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The properties of convergence are studied for the series in the variational perturbation
theory for the ¢*(d) model. The nonperturbative Gaussian effective potential is derived
from a more general approach, the variational perturbation theory. Various versions of
the variational procedure are explored and the preference of the anharmonic variational
procedure in view of convergence of the obtained series is argued.

1. Introduction

The approximation of a quantity under consideration by a finite number of terms
of a certain series is a standard computational procedure in dealing with the many
problems of physics. In quantum field theory this is conventionally an expansion into
a perturbative series. This approach combined with the renormalization procedure
is now a basic method for computations. As is well known, perturbative series
for many interesting models including realistic models are not convergent. Never-
theless, at small values of the coupling constant, these series may be considered
as asymptotic series and could provide useful information. However, even in theories
with a small coupling constant, for instance in quantum electrodynamics, there
exist problems which cannot be solved by perturbative methods. Also, a lot of
problems of quantum chromodynamics require nonperturbative approaches. At
present, a central problem of quantum field theory is to go beyond the scope of
perturbation theory.

The creation of effective methods of nonperturbative calculations is a central task
in quantum field theory. There are a lot of approaches to solve this problem. The
method of the Gaussian effective potential (GEP)!2 belongs to the most powerful
and constructive of them and has often been used in recent years>™ for obtaining
a number of results in the nonperturbative region of quantum field theory.
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A very important problem that disturbs most of the nonperturbative methods is
how to obtain a natural scheme of calculating corrections to the basic contributions,
and thus there arises also the question on stability and reliability of the results
obtained in the framework of these approaches. The GEP method has an advantage
over such approaches in this connection.® It should be noted, however, that there
is no implicit small expansion parameter in nonperturbative tasks. Therefore, it
is important not only to have in principle a possibility of expanding the exploring
quantity in a series, but also to know certain properties of this series. .

In the framework of a nonperturbative scheme called the variational perturbation
theory (VPT) in our previous works,>!! it is possible to represent the searched
quantity in the form of a series from the very beginning, and it is possible to influence
the properties of the convergence of this series through certain parameters of the
variational type. Moreover in a number of interesting cases the VPT series proves
to be an absolutely convergent series. It is important that it is not necessary to
introduce new diagrams whose structure differs from that of ordinary perturbative
diagrams.

The VPT method offers a wide spectrum of possibilities for choices of additional _
“variational terms” in action. We will consider two of them here — the “harmonic”
and “anharmonic” recipes of the variational procedure. The zero-dimensional
analog and one-dimensional case of the anharmonic oscillator will be studied. It
will be shown that the “anharmonic” recipe of an addition of “variational terms”
is preferred compared with the “harmonic” one in view of the convergence of the
VPT series. The Gaussian effective potential arises from VPT as a variational cor-
rection of the one-loop contribution and there are various possibilities of introducing
“variational terms.” The arguments will be that the question of stability of the
results derived from GEP should be investigated on the basis of the “anharmonic
recipe” of the VPT procedure.

2. Zero-Dimensional Analog

Let us consider the integral

Zlg) = /dx exp(-S[z]), (2.1)

where
S[z] = So[z] + gSine[z], Solz] = x% = z? + 23, (22
Sint[z] = 3‘11 + z% , dx = dz; dz, . ’ )

The quantity (2.2) can be considered as a zero-dimensional analog of the corre-
sponding functional integrals in the ¢* quantum field model. In the following we
shall operate only with Gaussian functional quadratures and, therefore, we shall use
here, for calculating (2.2), only Gaussian integrals
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/ dz P(z) exp{—Solz]} (2.3)

where P(z) is a certain polynomial of z; and z3 variables. The first obvious oppor-
tunity is the expansion of the integrand in (2.1) in powers of the coupling constant
g. As a result, we derive the ordinary perturbation theory

Zlg) =Y ¢"Cn, (2.4)
Cn = (—T%}: / dx SP, exp(—So[z]) - (2.5)

It is well known that the series (2.4) is asymptotical and, therefore, does not allow
one to judge the quantity Z[g] in the nonperturbative region without additional
information about its sum. However, the standard perturbative expansion (2.4),
(2.5) is not unique based on the Gaussian quadratures. We shall consider here two
kinds of such expansions differing from series (2.4). They differ from one another in
their manner of introducing variational terms into the action (2.2). Namely, they
utilize the “harmonic” and “anharmonic” recipes of introducing the variational
terms, respectively. In fact, these recipes are not a single possibility of a variational
procedure construction. In particular, a composition of them can be used.

