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A nonperturbative method — variational perturbation theory (VPT) — is discussed.
A quantity we are interested in is represented by a series, a finite number of terms of
which not only describe the region of small coupling constant but reproduce well the
strong coupling limit. The method is formulated only in terms of the Gaussian quadra-
tures, and diagrams of the conventional perturbation theory are used. Its efficiency is
demonstrated for the quantum-mechanical anharmonic oscillator. The properties of con-
vergence are studied for series in VPT for the ¢} 4) model. It is shown that it is possible
to choose variational additions such that they lead to convergent series for any values of
the coupling constant. Upper and lower estimates for the quantities under investigation
are considered.

The nonperturbative Gaussian effective potential is derived from a more general
approach, VPT. Various versions of the variational procedure are explored and the pref-
erence for the anharmonic variational procedure in view of convergence of the obtained
series is argued.

We investigate the renormalization procedure in the ¢* model in VPT. The nonper-
turbative § function is derived in the framework of the proposed approach. The obtained
result is in agreement with four-loop approximation and has the asymptotic behavior as
3/2 for a large coupling constant.

We construct the VPT series for Yang-Mills theory and study its convergence prop-
erties. We introduce coupling to spinor fields and demonstrate that they do not influence
the VPT series convergence properties.
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1. Introduction

Approximation of a quantity under consideration by a finite number of terms of a
certain series is a standard computational procedure in many problems of physics.
In quantum field theory this is conventionally an expansion into a perturbative
series. This approach combined with the renormalization procedure is now a basic
method for computations. As is well known, perturbative series for many interest-
ing models, including realistic models, are not convergent. Nevertheless, at small
values of the coupling constant these series may be considered as asymptotic series
and could provide useful information. However, even in the theories with a small
coupling constant, for instance in quantum electrodynamics, there exist problems
which cannot be solved by perturbative methods. Also, a lot of problems of quan-
tum chromodynamics require nonperturbative approaches. At present, a central
problem of quantum field theory is to go beyond the scope of perturbation theory.

A great number of studies have been devoted to the development of nonper-
turbative methods. Among them is the summation of a perturbative series; see
Refs. 1-3. The main difficulty is that the procedure of summation of asymptotic
series is not unique, which is generally a functional arbitrariness, and the correct
formulation of a problem of summation is ensured by further information on the
sum of a series.! At present information of that kind is known only for the simplest
field-theoretical models.5

In Refs. 6-12 approaches are proposed which are not directly based on the
perturbative series. Thus, the method of Gaussian effective potential has recently
become rather popular.’®!6 Many of nonperturbative approaches make use of a
variational procedure for finding the leading contribution. However, in this case
there is not always an algorithm for calculating corrections to the value found by
a variational procedure, and this makes it difficult to answer the question as to
how adequate is the so-called main contribution to the object under investigation
and what is the range of applicability of the obtained estimates. Moreover, even
if the algorithm for calculating corrections (i.e. terms of a certain approximating
series) exists, it is still not sufficient. Here the properties of convergence of a series
are of fundamental importance. Indeed, unlike the case where even a divergent
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perturbative series in the weak coupling constant approximates a given object as
an asymptotic series, the approximating series in the absence of a small parameter
should obey stricter requirements. Reliable information in this case may be obtained
only on the basis of convergent series. It is more reliable to deal not with an arbitrary
convergent series but just with the Leibniz series (an alternating series with terms
decreasing in absolute value). Then it will become possible to compute upper and
lower estimates for a given quantity on the basis of first terms of the series. In the
case of additional free parameters influencing the terms of the series, these estimates
may be made as close as possible to each other.

In this paper, we consider a method of variational perturbation theory
(VPT).!™2° The mathematical basis for this approach is the functional integral
formalism.'!!? Despite the word “perturbation” being present in the name of the
approach, the VPT method does not use the smallness of the coupling constant.
The additions in the method are calculable because this method employs only Gaus-
sian functional quadratures. Besides, a VPT series can be written so that its terms
are defined by the usual Feynman diagrams. In this case, the VPT series will surely
differ in structure from the conventional perturbation theory, and diagrams will
contain a modified propagator.

2. Variational Perturbation Theory

Here we will apply the VPT method to Green functions of the ¢* model in the
Euclidean d-dimensional space. To this end we write the 2v-point function in the
form

Gav = [ D™ exp(=Sle) (2.1)

where
{0} = (1) - - p(z20)

and the functional of action looks as follows:
m?
Slel = Sole] + —5-Sale] + ASale],

Solel = 5 [ dz(0p)?,
Splp] = [ dzeP .

(2.2)

The measure of integration in (2.1) is normalized so that

[ Poexe (- st - "‘{&M) -1, (23)

We shall construct a VPT series by using the following Gaussian functional
quadratures:
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/D<pexp [— (%(wffsc’) + (<PJ))]

K -1/2 1 )
=-.(det m) exp (E(JK_IJ)) . (24)

The VPT series for the Green functions (2.1) is constructed in the following way:

Ga = Z G2v,n ) (25)
=0

Gaun = 51 [ PeteY05Mb=Sl6D" exp (- Sutel- -5l 3001 - 26)

n!

The variational functional S[p] will be taken to be dependent on certain parameters,
but the total sum (2.5) surely will not depend on these parameters. The choice can
be such as to provide the expansion (2.5) as being optimal.

The functional S[y] should be defined so that the terms of the VPT series (2.6)
are calculable, i.e. the form of S[y] should be such that the functional integral in
(2.6) can be reduced to the Gaussian quadratures (2.4). This requirement does
not mean that the functional 5'[<p] must be quadratic in fields. We can pass to the
Gaussian functional integral by using the Fourier transformation

Flate) = [ de [ 2 P explei(aiel - )] (27)

where A[p)] is the functional quadratic in fields.
We choose here the sum of harmonic and anharmonic functionals being § [#],
ie. ) a2 .
Slel = —- Szle] + 6531, (2.8)

where M and 0 are the parameters through which the VPT series is optimized.
The Gaussian quadrature can be obtained by using the following representation
for the anharmonic term:

exp(—02S2[p)) = /_: %exp (— 1‘; + inSz[cp]) . (2.9)
For the VPT series terms (2.6) we have
n n—k 1
Gan = ICZ:% ZE T(n — E 7)1

x [ Dol Y (-Asilgl) 0% (412 — ==t

X (%[ﬂ) e exp {— (So[<p] + 1"2—252[901 + 9253[¢])} ) (2.10)
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It is convenient to write the expression (S2[p])/2)"*'~* in the form of operator

differentiation: -k +i—k
Solel\" " 9 \"""
( 225«:1) - (_aMz) . (2.11)

Then in (2.10) before the exponential there remain, besides {¢?"}, only the powers
of the initial action functional (—AS4[p])*, which leads to the conventional vertices
in the Feynman rules. Owing to the change of the quadratic form in the expo-
nent, the propagator is modified in form. So, (2.10) can be calculated by using
the standard Feynman graphs for the Ap* theory with the mass parameter in the
propagator x2 = M? + iuf. As a result, (2.10) assumes the form

Grn =3 5 [ e (- )
e l'(n— N 2/7 4
a n+i—-k r
x 0% (M? — m?)n—F-! (— W) 30, (2.12)

where

1000 = 5 [ Dete)asite) v {- (solel+ X)) 219

The latter expression can be written as
; -0+ x2 -1/2 .
Fopn(x?) = det (—32—-i-m’ g5 (x?), (2.14)

where 92, n(xz) are calculated on the basis of diagrams of the kth order of conven-
tional pgrturbatxon theory with the propagator

