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We propose a method by which it is possible to go beyond the scope of quantum
chromodynamics perturbation theory. By using a new small parameter we formulate a
systematic nonperturbative expansion and derive a renormalization §-function in quan-
tum chromodynamics.

Quantum chromodynamics (QCD) is defined by the following basic gauge-invariant
Lagrangian density

1, TP
L= —ZGI‘,,GZ,, + q;‘(zD - M)c,,pqét , 1)
where
Ghy = 0uAy — 8, A5 + gf** AL AL, (2)
Dap = 8450, — igtds A% . (3)

For the quantum theory of QCD the Lagrangian (1) is to be added with a gauge
fixing term Lg¢ (A) which is required to insure a proper quantization procedure.
Besides, one must add a Faddeev—Popov ghost term Lrp = Lo(p) + gL1(A, ) that
preserves unitarity and depends on gluon A% and ghost o° fields.

We rewrite the Lagrangian density in the form

- L =Ly(Aq,0)+9La(A,q,9) + g’ La(A), 4

where
Ly(A,q,¢) = Lo(A) + Lg1.(A) + Lo(g) + Lo(p),

Ls(A,q,¢) = L3(A) + L1(4,9) + Li(4, ), (5)
1 abe pade e
Ly(A) = -3 f [ LA ALAS .
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The Lagrangian Ls(A, g, ) is a sum of free Lagrangians of the Yang-Mills fields
defined in the covariant ag-gauge by using the gauge fixing term of the form
Lgs = —%1—5(8,,14:)2 and free Lagrangians of the quark and ghost fields. The

term L3(A,q, ) generates the three-line vertices:
1
Ly(A) = —5(0u 43 — 8, AL) f AL A,

Ly(A,q) and Lf(A, ¢) generate the three-gluon, quark-gluon-quark and ghost-gluon-
ghost vertices, respectively. These interactions are the Yukawa type interactions.
The term L4(A) gives the four-gluon vertices. This term requires some transforma-
tion in our approach we shall consider below. Now we give a brief description of
some phenomenological results related to QCD at large distances.

Hadronic spectroscoby has been described phenomenologically by thé static
quark-antiquark confining potential (see, for example, Ref. 1)

V(ir)= —g&}j(r—) +d?r. (6)

The function o5T in Eq. (6) is the Fourier transform of the perturbative running
coupling constant. The potential (6) is Coulomb-like at short distances in accord-
ance with the asymptotic freedom. At large distances, the nonperturbative effects
are dominant and responsible for confinement of colored states and the forma-
tion of hadrons. The second term in (6) describes the quark interaction at large
distances and cannot be calculated in the framework of the standard QCD pertur-
bation theory. The static quark-antiquark potential is linear in r for large distances
as expected from the Wilson area law or the string picture of hadrons.
The quark potential in momentum space can be written as

16x as(qzi
B S e (7)

V(e®) =
where ag(q?) is the invariant charge that describes the regions for large and
small ¢2.

If we assume that the invariant charge has the singular ir asymptotics as(q?) ~
¢~ %, we obtain V(r) ~ r at large distances. This asymptotic behavior corre-
sponds to the increase of A = ag/(4n) and for the Gell-Mann-Low function we
have #(A) — —)\ for a large coupling constant. This ir picture of the QCD arises
in many different approaches. In particular, in Refs. 2—4 the ir properties of gauge
theory have been derived from the Schwinger-Dyson equations and Ward identities.
The renormalization -function in the strong coupling regime has been obtained in
the lattice formulation of the QCD (see Ref. 5 for a review).

In this letter, by using the method proposed in Ref. 6, we calculate the nonper-
turbative #-function in QCD. This method allows one to systematically determine
the low energy structure in QCD using the expansion in a new small parameter.
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This expansion arises in the framework of variational perturbation theory (VPT)
considered in Refs. 7-11 for special choice of the VPT functional. .

First of all we introduce the fields x,, and transform the term g2L4(A) in the
Lagrangian (4) to the Yukawa type diagrams

exp [ig” [ asLa(a)] = [ Dxexo {5 [ detyxiula T b
+ i-f’ﬁ / dz x5, f“'wAf,Aﬁ} . ®)
where A(z,y) is the propagator of the x-field

[A(z,y) Z?I;;uvl =6(z - y)‘sab‘sw; buvy - 9)

After the y-transformation the diagram technique contains only Yukawa type graphs
corresponding to the standard Yukawa vertices of QCD (AAA, §Aq, pAp) and a
new AxA vertex. The four-gluon graph appears after the expansion of the gluon
propagator in the x-field in a perturbation series and x-integration, which result in
a set of standard diagrams of the perturbation theory.

The Green functions can be written as

G(---) = (Gyux.(- -~ X)), (10)

where
Gyuk.(-+Ix) = / Dqcpl- - -Jexp {i[S(A, x)+So(g)+So(p)+Svuk.(4, ¢, ¥)]}, (11)

and

()= / Dx[---JexpliSo(x)] (12)

The integration measure Dqcp in (11) defines the standard integrations over gluon,
quark and ghost fields. The functional Syuk.(4, ¢, ¢) contains only the Yukawa type
interactions in QCD. The action S(A4, x) can be written in the form

1 a - a
S0 = 5 [ dedyAs @D @ DL AL), (13)
where the gluon propagator D(z, y|x) in the x-field is defined as
[D~(z, yI)]8) = [(— 9 0*+840,)6% +9V2 F*¥°x;, + gauge terms]é(z—y). (14)
Using the x-transformation we rewrite the Lagrangian (4) in the form