The first method we shall consider is the karmonic variational procedure, where
the free action So[z] will be used as a harmonic variational extra term. The total
action is rewritten in the form

S[z] = SA[z] + Sh.l=], (2.6)

where
Sh(z] = Solz] + xSolz], (2.7)
Shilz) = gSinelz] = xSol2], (2.8)

and the expansion in powers of a new “functional of interaction” Si’:lt [z] is performed.
It is easy to see that the task is formulated only in terms of the Gaussian functional
quadratures. As a result, the VPT series takes the form

Z[g] = 2 Zn[ﬂ:X]) (29)

_ (_g)n n
Znlg, X} = A+ xg) dx[Sint — x(1 + x9)So]" exp{~So[z]} . (2.10)
Actually, the original quantity Z [g] does not depend on the variational parameter
x. Therefore, the freedom in choosing x can be used to improve the properties of
the VPT series. Various ways of optimal choice of variational parameters have been
considered in Refs. 9 and 10.
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In the field theory, we know, as a rule, only a few first terms of the VPT
expansion, and maybe the asymptotic behavior of remote terms too. Just based on
this information the optimal value of variational parameters can be obtained. In
the majority of cases the asymptotic and the first nontrivial order that permit us
to obtain an equation for the variational parameter, are used. Then the stability of
the results will be achieved only when the contribution of subsequent terms of the
series prove to be small in comparison with the basic contribution.

The fact that the exact quantity does not depend on variational parameters
results in the wonderful possibility of choosing their values so that the considered
VPT order would maximally approximate the searched quantity. Indeed, let

Zlg) = 2Mg,x] + AZM[g, %], (2.11)
where
N
Z(N)[g?X] = Z Zﬂ[gyX])
n=0
i oo
AZ(N)[g)X] = Z Zn[ﬂ»X]‘
n=N+1
Then

0ZMig,x] _ _8AZM[g,x]
dx - dx ’

and thus, if xo is a point of maximum for Z(™), then this point is a point of minimum
for the whole reminder AZ(V), simultaneously. Thus we require that

0zMig,x] _ |

3 (2.12)
Making use of Eqgs. (2.8) and (2.9) and setting N = 1 we find from (2.12) that
x=(1/r-1)/q,
(2.13)

r:%[\/1+99—1].

The results of the calculations will be discussed and compared with the ones
obtained in the framework of the anharmonic variational procedure somewhat
later.

The anharmonic method of introducing the variational addition is based on the
representation of the action

Slz] = Sg[=] + S5, [=], (2.14)
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where

S8[z) = So[z] + 6S2[z], (2.15)

S2.[2] = gSint]z] — 0S¢[x] . (2.16)

In this case the expansion of the integrand in (2.1) is carried out in powers of
S3.[z]. The situation here is somewhat more complicated when compared with the
previous case as the addend §S2[z] is present in the exponential, which leads to the
non-Gaussian form of the emerging integral. However, this problem can be easily
solved by using the Fourier transformation

(2]

exp( - 0S%(z)) = /:oo %exp {— 1;—2 + iu\/éSo(:c)} . (2.17)

As a result the VPT series takes the form®

ZLq] - z Zn[gvol ) (218)

=) n ar (— k
Zalg, 0] = /0 da(a?)" exp(~a —a?0) Y o ((ng_/ i))! L (219)
k=0

@i+ 1/2) T2k = 1) +1/2)
=2 k-n

. (2.20)
=0

The optimization of the first nontrivial approximation yields
3
0==g. 2.21
i (2.21)

The behavior of the Nth order partial sum of the series (2.9) and (2.18), normalized
to the exact value Z[g], is represented in Table 1. In Fig. 1 the N dependence of
the quantity Z™)[g = 1] in the case of the anharmonic variational procedure is
plotted. We can see that for ¢ > 1, when the harmonic variational procedure is
performed, even first terms of the VPT series become sensitive to its asymptotic
nature (i.e. the partial sum “beats” emerge). For g larger than that shown in
Table 1 the situation becomes even more complicated. A relatively stable result for
the series (2.9) occurs as g < 1. The comparison of the results given by the ordinary
perturbation theory (2.4) and by the series (2.9) for g = 0.1 is plotted in Fig. 2.
As regards the anharmonic variational procedure [Egs. (2.18)—(2.21)] we derive a
stable result in the whole region of the coupling constant.
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Table 1. The behavior of Nth partial sums for the harmonic and anharmonjc variational procedure.