Alp,x*) = (P +x*)7". (2.15)
Thus, the Nth order of the VPT expansion (2.5) can be constructed with the same
diagrams as the conventional perturbation Nth order.
3. A Simple Example

Let us consider the integral

g = / dx exp(—S[z]), 3.1)

where

Sla] = Solz] + ¢Simlz],  Solz] = x* = 2} + 23,

3.2
Sin[z] = =3 + 23, dx = dz,dz, . (3.2)
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The quantity (3.2) can be considered as a zero-dimensional analog of the corre-
sponding functional integrals in the ¢* quantum field model. In the following we
shall operate only with Gaussian functional quadratures, and therefore we shall use
here, for calculating (3.2), only Gaussian integrals

/dz P(z)exp(—So[z]), _ (3.3)

where P(z) is a polynomial of z; and z, variables. The first obvious opportunity
is the expansion of the integrand in (3.1) in powers of the coupling constant g. As
a result, we derive the ordinary perturbation theory

Z[g] = Ey”Cn , (34)
C, = (—nl!)" /dei';,t exp(—So[z]) . ' (3.5)

It is well known that the series (3.4) is asymptotical and, therefore, does not give
any possibility of judging about the quantity Z [¢9] in the nonperturbative region
without additional information about its sum. However, the standard perturbative
expansion (3.4), (3.5) is not unique based on the Gaussian quadratures. We shall
here consider two kinds of such expansions differing from the series (3.4). They
differ from one another in the manner of introducing variational terms into the
action (3.2). Namely, they utilize the “harmonic” and “anharmonic” recipes of
introducing the variational terms, respectively. In fact, these recipes are not a single
possibility of a variational procedure construction. In particular, a composition of
them can be used.

The first method we shall consider is the harmonic variational procedure, where
the free action Spfz] will be used as a harmonic variational extra term. The total
action is rewritten in the form

S[z) = Sple] + St [=], (3.6)

where
Solz] = Solz] + xSolz], (8.7)
Sinelz] = gSint ] — xSola], (3.8)

and the expansion in powers of a new “functional of interaction” Sk [z] is performed.
It is easy to see that the task is formulated only in terms of the Gaussian functional

quadratures. As a result, the VPT series takes the form

Z[g] = Z Zn [gv X] ’ (39)

Znlg,x] = F(l%ﬁ / dx [ Sine = X(1+ x9)So]" exp(=Solal).  (3.10)




Variational Perturbation Theory 1935

Actually, the original quantity Z[g] does not depend on the variational parameter
x. Therefore, the freedom in choosing x can be used to improve the properties of
the VPT series. Various ways of optimal choice of variational parameters have been
considered in Ref. 18.

In the field theory, we know, as a rule, only a few first terms of the VPT
expansion, and maybe the asymptotic behavior of remote terms. Just due to this
information the optimal value of variational parameters can be chosen. In the
majority of cases the asymptotic and the first nontrivial order which permit us to
obtain an equation for the variational parameter, are used. Then the stability of
the results will be achieved only when the contribution of subsequent terms of the
series proves to be small in comparison with the basic contribution.

The fact that the exact quantity does not depend on variational parameters
results in the wonderful possibility of choosing their values so that the considered
VPT order would maximally approximate the searched quantity. Indeed, let

Zlg) = 2M(g,x] + AZM]g, ], (3.11)
where
N
Z(N)[ng] = Z Zn[g)X])
n=0
e o]
AZMg,x= Y Zalsx].
n=N+1
Then

8z2Mg,x] _  9AZM)[g,x]
Oy - Ox ’

and thus, if xo is a point of maximum for Z(N)| then this point is a point of the
minimum for the whole reminder AZ(™)| simultaneously. Thus we have to require

82™lg, x]
——=221 0. A2
B 0 (3.12)
Making use Egs. (3.8) and (3.9) and setting N = 1 we find from (3.12) that
- 2

The results of calculations will be discussed and compared with those obtained in
the framework of the anharmonic variational procedure somewhat later.

The anharmonic method of introducing the variational addition is based on the
following representation of the action: i

Sz} = Sglz] + Sinel=], (3.14)
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where
Solz] = Solz] + 6S2[z], (3.15)
Sine[z] = 9Sine[z] - 52[z). (3.16)
In this case the expansion of the integrand in (3.1) is carried out in powers of S, [z).
The situation here is somewhat more complicated as compared with the previous
case as the addend 6SZ[z] is present in the exponential, which leads to the non-

Gaussian form of the emerging integral. However, this problem can be easily solved
by using the Fourier transformation

2 ® dy u? VB
exp[—055(z)] = / N exp | — vy + uviSy(z)| . (3.17)
As a result the VPT series takes the form
Zlg) = Y Znlg,9), (3.18)
) n k
— 2p\n —y — 2 8 (_9/0)
Znlg,9] —A da(a®8)" exp(—a — a 9)?::0 % (n—F)l (3.19)
k
(21 +1/2) T[2(k - ) +1/2)
aG=) T oD . (3.20)
1=0
The optimization of the first nontrivial approximation yields
0= gg. (3.21)

The behavior of the Nth order partial sum of the series (3.9) and (3.18), normalized
to the exact value Z[g], is represented in Table 1. In Fig. 1 the N dependence of the
quantity Z(M )[g = 1] in the case of the harmonic variational procedure is plotted.
We can see that for g > 1, when the harmonic variational procedure is performed,
even first terms of the VPT series become sensitive to its asymptotic nature (i.e. the
partial sum “beats” emerge). For g larger than that shown in Table 1 the situation
becomes still more complicated. A relatively stable result for the series (3.9) occurs
as g < 1. Comparison of the results given by the ordinary perturbation theory (3.4)
and by the series (3.9) for g = 0.1 is plotted in Fig. 2. As regards the anharmonic
variational procedure [Eqgs. (3.18)-(3.21)], we derive a stable result in the whole
region of the coupling constant.
Introducing t = 20/¢ we rewrite (3.19) in the form

Zalg,0] = \/gzt [ dacmexp (—az - a\/g) 3 (%‘%/‘_):)gak . 62

k=0
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It is interesting that the expressions (3.22) allow immediate determination of
the functional dependence of Z[g] when g — co. Indeed, in the VPT N order for

g — oo we get
AN

ZWN) = —— | (3.23)
V9
Table 1. The behavior of Nth partial sums for the harmonic and unharmonic variational
procedures.
g=1 g=10 g =100
N N N N N N

N Z}(nr) /Ze" Zﬁnh)a.r/z" qur)/zc" Zinh)ar/Z" qur) /Z“ anh)ar/ze"

0 0.806 0.992 0.701 0.984 0.658 0.981

1 0.945 0.992 0.891 0.984 0.864 0.981

2 1.034 1.000 1.078 0.999 1.099 0.999

3 0.905 1.000 0.650 0.999 0.480 0.999

4 1.310 1.000 2.735 1.000 3.960 1.000

5 —0.265 1.000 —9.909 1.000 —20.41 1.000

6 7.253 1.000 84.24 1.000 189.1 1.000

7 —59.68 1.000 -1223. 1.000 -3170. 1.000

8 -26.51 1.000 -212.7 1.000 -1724 1.000

9 —34.12 1.000 —-574.0 1.000 —1410. 1.000
10 —23.80 1.000 190.7 1.000 1614. 1.000

14
L N .
Z( ) g=1 Harmonic
12 \ VPT
- procedure

Fig. 1. N dependence of the Nth partial sums Z(N)[g] in the case of the harmonic VPT procedure
forg=1.
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50
t (N)
sl Z g=0.1
i e PT
30 | e - —.Harmonic