L=Ly(Aq,0,x)+nL1(A q,¢), (15)
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where
Lo(A,4,,x) = CT1L(A, x) + ¢ Lo(g) + ¢ Lo(p) + € Lo(x), (16)
L1(A, ¢,9) = 9Lvuk.(4,4,9) — (™' = 1)[L(A, x) + Lo(g) + Lo(p)]
— (€ = DLo(x). o an

Parameters ( and ¢ are the parameters of variational type. The original Lagrangian
does not depend on them. Therefore, the freedom in choosing ¢ and ¢ can be used
to improve properties of the series. It is clear that if 0 < ¢ < 1 and 0 < £E<1, we
strengthen the new free Lagrangian and at the same time weaken the interaction
Lagrangian. After all calculations we put = 1. This parameter will also be written
in the propagator D(z, y|x) in a combination with the coupling constant. The VPT
series for the Green function is given by

G("~)=EGn(~-),

Guleer) = 21 / DxDacol- - liSs]" expliSy)
i (18)
= (in)n g ﬁ'k—' /DXDQCD[' ‘ '][gSYuk.(Ar q, <P)]k
x {(¢71 = DIS(4,x) + So(g) + So(#)] + (671 = 1)S(x)}"* exp[iSy)].

We redefine Lg(A, ¢, ¢, x) for the convenience of calculations as follows:

Lo(A,q,9,x) = [+ &(C™* ~ DIL(4,X) + Lo(g) + Lo(p)]
+[1+x(E™ - DIL(x). (19)
In this case, any power of [((~! - 1)[S(4, x) + So(g) + So(¥)] + (£~ — 1)S(x)] in
(18) can be obtained by the corresponding number of differentiations of the expres-

sion exp[iSy(A, ¢, ¢, X, k)] with respect to k. After all calculations we put k = 1.
From (18) and (19) we have

n n-k
6=y (- ae) o). (20)

where the functions

ik
0:(0) = 57 [ Dacol- lisSvur (4,0, )*

% exp {i[l +x(¢ = 1) [ dalLA, ) + Lofo) + Lo(w)]} (21)
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correspond to the Yukawa diagrams of QCD with the gluon propagator in the x-field

[1+x(¢"* = 1)]"'D(=,ylx) = ¢D(z,ylx)

for k = 1. Similar factors appear in the quark and ghost propagators. The propa-
gator of x-field includes the factor [1 + x(§~! — 1)]~! transformed into £ for x = 1.
The operator of differentiation ;(—)' gives the factor (1—()' for the gluon, quark
and ghost propagator and (1 — €)' for the propagator of the x-field.

It is easy to verify that the Nth order of the VPT series contains the Nth order
of a perturbation series with the correction O(gV+!). Therefore, the VPT expansion
does not contradict the perturbative results obtained for a small coupling constant.

Schematically, the structure of the VPT expansion for the Green functions can
be written as

1+ 91 =) +n°[(1 - ¢)* + ¢’ + €]
+ 21 -0+ 21— ) + %1 - )+ 26 -]+ - . (22)

If we choose £ = (2 and (1 — ¢)? ~ g%¢3, we obtain the nth order term of the VPT
series which contains the factor (1 — {)".

Using the dimensional regularization with d = 4 — 2¢ and one-loop diagrams
in our approach for the renormalization constant associated with the renormaliza-
tion coupling constant ag in the first order of the VPT we get (the corresponding
definitions can be found in Ref. 12)

2
=14 E [0 (- o) - 2] &

o 6 2 3 2’
i (23)
a 13 4 1
Zsvm —”‘5["’(?‘“0) ‘ENf]E’

where A = ag/(47), N; is the number of flavors and the parameter a = 1—( obeys
the equation

a’=CM1-a)? (24)

with a positive constant C. This constant is a variational parameter. Equation (24)
gives (1 — () < 1 for all values of the coupling constant.

From (23) we obtain the connection between the bare Ay and renormalized cou-
pling constant A

Zh
Ao = #zeszMZ:;\:(iMA = Apu® [1 - %?0 ) (25)

where by = 11 — 2/3N;.
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By using Egs. (23)—(25) and the fact that Ao is independent of u for the 8-
function we get

. 1)) 0
B(A) = 31_13(1) pz—a-;? = —bg (/\3_1\ - 1) (/\2(3)
a4
~boa it . (26)

The result of calculation for —B(A)/) as a function of A for Ny = 3 and C = 0.977
is shown in Fig. 1.

1.5

- —B() /A

10

Fig. 1. The function — B(A)/X vs A.

Here we have used the VPT-functional of the harmonic type which contains the
terms quadratic in the fields. The main contribution to higher orders of our ex-
pansion is defined by the large configurations of fields (like in perturbation theory).
Therefore, if the variational parameter is fixed and independent of the expansion
order, we obtain an asymptotic series. The Nth order of our series coincides with
the N'th order of perturbative series with the accuracy O(¢g"V+!). As compared with
the standard perturbation theory, the VPT series gives a better approximation for
a quantity under consideration when the coupling constant increases. However, a
different situation arises if the auxiliary parameter is chosen in each order of the
expansion according to some variational principle, for example, the phenomenon of
“induced convergence.” The mechanism of induced convergence has been discussed
in detail in Ref. 13. In Ref. 14 the convergence of an optimized §-expansion has been
proved in the cases of zero and one dimensions. Therefore, in our case the VPT



Nonperturbative B-Function in Quantum Chromodynamics 2443

series can converge if we understand its convergence as “induced convergence” and

ch

ange the variational parameter in each order. We plan to discuss the convergence

properties in future.
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