L. 42

g=1 9=10 g =100

N BDu e 2l 27 2D 7 2 70 2Nz,
0 0.806 0.992 0.701 0.984 0.658 . 0.981
1 0.945 0.992 0.891 0.984 0.864 0.981
2 1.034 1.000 1.078 0.999 1.099 0.999
3 0.905 1.000 0.650 0.999 0.480 0.999
4 1.310 1.000 2.735 1.000 3.960 1.000
5 —0.265 1.000 —9.909 1.000 —20.41 1.000
6 7.253 1.000 84.24 1.000 189.1 1.000
7 —59.68 1.000 —1223. 1.000 ~3170. 1.000
8 —-26.51 1.000 —212.7 1.000 -172.4 1.000
9 —34.12 1.000 —-574.0 1.000 —1410. 1.000

10 —23.80 1.000 190.7 1.000 1614. 1.000

g=1
1 [* 1 | I ! |}
(N)
12 | Z harmonic -l¢ -

- 2 { 1 1 1 1 1

0 1 2 3 4 S 6 N

Fig. 1. N-dependence of the Nth partial sum of the series (2.9) for g = 1.
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Fig. 2. The behavior of Nth partial sum for the cases of perturbation theory (2.4) and the harmonic
variational procedure (2.9).

3. Variational Perturbation Theory for Anharmonic Oscillator

Let us consider a quantum-mechanical anharmonic oscillator (AO) case as an exam-
ple of exploiting the VPT method. The AO, from the point of view of the continual
integral formalism, is a one-dimensional ¢* model. The Euclidean action looks as
follows:

STel = Solgl + 2 Sl + g5l (3.1)
where

Saly] = 3 [ de(@0)?, (3:2)

Silel = [dz o, (3.9)

Sale] = /d:c ot (3.49)
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The Green functions are expressed in terms of the functional integral

Ga = / Dy{¢*} exp(-Sly)), (3.5)

where {¢?} denotes the product of fields ©(21) - p(xn). We pass to dimensionless
variables: ¢ — g=1/6p & — g=1/3; Then the functional of action reads

STel = Solg] + % Salie] + Sale, (35)

where .
e w2 — m2g—2/3‘ (3.7)

The dimensionless Green functions G5, will be represented through (3.5) with the
action (3.6).
Like the ordinary perturbation theory, the VPT method uses only Gaussian

quadratures:
/Dso exp {— [-;— (pKp) + (wJ)} }

K \Y
= (det m) €exp ,:5 (JK_IJ)] . (3.8)

At the same time any possible polynomial in the integrand of (3.8) can be obtained
by the corresponding number of differentiations of the exponential with respect to
the source J(z). The variational addition to the action will be constructed on the
basis of the functional

Alp] = 0Soly) + X 531, (3.9)

where 0 and y are variational type parameters.
We shall first consider the harmonic varialional procedure. In this case the
action functional splits as follows:

Slel = Sglel + Sk, (3.10)
where
S8lel = Sulyl + - Salie] + Al (3.11)
Sincle] = Sineli] - Alg]. (3.12)
The expansion in the VPT series reads
G =) Gun(b,x), (3.13)

Gualt i = S [ Dote™ )bt op(-hle). (a9
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Obviously the functional integral (3.14) is Gaussian. It is convenient to use the
ordinary coefficients of a perturbative series when it is calculated. To do this, let
us rewrite (3.14) as

n 1 a n—k
G2u,n = XYYl (_ '—)
,;) Ki(n—k)!\_ da

X / Dop{p® }(—Sa)* exp [— (so + “’;sz +aA)] : (3.15)

where the parameter « is to be set to 1 after differentiation. Having in mind the
intermediate dimensional regularization and making the change ¢ — e/V1+ ab
we obtain

&1 A\ gux(2?)
G2v,rl - kg% (n _ k)' (_ 'a—a) (1 + aa)‘,_‘_zk ] (316)

are the ordinary perturbative expansion coefficients for the Green functions (3.5).
To calculate them, the standard Feynman diagrams, for example, can be used. The
quantity 22 in (3.17) looks as follows:

,_ witax

The properties of series (3.13) are determined by the asymptotics of the func-
tional integral

L‘;ﬂ’— | Detsita - Aty esp |- (sl + Csld+aie)| 619

at large n.