VPT

20

-10

Fig. 2. The behavior of the Nth partial sums Z(")[g] for the cases of perturbation theory and the
harmonic variational procedure.

where

_ 2 3\ g~ (=21
A(N)“\/;F(N+§)'§(2k+l)!(N—k)!ak' (3.24)

Optimization of the first nontrivial order (the condition 82(1) /8t = 0) gives top =
3/2 and thus A() = 3.212, whereas the exact value A = I'*(1/4)/4 = 3.286. The
series (3.18) can easily be verified to be convergent at t > 1/2, this being also
valid for any positive g. An analog of the Sobolev inequality in the case under
consideration is the relation

S4[.‘L‘, y]
S3lz,y] =’

from which it follows that for ¢ > 1 the VPT series (3.18) is of positive sign, and
for ¢ = 1 the regime is changed, and for 1/2 < ¢t < 1 the series becomes the
Leibniz series. Note that the value t = 1 of the variational parameter at which the
alternating series turns into a series of fixed sign corresponds to value t, found from
the criterion of asymptotic optimization of a VPT series according to which the
contribution of next order terms is minimized.!7~20

For the Leibniz series regime the exact value Zexact[g) obeys the following esti-
mate of upper and lower bounds:

(3.25)

ZNH & Zoyaer < ZW (3.26)
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where Z2NV+1 and Z2VN are, respectively, odd and even partial sums of the VPT
series. In Fig. 3 we draw the corridor of the estimates of upper and lower bounds
defined by the functions ZWNY[Zexacr for N = 0,1,2,3 and the parameter ¢ = 1. It
is seen that even the first partial sums provide an acceptable accuracy in the whole
range of variation of the coupling constant.

1.2
Z(N)/Zexoct

T YT T T T T T T T T Y

0.9

T T T T YT T

O 8 L i sl FERWEEIITI| g 1 1 aasut it sl PR W NI

10 ™' 1 10 102 10°* 10°

Fig. 3. A corridor of estimates of upper and lower bounds determined by the functions

zM [.q]/Zex [9]

It is interesting to generalize our results to the % interaction. Now we consider
the VPT method for the simple numerical integral which can be considered as a
zero-dimensional analog of the two-component scalar model in the field theory with
Ap?* interaction:

- o o
- Z[g] = / dz; / dzy exp [ (So + 951)] , (3.27)

—00 —00
where So = z? + z2 = x? is an analog of the free action and 5 = 23 4 22 s the

action of interaction. If we rewrite the total action in the form S = So + 8S,*
gS1 — 85, we construct a new expansion of Z [g]:

Zlg) =Y Zalg,0), - (3.28)

Znl9,0] = ;11—' / dx(0Sk — 951)" exp[—(So + 0S0")], (3.29)
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where 8 is the arbitrary parameter so far. Since Z [9] is independent of the parameter
0, we can choose its value so that a finite number of series terms in (3.28) would
provide the best approximation value, (3.27). One can propose different versions of
the optimization procedure. First, one can determine the variational parameter 4
from the minimality requirement for the absolute value of the sum.of the last series
terms is VPT being minimal:

N
ZZ;'[!],B]

i=k

min , 1<k<N.

Second, since the exact value of Z[g] is independent of the parameter 8, the opti-
mization procedure can be
020,60 _
a0 -
And third, one can require the contribution of the distant terms in the VPT series
to be minimal (the so-called asymptotic optimization). The asymptotic behavior of
the coefficients Z,,[g, 6] with large n is

Zalg,0] ~ 27 [ _t-1 (t"l)nexp(~ﬁ), (3.30)

n—oo n0I/F\[ B3k = 1)\ ¢ 17k

where k-1
k-
t= . 3.31
- (331)

Hence, we can see that the VPT series has the finite region of convergence for
g <2519, In the case of t = 1, which corresponds to the asymptotic optimization,
the VPT series becomes an alternating sign convergent series of Leibniz, and there
is a possibility of carrying out upper and lower bilateral estimates of the sum of
series proceeding from the first terms.

We obtain the next expression for the VPT series terms:

Znlg,0) = /0 ” da o*™ exp(—a — fa*) Z . ];’,;_(;] oy Z;(g], (3.32)
where ) " et ,
Zl0) = 5 [ ax [~oa + 23] exp(-c). (3.33)

Here Z;[g] is the ordinary coefficient of perturbation theory. Then, in the first
nontrivial order we find that

Zo[g,0] = 7r/ daexp(—a — o*9), (3.34)
0

(3.35)

oo
g (2k—1)1
Zl[g,0]=7r/(; daakﬂexp(—a—akﬂ)[l—m(—zk—_l)— .
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Using the optimization procedure in conformity with versions 1 and 2, we obtain

2k — )N
tztlztzz(_k')_

. (3.36)
The results for different k are shown in Table 2. Note that the interval (Z()[g,6),
Z®][g,0]) (6 = 05 is the variational parameter for asymptotic optimization) deter-
mines the upper and lower estimates for Z[g], which corresponds to the Leibniz
series.

Table 2. The results of calculation of Z[g, 8] for different k in the
first order VPT, where Z()[g,6] = Zo[g, 8]+ Z1[g, 6], Z([g, 6] =
Zolg, 6] and 8y, 02,83 are the variational parameters for different
optimization procedures.

ZMW[g, 8]  ZW[g,8 2ZV[g,6]

k g Zextc‘
=26, =06, 0=206 =203
2 0.1 2.8025 2.7994 2.7902 2.8929
1.0 1.8726 1.8585 1.8153 2.0599
10.0 0.8500 0.8369 0.7920 0.9841
100.0 0.3076 0.3016 0.2801 0.3642
10000.0 0.0326 0.0320 0.0294 0.0391
3 0.1 2.7046 2.6881 2.6222 2.8813
1.0 1.9919 1.9556 1.7716 2.2763
10.0 1.2138 1.1769 0.9642 1.4680
100.0 0.6496 0.6247 0.4711 0.8126
10000.0 0.1552 0.1482 0.1033 0.1992
4 0.1 2.6220 2.5873 2.3596 2.8620
1.0 2.0535 1.9974 1.5435 2.3914
10.0 1.4391 1.3806 0.8439 1.7692
100.0 0.9276 0.8806 0.4178 1.1837
10000.0 0.3334 0.3131 0.0986 0.4417

In the strong coupling limit for ¢ — co we find from (3.32) the expression for
Z|g] in the Nth order of VPT:

IIN+1+1) X —z)
ZMN[g] = z!/* ( o k)jg o +(1)!();/_j)!aj, (3.37)

where

gk-1 L T(km+ HPkG-m) +3] .
p=—,  4=) rfz!(j—Jm)! '

(3.38)

m=0

The same results for Z[g] in the first order of VPT (g — oo) for different k are
shown in Table 3.
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Table 3. The value Z()[g] in the first order of

VPT (g — o0).

k Zexact z()[q) Error (%)
2 3.28626g~1/2  3.214889-1/2 2.172

3 3.442659~1/3  3.28119¢—1/3 4.689

4 3.547529~1/% 3311304174 6.658

4. Variational Perturbation Theory for an Anharmonic Oscillator
4.1. Green functions

Let us consider a quantum-mechanical anharmonic oscillator (AO) case as an exam-
ple of exploiting the VPT method. The AO from the point of view of the continual
integral formalism is a one-dimensional p* model. The Euclidean action looks as
follows:

Stel = Solg] + T Salg] + g, (@)
where
Solel = 5 [ dz(@9)?, (4.2)
Silel = [ dap?, (4.3)
Salp] = / dzg?. (4.4)

The Green functions are expressed in terms of the functional integral:

Gw=/iww“hwesmx (4.5)

where {¢?"} denotes the product of fields @(z1) - p(2n). We pass to dimensionless
variables: ¢ — g=1/8p z — g=1/3z. Then the functional of action reads

Stel = Sulg] + -Sale] + Sl “9)

where
w?=m?g~2/3, 4.7

The dimensionless Green functions G4, will be represented through (4.5) with the
action (4.6).

