂl‘02~ﬂn)"-“llffg;'\;:',,?,(ﬁ;;:a..uz.u;;).
n=2N+2 I)=(N+IL(N+2)=11(118+‘2)

W%_‘;’;an = cton (-dllezz:; (p1; €100, ay) cdlla':l’z:;i(p-,; ay., ay, ay) ('dllr:ﬁ;;f‘ (ps: ey ayp. ay).
n=2N 42 l)=(N+l?2(N+2)=n(n’:-2) -

wﬁf,’;;;;i% = C(o'l'l)“'d”“:,’:;,:(l’ﬁah“%“a) -“d”f‘:x::‘(m;ﬂhaza ay) -*'d"(‘::;;i(m:u..nz.u;,).
n=aN+2, p=WN* '?Z(N +2) _ H(": 2)

W%_’;;:l% = ¢ Csdlltz:x:';:(m; a1, ay,ay) ('.s(illc':x:;:(pz; ay,a,a;) ('.&rllll':;\';:;:(,:;,: 4.y ay)
n=.2Nk+3, l)z(N+l?z(N+2)=(u—IL(n+l)

lere by fe we denote polynomials £ multiplied by a factor vxp{wﬂgi/»}. and 1715 the number
of states of a given principal quantum number n. The multiplicity of degeneracy of energy
levels of the isotropic oscillator is determined by a sum of all states of even or odd fixed n and -
is correspondingly equal to (n + (n + 2)/2.

Fhe coellicients ) where i, 3,k = 0,1, are determined from the normalisation condition
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of the ellipsoidal basis of the isotropic oscillator

Lo r ik g2 g1 (P2= p1)(ps — p2)(ps ~ p1) _
3 /; /'n /m [‘I’Nq,.,,.,,(m,pz,pa,Ru&)] Wtﬁh dpdpy = 1
The complex form of the ellipsoidal basis of the isotropic oscillator finally depends on the

degree of algebraic equations from which eigenvalues for two separation constants /\:f a20s (B3, R2)
and u",\]'qm(Rf, R2) are determined.

7. Particular cases

Let us write down eigenvalues of the ellipsoidal separation constants and the ellipsoidal
basis of the isotropic oscillator for the lowest quantum numbers n = 0,1, 2.
Ln=o, N=0; as=a;=a3=0

220\ ¥/? a2 .
‘1’4(3?6%)) = (—\/;2) ezp{—-2—°[(p1 +p2+ p3) ~ (a1 + a2 + a3)]}

MR} ) = 203(R} - RY), w(R:,R?) = alRIRZ
.a=1, N=0;, ey+mp+a3=1

ag /(a3 — py = ~a ag
\/j;o V( (azp_)i‘j;(aapffz’::‘) )ezp{—E[(m + P2t p3) = (a1 + a3 + a3))]}

0,0,1)
‘I’c(J.ooo =

MR, RY) =2+ 26(R; - 2RY), w(RE,R3) = R? + G3R2R2

W'g‘.)l":)g) = {/8_;3 \/(az(::l_)i/’:)(;:'l_)(:‘s) — az)ezp{_%a[(l’l tP2+p3)—(a1+ay+ a3)j}

’\(Rlz’ R;) =2+ 4“?)(11; = R?)’ “(Rlzr R;) = R? - Rg + 3a(2)RfR§

Ullos) = \/\/5;?, Vi (::_I.)E,plz)(::i)?:) — al)ﬂ:p{“%g[(m + 024 p3) — (a1 + a2 + a3))}

AR, R) = 2+ 20(2R] - RY), p(R:,R3) = —R! + G2R2RD
IIl.n=2, N=0; atoayt+a3=2

110 _ (83 V(e = a1)(p2 — a1)(ps — a1)(8z — 1)z — a3)(ps — a)
Yoo = (\/77) (a3 ~ a1)(az — a1)*(a3 — az)

a?
55‘1’{—59[(01 + p2 + pa) — (a1 + a3 + a3)]}

- MR}, R3) = 6+2a5(3R; — 2R]),  w(R3, R}) = R} — 4R2 + 3a2R2R}

goon ('8-‘5) V(er — a1){p2 — a1)(ps — a1)(as — £1)(33 = pa)(ps = a3)
0000 = Jr (a3 — a1)*(az — a)){a3 — a2)

el‘P{—%a[(Pl +p2+ p3) ~ (a1 + a2 + a3)]}

MR R3) = 6+ 4a3(R; — R), u(R},R3)= R} - R? + a2RER2

(0.1,1) _ 8_“3 \/(“2 = p1)(p2 — az)(ps - az)(as - m)(as — £2)(ps — a3)
Yooio' = (\/’7) (a2 = a,)*(az2 — a; )(a3 — a3)?

ezp{—%él(m + p2 + p3) — (@) + 6z + a3)]}
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AR}, R}) = 6 +2a3(2R2 — 3R?), u(R:,R2) =4AR? - R} +342R’R}

In conclusion, we wish to express our sincere gratitude to R.Airapetyan, L.S. Davtyan, V.M.
Ter-Antonyan and D.I.Zaslavsky for numerous discussions and useful remarks.
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