It is easy to see that the investigation of the asymptotic behavior of expression
(3.19) in the leading order in n is, in fact, equivalent to finding the ordinary per-
turbative series coefficients. The series (3.13) turns out to be asymptotic like the
ordinary one. Actually, its behavior may be influenced by the 8 and x parameters,
to attain the greater stability of results as compared with standard perturbation
theory. However, one is compelled to remain in the region of the weak coupling
constant, mainly, as it turns out to be impossible for arbitrary values of the dimen-
sionless coupling constant g/ m3 to gain, within the harmonic variational procedure,
the stable results with respect to corrections. The latter is explained by the fact
that at large n a sensible contribution to (3.19) comes from such field configurations
at which the quantity |¢(z)| is large. In this case the compensation by the harmonic
addition A[p] of large Sine[¢] containing the fourth power of the field proves to be
insufficient.

R ies 2 i
St
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Under the ankarmonic variational procedure the action functional is represented

Sl = S¢l] + Sl (3:20)
Stlel = Sulgl+ % Salel+ A7), (3.21)
Sihele] = Sinclie) — A%[g]. (3.22)

Now, the field power in the compensating addition is the same as in the interaction
action Sin¢[]. Keeping in mind that we also have the variational parameters at our
disposal, we may anticipate that the convergence of the VPT series will be good
enough. '

As a concrete example, we shall consider the ground state energy for the anhar-
monic oscillator connected with the four-point Green function G4(0,0,0,0) by the
relation

O0E,

dg

For the dimensionless energy €0 = Eo/g!/3 in the strong coupling limit w? = 0, we
get

= g¢723q,. (3.23)

€p = 3G4 - (324)

The exact value of €y can be found in Ref, 12: €0 = 0.668. To evaluate 5 within our
approach, we shall expand the integrand exponential in (3.5) in powers of the new

.interaction action (3.22). A subsequent transformation to the Gaussian functional
quadrature is performed by using the Fourier transformation of type (2.17). The
application of the asymptotic optimization that requires the contribution of the
remove terms in the VPT series to be minimal allows one to find the relation
between the parameters 6 and y:°

x3=9/166. (3.25)
The remaining parameter 6 is fixed from the optimization condition 6(»:8") /08 =0,
where

N
V@) =Y enls), (3.26)
ot~ (14 m) Ay, (16 )\ /3+m/2 J )
en(0) = 3mz=:0 (n- m)iF (—9_ 0) I'(14+m/2)T(1+ 3m/2)° (3:27)

00 oo}
Rp m(8) = / dr z'"/ze"/ dy y*™?(8z + y)2(*-m) exp[—(0z + y)?]. (3.28)
0 0
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Here A, are ordinary perturbative expansion coefficients for the ground state
energy.!3

The behavior of the relative energies E((,N) / Eex is plotted in Fig. 3. The extremal
values correspond to the optimal 8. The stability of the VPT series for values of §
close to the optimal one is indicated in Table 2.

1015 EVEef. ‘ EZ/Eex. ‘ 53‘/Eex.'

1.01 = ]

€2 —--
1005 €3 e
1 -
.\{.‘ ® 00

\\
0.99S j
0.99 i

0985 ) i 1 | 1 1 L

0.020.025 003 0035 004 0045 005 0055006

Fig. 3. The behavior of the functions E‘(,N) /Eex for N = 1,2,3 versus the parameter 6.

Table 2. The behavior of ESN) /Eex in dependence of N
for various values of 6.

E{N) [Eex
N 6=0020 6=0028 6#=0032 6=0036
0 0.956 1.063 1.107 1.144
1 0.981 1.006 1.011 1.013
2 0.995 1.005 1.006 1.006
3 1.000 1.004 1.004 1.004
4 1.001 1.003 1.002 1.002
5 1.001 1.002 1.001 1.001
6 1.000 1.000 1.000 1.000
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4. Asymptotic Behavior of Remote Terms of the VPT Series

Now we will consider the massless ¢* theory in the four-dimensional Euclidean space
with the action

S[e) = Sol] + ASale], (4.1)

where the functionals Sp[p] and S4[p] are defined by (2.2).
We shall construct the VPT series for the vacuum functional

wio] = / Dy exp{~S[g]} . -f1.2)

Generalization of the method to the Green functions presents no problems. As a
variational addition, we will employ a functional of the anharmonic form