Like the ordinary perturbation theory, the VPT method uses only Gaussian
quadratures:
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/D<peXp [— (%(Wﬁp) + (‘PJ))]

- (det ﬁ;)_l/zew (%(JK“J)) . (4.8)

At the same time any possible polynomial in the integrand of (4.8) can be obtained
by the corresponding number of differentiations of the exponential with respect to
the source J(z). The variational addition to the action will be constructed on the
basis of the functional

Alp] = 05o[e] + %52[‘/’] , (4.9)

where 8 and x are variational type parameters.
We shall first consider the harmonic variational procedure. In this case the action
functional splits as follows:

Slel = Sele] + Shele, (4.10)
where
w2

Stlel = Sole] + 5 Salel + Alel, (4.11)
Skl = Simle] — Alg] - (4.12)

The expansion in the VPT series reads
Ga =), Gual(:X), (4-13)
Gaaltd = CF [ Dot Skl exp(=SbleD).  (419)

Obviously the functional integral (4.14) is Gaussian. It is convenient to use the
ordinary coefficients of a perturbative series when it is calculated. To do this, let
us rewrite (4.14) as

n 1 a n—k
G = EE k'(n — k)! (—6_01)

< / De{p?}(~Sa)* exp [— (so+ “’;s2 + aA>] (415)

where the parameter « is to be set to 1 after differentiation. Having in mind the
intermediate dimensional regularization and making the change ¢ — p/V1+ab,
we obtain ’

1 AN G I
G2v,n - g} (Tl — k)l (— a_a'> (1 + 09)”+2k ) (4~16)
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where

g i(2?) = ki!/Dw{<p2"}(—S4)" exp L— (So + %252)] (4.17)

are the ordinary perturbative expansion coefficients for the Green functions (4.5).
To calculate them, the standard Feynman diagrams, for example, can be used. The
quantity 22 in (4.17) looks as follows:

2_ wtax

Trap (4.18)

The properties of the series (4.13) are determined by the asymptotics of the
functional integral

EL [ potsitel - ately exp {- (sl + Lsate1+ )} @)

at large n.

It is easy to see that the investigation of the asymptotic behavior of the expres-
sion (4.19) in the leading order in n is, in fact, equivalent to finding the ordinary
perturbative series coefficients. The series (4.13) turns out to be asymptotic like the
ordinary one. Actually, its behavior may be influenced by the ¢ and X parameters,
to attain the greater stability of results as compared with standard perturbation
theory. However, one is compelled to remain in the region of the weak coupling
constant, mainly, as it turns out to be impossible for arbitrary values of the dimen-
sionless coupling constant g/m? to gain, within the harmonic variational procedure,
the stable results with respect to corrections. The latter is explained by the fact
that at large n a sensible contribution to (4.19) comes from such field configurations
at which the quantity |p(z)] is large. In this case the compensation by the harmonic
addition A[p] of large Sint[p] containing the fourth power of the field proves to be
not sufficient.

Under the anharmonic variational procedure the action functional is represented
as follows:

Slel = Sgle) + Shilel (4.20)
S8le) = Solg] + -Sale] + A%, (4.21)
Sintl#] = Sine[e] - Az[‘/’] . (4.22)

Now, the field power in the compensating addition is the same as in the interaction
action Sine[p). Keeping in mind that we have also the variational parameters at our
disposal, we may anticipate that the convergence of the VPT series will be good
enough.

As a concrete example, we shall consider the ground state energy for the anhar-
monic oscillator connected with the four-point Green function G4(0,0,0,0).
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4.2. Ground state energy

We will proceed from the partition function represented by the path integral
exp(~TE) = [ Dpexp(=5le), (423)

where the integration in (4.23) runs over ¢(t) with the condition ¢(—T/2) = ¢(T/2),
and the functional of action is given by (4.1) but integration runs over ¢ from —T'/2
to T/2.

The ground state energy Ep follows from (4.23) in the limit T — oo. It is
convenient to pass from the functional integrals typical of statistical mechanics to
the functional integrals of the Euclidean field theory. To this end consider the
quantity dEo/dg, which is expressed in terms of the four-point Euclidean Green
function. So, passing to the dimensionless variables from (4.23) we obtain

dBo _ 23
4 g~ 4%G4(0), (4.24)
where
2 ~
G4(0)=N"1 / Dpp*(0) exp [— (So + “-;—Sz + s.,)] , (4.25)
N= /D<pexp[—(So +w?S+ 51 (4.26)

In what follows we will be interested in the strong coupling limit

T—n“%—voo (w?—0).

Defining the functional A[p] [see Eq. (4.9)], we rewrite (4.25) in the form of a VPT
series:

G4(O) =N"! i ;ll—' / Dpp*(0)(A? — S1)" exp[—(So + w?S + 51))- (4.27)

n=0

Next we will find the asymptotics of the path integral
/ De(A? — Sp)" expl—(So — A2)] (4.28)
at large n. Changing the variables, ¢ — ni/4p, we represent (4.28) as follows:

w [ D exp(-nSeely] ~n''*Sale). (4.29)

where
Seﬂ' = A2 —_ ln(A2 - S[) . (430)
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The functional integral (4.29) contains a large parameter n and can be calculated
by the functional saddle point method. =321 The saddle point function ¢y is
determined from the condition 6Set/6¢ = 0, which leads to the equation

— @o+apo—bpd =0, (4.31)
where

a=%, b={0Alp)(1 - Dlgc))}™, Dipo] = A%po] - Silgo].  (4.32)

The solution to (4.31) decreasing at infinity, corresponding to a finite action, and
given a major contribution to the functional integral (4.29) at large n, is of the form

po = :h\/iz[cosh Va(t —t)]7 !, ‘ (4.33)

where ¢y is an arbitrary parameter showing the theory to be translationality-
invariant. It is not difficult to compute the functional (4.30) for the function (4.33):

Sefi[po] = 1 — In D|pq], (4.34)

where
3 _
Dlpa] = 1 - 2 (6x%)71/2. (4.35)

Here we may take advantage of version 3 (see Ref. 18) of the optimization procedure
requiring the contribution of higher order terms being minimal, which means the
condition D[po] = 0. Therefore the variational parameters 8 and X are related as

follows:
9 \1/3

The remaining variational parameter 8 is fixed on the basis of a finite number of
the VPT expansion terms; we now will restrict our consideration to the first order.

Further transformations with (4.27) will proceed as follows. Since any power of
A? in front of the exponential of (4.27) can be obtained by differentiation, we do not
introduce new diagrams but those of conventional perturbation theory. Performing
intermediate dimensional regularization and reducing the functional integral with
the use of (2.7) to the Gaussian form, we get

=33 Lo ()

n=0 m=0

X (gm(2%)(1 + iufV1 — @)~2-2m) | (4.37)
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where

-1 2
gm(2?) = %—/ngp"(O) exp [— (So + % Sz)] ,
22 :w2+iux\/l-—a(l+iu9\/l—a)_l,

Upon differentiation of (4.37) with respect to o we should put a = 0. The functions
gm(2?) are standard expansion coefficients of G4(0) into a perturbative series and
they can be determined by the standard diagram technique. From (4.37) it is seen
that the Nth VPT order requires only those diagrams that are present in the Nth
order of conventional perturbation theory.

In this case it is not difficult to connect the expressions (4.38) with the know
expansion coefficients A,, of the ground state energy Ep in the perturbative series

(4.38)

Eo(g) = % +m) A, (#) , (4.39)
n=1
and this connection looks as follows:
1+ m)A
m(z?) = L3 Aiem T (4.40)

The numerical value of the coefficients A, may be taken from Ref. 22 (the first VPT
order requires the values A; = 3/4 and A, = —-21/8).
Then making use of the expression

= ﬁ/dua"'l exp(—aa)

we obtain
(1+m)A1+m[ ( m) ( 3m>]“
- G4(0) = {14+ —)r{14+—
EmZ -1 ; ;
« (LY Fo ) (4.41)
da m( )X:a ] .
where

Fr(0,x, @) :/ dz z™/? exp(._z)/ dyy3m/2
0 0

x exp[-w?y — (1 — a) - (0 + ¥x)). (4.42)

Note that we are interested in the strong coupling limit and therefore we set

2=0in (4.42). Hc_)w%ver, it is to be noticed that by expanding exp(—w?y) in
powers of w? we can det®rmine corrections to the main contribution.
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From (4.41) and (4.42) we obtain, for the ground state energy in the Nth VPT
order in the strong coupling limit,

N n m
N — 3/ (14 m)A1pm Ea 1/34m/2
0 g Z (n —m)! 9
n=0 m=0

x [I‘(l + g)r(l + 37’")]_11?,.,,,,(0), T (443)
where
Ram(6) = /0 " dz e/ exp(—z)
X /0 ” dyy®™*(0z + y)*~™) exp[—(6z + y)?]. (4.44)

The optimal value of the parameter 8 in both the first and the second version (see
Ref. 18), 01,2 < 1; therefore, in the first VPT order we get from (4.43) and (4.44)

EY = gP¥(eo + 1), (4.45)
where
€9 = g’Al\/;xz, (446)
3 4I'(5/4
€1 = ZA]\/;$2+ —\(-/—_.1{—)/121,‘5, (447)
1/6
z= <—19—60) . (4.48)

Upon optimization of version 1 we obtain z; = 0.5705 and the ground state energy
ESD(2)) = 0.64941/3 (4.49)
and upon optimization of version 2 we find that zo = 0.6062 and
E$)(z3) = 0.66041/3. (4.50)

It is easy to verify that the second VPT order contributes only several percent.
We have to compare the obtained results with the exact value:23

h Eexact = 0-66891/3 . (451)

The behavior of the relative energies E(()N) [ Eexact is plotted in Fig. 4. The extremal
values correspond to the optimal 8. The stability of the VPT series for values of 8
close to the optimal one is indicated in Table 4.
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Fig. 4. The behavior of the functions E((,N) /Eex for N =1,2,3 versus the parameter 6.

Table 4. The behavior of E‘(,N)/E" in dependence of N
for various values of 6.

EM /E,,
N 6 = 0.020 8 = 0.028 6 = 0.032 # = 0.036
0 0.956 1.063 1.107 1.144
1 0.981 1.006 1.011 1.013
2 0.995 1.005 1.006 1.006
3 1.000 1.004 1.004 1.004
4 1.001 1.003 1.002 1.002
5 1.001 1.002 1.001 1.001
6 1.000 1.000 1.000 1.000

4.3. Propagator

We will here also calculate the mass parameter u? connected with the two-point
Green function, =% = G3(p = 0), where

Gatp=0)= [ at [ Dpo(3)e(- 5 ) exni-sleD. (452)

Numerically, this parameter was computed in Ref. 23 in the strong coupling limit:

12 e = 3.009g%/3 . (4.53)
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The VPT series for the function G2(0) is

_a/3 1 I'n+1/2—m/4 B, 243m
Ga0) =975 20,;, ( -:nim)!/) tassmm e 45

where B,, are dimensionless coefficients of the standard perturbation theory. For
the considered first nontrivial VPT order we need the two values By = 1 and
B; = —6. In the first VPT order we get from (4.54)

G(zl) = g~ 3Gz + Ga),
where

Goo = - z?, (4.55)

Gy =

S S

2 -4. r(g) -z (4.56)
Upon optimization of version 1 (Ga; = 0) we find that

u? = 3.128¢2/3, (4.57)
and upon optimization of version 2 ((')Ggl)/az =0)

u? = 3.078¢%/3. (4.58)

We can compare these results with the exact value (3.33) and get satisfaction.
With the use of the propagator G2(p) we may compute the vacuum energy by
the relation?!

= [F0-630)-Gw), (4.59)

where G20(p) is the free propagator.

It is of interest to employ a more simple version of VPT with one variational
parameter, say, x, and @ is put zero. Just this one-parameter VPT will be used in
the next section for constructing the effective potential. In the first order for the
two-point Green function we obtain

0 = [ e (- ){Ao(p, )+ 5o dolp )+ A1 9|} oo

-,

where
AO(p) 22) = (p2 + z2)—l )
6
Mip ) = - (0P 427

22 =W 4+ iuxV1—«a.
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Inserting (4.60) into (4.59) we get

EO(x )ﬂ_{r(\?}/_tt)\/_ [_%_F(_\?’/_{r_“l+g%ﬁ]}, (4.61)

and upon optimization of version 1 [the expression in brackets in (4.61) is put to
zero] we find that
E{D(x1) = 0.645¢/3, (4.62)
whereas version 2 gives
E(l)( — 1/3
M () = 0.634¢"/3. (4.63)

And, finally, we shall estimate the energy of the first excited level, E;; to do this,
we define the energy shift
H1 = E1 - Eo . (464)

Then, using the spectral representation for the propagator

Ga(p) = 2 E i | OfEln) ?, (4.65)

n-O
where matrix elements of the coordinate operator are calculated for eigenstates of
the total Hamiltonian, we arrive at the following estimate for the energy shift, (4.64):
2Gg(t = 0)
Ga(p=0)
By analogy with the sum rules,?® we may expect a sufficiently rapid saturation of

the spectral representation (4.65), which brings y; and ;t(l ) closer to each other.
In the first order of the one-parameter VPT we get

pm<pt,  uP= (4.66)

) = 1.763¢'/3, (4.67)

whereas the exact value is?3

pexaet = 1.7269"/3 (4.68)

4.4. Effective potential

Consider the generating functional for the Green function (we employ the pseudo-
Euclidean signature in the n-dimensional space, keeping in mind applications in
field theory)

wmz/ummuwm+uwn, (4.69)

where
(o) = / dtJ(t) - o(t), (4.70)

S[p] = So — m3S — ¢Sr. (4.71)
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The effective potential is usually constructed in the quasiclassical approximation
based on the expansion in powers of the number of loops.26 In our case this method
gives the one-loop potential

oop _ 1
Vi *® = VM + 12947, (4.72)

which is mcompletely unfit for the description of the nonperturbative region..
In this section we will compute the effective potential by the VPT method. To
this end, we introduce variational parameter a2, rewriting the action in the form

Sle) = (so —-m?§ - ?s’) - (gs, - “%52) i (4.73)

The effective potential is obtained from the effective action when the field con-
figurations are constant, pg = const, and in this case the variational parameter
introduced in the form a2/T will be independent of the “volume” T of z space.