Sle] = 62S3(e). o (43)

Then the VPT series for the functional (4.2) is written as

wio] = f: W.[0,6],
n=0 (4.4)

wal0,0= S [ Dy expt-Siatiom,
where
Sentlp, n] = Sole] + 6253[¢] — n In{ASs[p] — 62S3[]} . (4.5)

The basic contribution to the asymptotics of higher order terms of the series (4.4)
comes from the configurations of fields that obey the equation

8Sest[ip0, n) =0
bpo(z)

and leave the functional of effective action to be invariant.!™ Varying (4.5) we
obtain

(4.6)

~8p0+ 548 =0, (4.7)
where
- 41\n 48
" Dlpo] + 282So[po)(n + Dlpo)) ’ (48)
Dlp) = AS4[y] - 62S2[y] . (4.9)

Solution of Eq. (4.7) is of the form

po(z) = i@m . (4.10)
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Arbitrary parameters zo and pu stand for translational and scale invariance of the
model under consideration.
Next, it is convenient to define the new variables

g=4C,\, 0% =gx. (4.11)
Here C, = 4!/(167)? is a constant entering into the Sobolev inequality (see, for

instance, Refs. 18 and 19):
Salpl < 4C.S3le. (4.12)

For the functional (4.9) of functions (4.10) we obtain

Dlpo] = 49?# 9(1=x). (4.13)

Inserting So[] and (4.13) into (4.8) we get an equation for the parameter a whose

solution is of the form
a={VB/4+nb—b/2}"",

(4.14)
b=[(32/7")%gx]"" .
In the limit of large n we have
D[po] ~ n(1 = x)/x (4.15)
and in the leading order in n,
Dt oL (1=x\"
W,[0,6] ~ " n" " exp{-n}. (4.16)

When the next orders in n including the functional determinant are taken into
account, a multiplicative factor dependent on n appears in (4.16). However, it is
not dominating and does not influence the convergence properties of the series.

From expression (4.16) it is seen that the series absolutely converges for x > 1/2
irrespective of the values of the coupling constant g; and, as follows from the Sobolev
inequality (4.12), the VPT series for x > 1 is of positive sign. When 1/2 < x < 1,
the terms of the series (4.4) at large n form the Leibniz series. Here again the value
x = 1 corresponds both to the change of the regime of the VPT series and to its
asymptotic optimization.

The asymptotic behavior of remote terms of the VPT series, when an anhar-
monic variational procedure is performed, is determined by the behavior of the
functional integral

Ji = % / Dy(A%[p] — Sa[p))* exp[—(Sole] + A%[¢))], (4.17)
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where functional A[y] is defined by (3.9). Making the change ¢ — k!4 we derive

Jp = ’2—:1,:, (4.18)
I = [ Dy exp(~kSunle] - F/2S0l), (4.19)
where |
Sealp] = A%[¢] — In D[y], (4.20)
Dlp] = A%[y] - Saly). (4.21)

This integral (4.19) contains a large parameter k in the exponential and therefore its
asymptotics can be found by the Laplace functional method.427-1® The main con-
tribution to the integral (4.19) comes from the configurations ¢o(z), which minimize
the effective action (4.20). The corresponding equation looks as follows:

—0%pg + apy — byl =0, (4.22)

where
a=x/0, (4.23)
b= 2[0A[po](1 — Dlpo])) ™" . (4.24)

It is convenient to pass to the function f(z) which satisfies a differential equation
[-0* +1lf(z) - f(=) = 0 (4.25)

and is connected with the function y(z) by the relation

wo(z) = \/gf(\/ax). (4.26)
We define the constant
C= / dz f*(z), (4.27)

which depends on the space dimension and can be evaluated following, for example,
Ref. 18. In the case under consideration the exact value of C is not important. The
functionals Sa[po) and A2[po] are expressed via (4.27) as

S4[(ﬁo] = le/b2 z, (428)
A%[po] = a®1 /b, (4.29)
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where we define the parameters
a=Ca>"?, (4.30)
T =0%/4. (4.31)
Three parameters «, b and 7, as follows from (4.24), are connected by the relation
ar(l - Dlpe)) =1, (4.32)

where
D[po] = afar —1)/b%. (4.33)

Thus, as before, only two parameters are independent. In the leading order in k we
obtain for the integral (4.17)

Ji ~ k=2 D¥ o) exp{—k[A%[p0] — 1]} . (4.34)