Expanding the exponential of (4.69) in powers of ¢S; — a252?/T and using the
above-expounded procedure, we get

W[J] = exp (—i%)T‘” /m 2‘/_exp< E)

00 n d n—-k 1
X g kg (n— k) ( ) k!
x [ Dit-g81)* expli(So - M5 + (), (4.74)
where
M2=m?+\fe-a-v, (4.75)

and upon differentiation with respect to ¢ we should set ¢ = 1. Denoting the
perturbative expansion coefficients for the functional W[J] by w;[J, M?):

we[J, M?) = ('fcf)k [ / dt - J‘f:(t)]k - exp (% (JAJ)) , (4.76)

where
A(p) = (p* =M% +i0)7!, (4.77)

we obtain from (4.74) in the Nth VPT order

oo 2
M = exp (=i T )22, [T 4 o0 ( T_”)
w [J]—exp( 14)T ‘/_oo2ﬁexp( i~

% i > ((nl_)"k')' ( )n-k.(det %)—mww, M?. (4.78)

n=0 k=0
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The functional determinant in (4.78) is calculated by the relation det(---) =
exp[Sp In(- - - )], and the result is

2 2\ —1/2
(det ZT:—A':—Z) = exp {— i % [(M?)? ~ (mz)‘/2]} . (4.79)

In the first VPT order we get

o0 2
D = exp [— i %) TV? . dv (_Z"_)
wiJ] exp( 14>T /_oo 2\/;exp i

w1 d -~
x [1 + (w—o - d—alnwo)] , (4.80)
where
1J2 02 1
SW =33+ 7~ (MO =@, (481)
@o = exp| T —Lz— - l[(M2)l/2 — (m*)'? (4.82)
IM? 2 ’ '

w _ . [3 1 J? J4

wo = —ng[Z 'm + 3 (M2)5/2 + (M2)4 . (483)

In the expressions (4.81)-(4.83) we take constant sources, J = const, which is
required for constructing the effective potential.
Introducing the generating functional of the connected Green functions

Z[J)= (T) ' WmW[J], (4.84)

we obtain for the effective potential the standard expression

Vert[wo] = Jpo — Z[J], (4.85)
where J is derived from the equation
_ dz[)]
Po=—y - (4.86)

The intregrand of (4.80) contains a large parameter, T', in the exponential and thus
that integral may be computed by the asymptotic method of a stationary phase.
Then in the first VPT order in the strong coupling limit (m? = 0) we get

ZO[J) = ZolJ) + Z1[J], (4.87)
ZolJ] = %XJ;; - g(M2)‘/2, (4.88)

Zi[J] =

2 2 4
1M 31 J J ] ’ (4.89)

1 a2 1
4 J2? +8(M) -9 4M2+3(M2)5/2+(M2)4

Jo. e
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where M? is a new variational parameter computed by the optimization proce-
dure. The effective potentials obtained from (4.86)—(4.89) and corresponding to
the first and second versions of optimization almost coincide with each other. The
corresponding graphs are shown in Fig. 5.

8 —mmm™—r—————————

B

Fig. 5. The effective potential Ve(;) .

To compare with numerical results for Ey and u?, we should know the expansion
of Ver(po) about the extremum. Solving the equation of optimization, Z; = 0
(version 1), we get

3 J?
2 _ a2 L4 1
M? = M [1 + 3 +0(J )] : (4.90)
where
M2 = (69)*/3. (4.91)
and then the effective potential reads
VP (po) = E{T+ ‘2” w3 +0(ed), (492)
where
E{ = -2-(6 g3 =0.681.4"/2, (4.93)

phy = M3 =3.302.¢°/%, (4.94)
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to be compared with the exact values given by (4.51) and (4.53). The second version
of optimization leads to the same values for Ey and p?.

As for the behavior of V.a(wo) for large fields o, it may be found [(4.86)-(4.89)]
that

Ve(é)(ﬁPo) ~49 <P3 ) Po — 0. (4.95)
Note that the equality u> = M¢ from a field-theoretical point of view means

. that the variational parameter M? is nothing else than the renormalized mass of
the field . This connection will also hold true for spaces of larger dimensions.

4.5. p?* oscillator

Now we formulate the VPT method for the ¢** anharmonic oscillator (as one-
dimensional model of field theory with interaction of Ap?*). In this case we also
consider the 8 Ey /8¢ quantity, which is connected with the 2k-point Euclidean Green
function by the expression

T2 = g e G (0), (4.96)

where the dimensionless 2k-point Green function takes the form

2
sz(()) =N"! /Dtp <p2k(0) exp [— (So + w-? Sy + S2k>] s (4.97)
(d2
N = /D<pexp [— (So + ) Sa + Szk>] s (4.98)
w? = m2g~HT . (4.99)

We introduce an auxiliary functional in the form
A=0S5,+ g52 ,

with arbitrary parameters § and v, for constructing a new expansion, and rewrite
the action as

S= S(') + i’nt )
where

2
s:,:so+f2—52+A’=, S, = Sy — A*.

We carry out the expansion in powers of the new action of the interaction Si,.
Then, the VPT series is written as

G = NS [ Do O-Sul exp(~5). (4100
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Again, using the fact that the exact value of G21(0) is independent of § and v, we
can use any optimization condition. Let us use the asymptotic optimization. For
that we must find the asymptotic form of the functional integral

/ Dip(A* ~ Sy )" expl—(So + 4%)] (a0

for large n. We use substitution ¢ — n!/2*¢ and the functional method of steepest
descent to determine the saddle point function ¢y which gives the basic contribution
to the functional integral (4.101):

wo(t)=i(@{coshm—l)ﬁ(t-to)]}-‘) o

v 2
=9 b= (1 — D[po])A¥~po] ’ Dlpo] = 4%lpo] - Salal,

where the parameter ty reflects the translational invariance of the theory.b The
contribution of the distant terms of the VPT series will be minimal when DJp] =
This requirement leads to the relation between the parameters # and v:

9 k-1y ¥4
s | (2 - 1>r(———1)

vopslf] = § — ot ( 1)

The is a limit: limg.oo ¥(#) = 1/0. The remaining variational parameter 8 will be
fixed proceeding from the finite number of expansion terms of VPT. Using again
our technical trick and having in mind the intermediate dimensional regularization,
as well as introducing differentiation with respect to the parameter a in order to
achieve any power of A, we find in the strong coupling limit

22
Gai(0) = E Z ])|( ) / du F(u) [1_'_,“0(;]]_( a))l/k]k(j+l) a=0

n=0 )—0

(4.102)

(4.103)
where
s witiu(l— o)k
T 14 iuf(l - a)l/E

9;(z*) = (—;X / Dy ™ (0)S] exp [— (So + 5;'5)] :

9j(2?) are ordinary coefficients for perturbation theory series. We can establish
their connection with the A, coefficients for the expansion Ey(g) in the perturbation
theory series:

(4.104)

Eo(g) = —+mEA (=&)"
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The corresponding expression has the form

2y _ (1 +7)A14
9 (=) = e

Then, in the Nth order of our approximation we obtain (if ¥ = vopt and w? = 0)

B = (k4 g 3 30 (s (1)

n=0 j=0

y {F [k(j +21) —j] r [k(j +21)+j] }‘1 Ruy(0),  (4.105)

TEE3VES)

where

Roj(®) = [ doexp(-z)e™ 5!
0

x / dyy™ 5 02 + )P expl—(8z + )" (4.106)
0

The calculational results for different k and for various optimization procedures are
shown in Table 5. The exact numerical results for Fy were taken from Ref. 23. The
ground state energy E((,s) (k = 2) for different g(m? = 1) is shown in Table 6.