The region of the values of parameters at which the VPT series is convergent is
determined by the inequality

| Dlpoll < exp{A’[po] — 1} . (4.35)

The best choice of the parameters at which the contribution of remote terms of
the VPT series is minimal (the so-called asymptotic optimization®1%) implies the
condition

Digo) =0, (4.36)

leading to the connection of the parameters
ar=1. . (4.37)

Thus the single independent parameter remains which can also be fixed by the
optimization of the first terms of the VPT series. The asymptotic optimization
condition for original parameters & and yx is written as

16 \ ==

In particular, in the one-dimensional case, C = 16/3 and the condition (4.38)
transform into (3.26).

5. Gaussian Effective Potential in Variational Perturbation Theory

In this section the Gaussian effective potential will be derived on the basis of the
VPT under various choices of the variational addition. In the Ap* theory in the
n-dimensional space the GEP has the form3
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Veep = V. + AVgep, (5.1)
avase = EV 4 4 L imr gy,
+3A(z2)"242 4 6A(z%) 214,42, | (5.2)
An = p*T(1=n/2)/(4m)"? | n=d-2, d= L,2,...,
and z? satisfies the equation
22 = m? 4+ 122p% + 1204, (:2)"/2-1 (5.3)

We will consider the ©* theory in the n-dimensional space with the pseudo-
Euclidean signature. The action functional looks as follows:

Stel = [ dz|3 (0 - 22 il (5.4)

The generating functional of Green functions reads

Wil = [ Do exp (ilslel + (so)])

= exp{i[Slp.] + (Jp.)] } D[], (5.5)

where
bl = [ Dy exp(-ialel), (5.5)
Alp] = /dz [% ©(0% + m? + 12202) + 4. 0° + /\tp4] , (5.7)

and the function ¢, satisfies a classical equation of motion
(0 + m?)p, +4Xp3 = J . (5.8)

In the standard one-loop approximation only the terms quadric in fields ¢ are
retained in expression (5.7) for Alp). In this case the functional integral for D{J]
becomes Gaussian.

We shall evaluate the quantity D[J] by means of VPT. Let us first consider the
harmonic variational procedure. We rewrite the functional Afyp] as

Alg] = / dz [% qp(62+z2)<p+/\<4soc¢3+<p4 - X;gp’)], (5.9)

where
Z2=m?4 12002 4+ Ay 2.
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As a result, the VPT series for the quantity D[J] is by the harmonic variational

'=a twansformed to
9+ 2217 & (=i

n=0

X [/d:c 4gpc¢3+¢4— <p ) exp |— 1(jAj) , (5.10)
2 2 j=0
where

A(p) = (p* - 22 +i0)7", (x)-t‘S @

Considering (5.10), let us restrict ourselves to the first two addends in the sum

that give rise to the first nontrivial approximation. The contributions to the effective
potential, corresponding to these addends, equal

Vo = %zon(zz), (5.11)
%
Vi=A [3A§(zz) -5 Ao(zz)] , (5.12)
where
F(l n/2) _
2y _ L2)n/2-1
The optimization condition
d(Vo + V1)
4= =0 (5.14)

gives the equation for the variational parameter z2:
22 = m? 412097 + 12X A0(2?). (5.15)

With the help of (5.15) in the considered order of VPT we find for the effective
potential the expression

Vei(p) =Va+ Vo + W = - m"’tp2 + Aot 4+ — zon(z2)

+ % (m? — 22)Ag(z) + ABAZ(Y) + 60%A0(2)].  (5.16)

When comparing (5.1)—(5.3) with (5.13), (5.15) and (5.16), it is easy to see that both
the functions (5.2) and (5.16) and Egs. (5.3) and (5.15) for the massive parameter
coincide with one another.
Let us now calculate the quantity D{J] by using for (5.5) the anharmonic varia-
- tion of the action functional. We choose the anharmonic addition in the form S$2[y],
where

Sle) = 29"1 B / dz p*(z) . (5.17)
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The coordinate space volume § in (5.17) appears because the derivation of Vg from
the effective action requires one to consider a constant field configuration. Then the
parameter optimizing VPT series x in (5.17) does not depend on 2. As a result,
we find

Dl = f: %/lel\w‘ +40.6%) — S%le])"

X exp {- 1[% (0 + m? + 122p)p + Sz[<p]] } (5.18)

Any power of S2[p] in (5.18) can be obtained by the corresponding number of dif-
ferentiation of the expression exp(—ieS’ 2[]) with respect to parameter € by putting
€ = 1 at the end. As to the addend 52[¢] in the exponential in (5.18) which makes
the functional integral non-Gaussian, the problem is easy to solve by using the
transformation

exp{—ie32[p]} = / ” 5 \/_exp{ ("—zi\/gg[go]) —i%}. (5.19)

As a result, the VPT series takes the form

—)n=k [d n—k
D[] = Z( U"E ))!n![EE]

® dv SV 8% + M2]~1?
Xmlwmexp{lﬂf—lz}[det—-g{—]

3 [ astapep® + ¢=4>]k o [-3080] (5.20)

j=0

where
M? = m? + 12292 + Vexv,
(5.21)
A(p) = (P = M2 +1i0)7".
The integral over v in (5.20) contains the large parameter Q and therefore can be

evaluated, for example, by using the method of stationary phase. As a result, the
effective potential in the first nontrivial VPT order reads

Ver=Ve+AVer, AVer=W+ W,
where ) 9
Vo = —MzAO— Z—A(z)a
n 4
(5.22)
x?
v = —-4—A§+3,\A§.
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Here M? is the massive parameter derived from (5.21) at € = 1 and v = vy, where
vg is the stationary phase point in the integral (5.20). The corresponding equation

has the form
M?=m? 4 12292 + x2A,. (5.23)

The quantity Ag = Ag(M?) is determined by the expression (5.13) and represents
the Euclidean propagator A(z = 0, M2) written with the help of the dimensional
regularization.

Then, let us consider two optimization schemes of the VPT series (see Refs. 9
and 10). In accordance with the first oplimizalion version the variational parameter
is determined by the condition for the contribution of “nonleading” terms of the
series being minimal. In the present case we require that min| V). It is easy to see
that the function Vj is such that the equation V) admits a solution. This situation is,
obviously, the most preferred as the considered optimization version is performed.
From (5.22) we find the optimal value of x2:

x2=12X. (5.24)

Equation (5.23) for this choice of x2, up to the change of M? to 22, transforms into
the GEP method Eq. (5.3) for the massive parameter z2. Thus, in the considered
optimization procedure AV.g = V; and now, by using Eqs. (5.22)-(5.24), it is easy
to show that

AV.g = AVgEp -

To implement the second oplimization version, we should keep the parameter
M? variational. Making use of Eqgs. (5.22) and (5.23) we obtain

AVeg = (% - %)MZAO + %(m2 + 12002)Ap + 3)Aq . (5.25)

The optimization condition has the form

OAVer

= ‘ 5.2
and gives rise to the equation for M?:
M? = m? +122p% + 12)A,. (5.27)

Comparing (5.27) with (5.23) and (5.24) we conclude that the two optimization
versions lead to the same result:

V(f}-) = VGEP .

€

Within the previous consideration we have obtained the GEP by building the
VPT series for a variational correction to the one-loop approximation. Let us derive
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the GEP by another approach that does not use the loop expansion and directly
operates with the original functional Wj]. We will consider the two-parameter
anharmonic type addition to the action:

G a® b s
Sle) = o Salel + g3 Silel, (5.28)
where

Silel= [ dz p(z),

Silel= [ do(a).

The VPT series for the generating functional of Green functions looks as follows:
R N L
Wil =Y = [ Dpls - s,
n=0

a?

. b* .
Xexp{z[So—szz—eQS§—0§5f+(15p)]}. (5.29)
The parameters ¢ and ¢ are introduced here to give one possibility of obtaining in
the integrand the terms connected with S and S, by differentiating with respect
to € and 4. Then only the interaction action Sint remains in a factor in front of

the exponential. The expression in the exponential in (5-29) is reduced to the form
quadric in the fields by using the Fourier transformation

[ d )
FAle) = [ de 32 p(o)explai(afy] - pya),
-0
where A[p] is the functional quadric in fields. Then (5.29) is rewritten as

. ® dp [  d .
Wi = 92/ dz 2-” / dy -2 exp{iQfpz — gy — p? — 1}
oo TS 2w

o0 k n—k m n—k_m
1 0 9
" (%) (%)
"Z=:0 k=0 m=0 m'(n —k- m)' 65' 60
>+ M?
32

n n—

5

X [ det ]—l/zwk[J, MY, (5.30)

where
M?=m? 4+ feaz,

(5.31)
J=j+0Y4%y,
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and wg[J, M?] are the ordinary perturbative expansion coefficients for the generat-
ing functional of Green functions W[j]:

we[J, M?] = ]’c’!\)k [ / dz 5_156]" exp {— % (JAJ)} . (5.32)