Table 5. The ground state energy E‘(,l)[g]
for different k (g — o0).

k 0 ngacl Lq] E‘()l ) Lq]

2 0027926 0.668g1/3  0.663g1/3
3 0038009 0.680g1/%*  0.698g!/4
4 0040149 0.704¢1/°%  0.7094!/%

Table 6. The ground state energy El()s)(k = 2) for
different g (m2 = 1).

g Egract Ess) Gopt Error (%)
0.1 0.559 0.56407 0.0255 0.906
0.5 0.696 0.69793 0.0246 0.277
1.0 0.804 0.80557 0.0241 0.220
2.0 0.952 0.95334 0.0218 0.141
50 2.499 2.50322 0.0215 0.141
200 3.931 3.93627 0.0215 0.134

1000 6.694 6.70317 0.0215 0.137
8000 13.367 13.38603 0.0229 0.142

20000 18.137 18.16315 0.0229 0.144
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We use the ratio connecting the ground energy level with the propagator:
kE+1 [ d
Bo=—¢ 2p -G'MGPN. (4.107)

Assuming that § = 0 we can rewrite the expression (4.103) in the form

Gar(p) = EZ J)u( ) / WP G| (4.108)

n= O]-O
22 = W 4 iur(l — )k,

where

1 1 )
G(p) = o g(k) P +oe (4.109)

g(k) and the results of calculation are shown in Table 7.

Table 7. The results of calculation of E‘()l)[q] in the
case 6 = 0,

ko g(k)  E=etfg]  E{[g]  Error (%)

2 12 0.668¢1/3  0.645¢1/3 3.41
225  0.680g1/*  0.602g1/% 11.49
4 105 0.704g'/%  0.602g1/5 14.45

Finally, we consider the construction of a nonperturbative effective potential
using the proposed method. We introduce a variational parameter, by analogy with
the previous case, as follows:

2 k E
m a a k
Sle] = (So—- - Sy — =T S ) - (952k - g1 Sy ) .
Further, expanding the integrand exponent in powers of the new interaction action

and making some transformations (in particular, the forward and inverse Fourier
transform), we obtain

Wi = %/: dv/_z dC exp [iQ (vC — C*)]

0 n -1 n—j d n—j 5
PP ((n-)j)! (E) wilh M,

wilJ, M?) = —"")J [/ aﬂ,, ] exp (—%(JAJ)),

A(p):(pz—M2+i0)'l, M?=m? 4 e/*ay
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In the first order of VPT (J = const) we find that

WiJ] = % /_ Z dv /_ : dCexp[iQS(v, C)][1 + iRAS(v,C)],  (4.110)

where
S=Cv-C*-— %(MZ)% , (4.111)
AS(v,C) = (M)} — g(2k — 1)1 [—%(Mz)'%]k . (4.112)

We require the optimum value of the parameter M? to correspond to the minimum
of the absolute value of AS(v,C):

M?: min |AS(v,C)|.
In the case of k being even, the optimization condition is AS(v,C) = 0, and since
VP (po) = B + 0(#3), (4.113)

the ground state energy is found from the stationarity condition for the function

S(v,C):

EM = —S(vy, Cy), (4.114)
where
as as
%Cfco—o, BECfCD_O.

Then we have for even k

(M2)V? = -;—[Skg(2k ~ )T

4.115
k+1 ( )

2)1/2
T (M?#)=e.

ED =
For k = 4 we find that E((,l) = 0.792¢'/5. For case of k = 3 the optimization will
consist in choosing such a real positive value of M2 at which |AS| = min. Since

9n1/2
AS = (Mlg +g18_5(M2)—3/2’

the parameter (M2)!/2 is 2.866 A1/4 and for the ground state energy we obtain
E(Y = 0.6396¢/%. The corresponding exact value can be find in Table 7.
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5. Asymptotic Behavior of Remote Terms of the Variational
Perturbation Theory Series

Now we will consider the massless * theory in the four-dimensional Euclidean space
with the action :
Slel = Solel + ASale], (5.1)

where the functionals So[p] and Ss[¢] are as defined by (2.2).
We shall construct the VPT series for the vacuum functional

W0l = [ Dpexs(-5le). (5.2)

Generalization of the method to the Green functions presents no problemé. As a
variational addition, we will employ a functional of the anharmonic form

Sle] = 62S3[¢) .- (5.3)
Then the VPT series for the functional (5.2) is written as
[o+]
wo] = w.[0,6],
n=0 (5.4)
~1)"
wal0,0) = L [ Dpexp(-Siate,n,
where

Senlp, n] = Soly) + 62S3[¢] — nIn(AS4fp] — 62 S3[p)) - (5.5)

The basic contribution to the asymptotics of higher order terms of the series (5.4)
comes from the configurations of fields that obey the equation

Rl (5:5)
Varying (5.5) we obtain
~ 8%p0 + %% =0, (5.7)
where
!
* Dlpd + 20254(;[2] (n+ Dlpd) ’ (5.8)
DIy} = ASalp] - 6°S3le] - (5.9)

The solution of Eq. (5.7) is of the form

po(z) = i\/‘?(—x—_—é‘)—”—”z (5.10)
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The arbitrary parameters zo and u stand for translational and scale invariance of
the model under consideration.
Next, it is convenient to define new variables

g =4C,A, 0% = gx . (5.11)

Here C, = 4!/(167)? is a constant entering into the Sobolev inequality (see, for
instance, Refs. 27 and 28):

Sale] < 4C,S3[e) - (5.12)

For the functional (5.9) of the functions (5.10) we obtain

(167%)?

a?

Dlpo] = 4 g(1-x)- (5.13)

Inserting So[e] and (5.13) into (5.8) we get an equation for the parameter a whose
solution is of the form

(T t) @)W e

In the limit of large n we have

1-
Dlpo] ~ 12X (5.15)
X
and in the leading order in n,
(_1)" n 1-x "
W,[0,60] ~ ekl G exp(—n). (5.16)

When the next orders in n including the functional determinant are taken into
account, a multiplicative factor dependent on n appears in (5.16). However, it is
not dominating and does not influence the convergence properties of the series.

From the expression (5.16) it is seen that the series absolutely converges for
x > 1/2 irrespective of the values of the coupling constant g; and, as follows from
the Sobolev inequality (5.12), the VPT series for x > 1 is of positive sign. When
1/2 < x < 1, the terms of the series (5.4) at large n form the Leibniz series. Here
again the value x = 1 corresponds both to the change of the regime of the VPT
series and to its asymptotic optifization.