In the first nontrivial order for the generating functional of connected Green
functions

Zl = (@) ' In W[j],

we find
Zo[]] % —M— (MZ_mZ) [Ao+ (A;Z)Z:I
SR — 1 M,
72 L g (5.33)
Z[j) = ‘(Mz_mz)[A°+(M2)2] T 1 M2 (J—3J)
J? J4
- /\[3A + 600 —— (M2)2 + —(M2)4]

Here, as before, the method of a stationary phase has been applied to the numer-
ical integrals. In (5.33), instead of original a2, b, the more transparent variational
parameters J and M? have been used. The optimization conditions in this case
read

FYAO)! EYA)
a7 =0 =Y
where
7MW =2+ 2,.

Howev'er, it is more convenient here to define the new variables
z=J/M*, y=M*/m?. (5.34)
From (5.33) we get
Z0p] = jo - gz + (5 - L) mtuso(m®)
A 2 2 n
— 5 m*Ao(m?y) - ABAY(m?y) + 6A0(m?y)a? +29].  (5.39)
The optimization condition 8Z(1)/3z = 0 yields the equation

m?z +42z(300 +22) = . (5.36)
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By analogy, requiring 82(1) /8y = 0 we get the equation

m?(y — 1) = 12X(Ao + 22). (5.37)

Making use of (5.36) and (5.37) we easily find

dz)  gz1)
=0

pr 3; =z. (5.38)

For the effective potential we obtain

1
V= b+ (1~ D)ooy + L

+ A[BAZ(M?) + 6A0(M?)p? + o). (5.39)

As follows from (5.37) and (5.38), the parameter M? satisfies Eq. (5.27), by means
of which it is easy to show that (5.39) coincides with Vggp.

6. Conclusion

In this paper the nonperturbative method of the Gaussian effective potential (GEP)
is analyzed from the point of view of a more general approach, the variational
perturbation theory (VPT). In the VPT method, the initial quantity, such as the
Green function, is represented in the form of some series, whose convergence can be
governed by choosing certain values of variational type parameters. An important
technical peculiarity is that the VPT series can be constructed by using only the
standard Feynman rules.

We have shown here how the GEP emerges in the framework of the VPT in the
first nontrivial order. It is important that from the very beginning we deal with a
series that, in principle, allows one to calculate the corrections and thus, to explore
the question about the stability of the results obtained by using the “main contri-
bution.” The possibility of calculating corrections advantageously distinguishes the
VPT method from other nonperturbative approaches, where the question about the
stability of the results obtained, for example, by using the variational method, turns
into a serious problem because of the absence of a simple algorithm of calculating
corrections. Moreover, the VPT method allows one to construct a series whose con-
vergence properties can be influenced through special parameters. It is particularly
important in the essentially nonperturbative tasks, where, despite the absence of a
small iritial parameter, the reliable results can be obtained on the basis of a series
whose convergence is fast enough.

In this paper the GEP as a first nontrivial VPT order has been derived by
using one or another variational addition to the action. In other words, we have
shown that VPT series possessing different structures may give rise to the same
result when only the leading contribution is retained. Certainly, it is doubtful to
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hope that just the first nontrivial order would permit us to make sure the good
enough degree of the approximation to the considered quantity. So, for example,
in the two-dimensional case, the GEP gives rise to the first order phase transition®
(see also Refs. 5, 8, 20 and 21), which is in contradiction with the known rigorous
results. 222

In this work we argue that the harmonic recipe of introducing a variational addi-
tion leads to a divergent series, which nevertheless can be used as the asymptotical
series if a small parameter is present. In particular, by means of this procedure,
one may improve the results of perturbation theory and penetrate into the region of
larger values of the coupling constant. The small parameter may emerge effectively
also, as it, for example, occurs in the anharmonic oscillator case. If the small
parameter is unknown, however, it is problematic to obtain reliable results by using
the harmonic variational procedure.

In this connection, the VPT method with the anharmonic variational additions
appears to be more advantageous. Under its consideration it turns out that it is
not at all always reasonable to reduce the “main contribution” to the GEP. These
questions will be considered in subsequent publications.
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