The asymptotic behavior of remote terms of the VPT series, when an anhar-
monic variational procedure is performed, is determined by the behavior of the
functional integral

Jy = % Dyp(A%p] ~ Salp])¥ exp{—(Sol¥] + A’[¢])}, (5.17)
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where the functional A[yp] is as defined by (4.9). Making the change ¢ — k'/4p we
derive

Iy = %’;-Ik, (5.18)
Iy = / Dy exp(—kSenlp} — k'/2S0[¢]) , - (5.19)
where
Sealp] = A%[¢] —In D[y], (5:20)
Dly] = A%[p] — Suly). (5.21)

The integral (5.19) contains a large parameter k in the exponential and, therefore, its
asymptotics can be found by the Laplace functional method. The main contribution
to the integral (5.19) comes from the configurations ¢o(z), which minimize the
effective action (5.20). The corresponding equation is

— %0 + apo — bpd = 0, (5.22)

where
a= % : (5.23)
b = 2{6Alpo](1 - Dlga))} " (5.24)
It is convenient to pass to the function f(z), which satisfies a differential equation,
(=0° + 1)f(z) - () = 0, (5.25)

and is connected with the function go(z) by the relation

pole) = | [21(a0). (5.26)

We define the constant
C= / dz fi(z). (5.27)

As was proved in Ref. 1, the spherically symmetrical solution of a motion equation
provides the absolute minimum of total action. By using this fact and Eq. (5.22)
it is easy to show that spherically symmetrical solutions provide a minimum of S.g
as well. The constant (5.27) depends on the space dimension and can be evaluated
following, for example, Ref. 18. In the case under consideration the exact value of
C is not important. The functionals Ss[po] and A%[po) are expressed via (5.27) as
follows:

Salpol = 77 (5.28)

021'
A?[po] = -, (5.29)
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where we define the parameters

a = Ca®"?, (5.30)
92

Three parameters «, b and 7, as follows from (5.24), are connected by the relation

ar(l1 - Dlpe)) =1, (5.32)
where )
D[po)] = "_("‘_;2‘—) (5.33)

Thus, as before, only two parameters are independent. In the leading order in k we
obtain for the integral (5.17)

Ji ~ k=2 D* o) exp{—k(A%[po] - 1)} . (5.34)

By using the equation of motion (5.22) it is easy to see that Afpo] = 1. The region
of the values of parameters at which the VPT series is convergent is determined by
the inequality

|Dlwo]| < 1. (5.35)

The best choice of the parameters at which the contribution of remote terms of the
VPT series is minimal (asymptotic optimization!®!®) implies the condition

Dlpo] =0, (5.36)
leading to the following connection of the parameters:

ar=1. (5.37)

Thus, the single independent parameter remains which also can be fixed by the
optimization of first terms of the VPT series. The asymptotic optimization condition
for original parameters 6 and x is written as

1 §
16 \*~

In particular, in the one-dimensional case C' = 16/3 and the condition (5.38) trans-

forms into (4.36).

6. Gaussian Effective Potential in Variational Perturbation Theory

In this section the Gaussian effective potential (GEP) will be derived on the basis
of the VPT under various choices of the variational addition. In the Ap* theory in
the n-dimensional space the GEP has the form?®
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Veep = V. + AVgep, (6.1)
2\n/2
AVgep = £ ')1 Ap + %(mz - 2214,
+30(2%)" 2 A2 4+ 6A (%)M 1A, 07, (6.2)

An = p¥*T(1 = n/2)/(4m)™?, n=d-2, d=1,2,...,

and 2?2 satisfies the equation
22 = m? 4+ 120p% + 1204, (22?1, - (6.3)

We will consider the ¢* theory in the n-dimensional space with the pseudo-
Euclidean signature. The action functional looks as follows:

Stel= [ az[ 5007 - Sp 20 (6.4)

The generating functional of Green functions reads

Wil = / Dy exp[i(S[g] + (J9))] = exp[i(S[pc} + (Jpe))} D[J], (6.5)

where
D] = / Dy exp(—iAlg]), (6.6)
Al = / dz [%p(az + m? +12292)p + A p.p° + A¢4] (6.7)

and the function ¢, satisfies a classical equation of motion
B2+ mYp. +4rp> = J. (6.8)

In the standard one-loop approximation only the terms quadratic in the fields ¢
are retained in the expression (6.7) for A[p]. In this case the functional integral for
D[J] becomes Gaussian.

We shall evaluate the quantity D[J] by means of VPT. Let us first consider the
harmonic variational procedure. We rewrite the functional Afy] as

Alpl = [ da[ 300"+ )+ 3 (4o + o - "gw)] L 69)

where
22 =m? + 12207 + x>,
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As a result, the VPT series for the quantity D[J] is by the harmonic variational
procedure transformed to

9% + 22 -1/2 o (=iAym

where
Alp) = (p* -2 +i0) !,

Pe) =i (z)

Considering (6.10), let us restrict ourselves to the first two addends in the sum
which give rise to the first nontrivial approximation. The contributions to the
effective potential, corresponding to these addends, equal

Vo = %z")Ao(z?), (6.11)
Vi=2A [3A (2% - —Ao(z"’) (6.12)
where F(l /2)
2y _ n 2\n/2-1
AO(Z )"‘ (4 )n/2 ( ) . (6’13)
The optimization condition
d(Vo + Vl) _
1.2 =0 (6.14)

gives the equation for the variational parameter 2%
22 = m? 4+ 12297 4 1204(2%). (6.15)

With the help of (6.15) in the considered order of VPT we find for the effective
potential the expression

1 1
Ver(p) =Va+ Vo + Vi = 5'"2902 + ¢t + ;zon(Zz)
1
+ 5(m2 — %) Ao(2%) + A[3A3(2%) + 69% Ao(27)] . (6.16)
When comparing (6.1)-(6.3) with (6.13), (6.15), (6.16), we easily see that both of

the functions (6.2) and (6.16) and Egs. (6.3) and (6.15) for the massive parameter
coincide with one another.
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Let us now calculate the quantity D{J] by using for (6.5) the anharmonic varia-
tion of the action functional. We choose the anharmonic addition in the form S52{¢],
where

Sle) = 5257 / dz o¥(z). (6.17)

The coordinate space volume Q in (6.17) appears because the derivation of Veg from
the effective action requires us to consider a constant field configuration. Then the
parameter optimizing the VPT series x in (6.17) does not depend on . As a result,
we find that

D) = g 5_71,): / Dp{A(¢* +40c¢°) - Sle]}”
X exp (— i{%cp((?z +m? + 12/\<p3)<p + 5’2[¢]}) . (6.18)

Any power of 52[p] in (6.18) can be obtained by the corresponding number of
differentiations of the expression exp(—i€S2[p]) with respect to parameter ¢ with
putting € = 1 at the end. As to the addend 52[g)] in the exponential in (6.18) which
makes the functional integral non-Gaussian, the problem is easy to solve by using
the transformation

exp(—ie S%[p}) =/°° 2\/_exp{ ('f :i:ﬁS"[q)]) -i%}. (6.19)

As a result, the VPT series takes the form

-k [d n—k
DU = (-1 Z ol

n=0
® dv vr T 824+ M2\ "2
X \/ﬁ/_oo mexp (1971' - lz) (det —_6_2—>
k i
X [,\/d:c(4<pc¢3 +¢4)] exp (— §(jAj)> , (6.20)
j=0

where
M? = m? + 12Xp2 + Vexv,

A(p) = (p* — M? +i0)~! (6.21)

The integral over v in (6.20) contains the large parameter {2 and therefore can be
evaluated, for example, by using the method of a stationary phase. As a result, the
effective potential in the first nontrivial VPT order reads

Vet = Ve + AVesr, AVag=Vo+ W,
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where

X

1
Vo=;M2Ao—— . Al

(6.22)
x? 2 2
V] = —TAO + 3AA0 .

Here M? is the massive parameter derived from (6.21) at € = 1 and v = vo, where
vg is the stationary phase point in the integral (6.20). The corresponding equation
has the form

M2 =m?+120p% + x2 Ao . (6.23)

The quantity Ag = Ag(M?) is determined by the expression (6.13) and represents
the Euclidean propagator A(x = 0, M2) written with the help of the dimensional
regularization.

Then, let us consider two optimization schemes of the VPT series (see Refs. 9,
10). In accordance with the first optimization version the variational parameter is
determined by the condition for the contribution of “nonleading” terms of the series
being minimal. In the present case we have to require min [V1]. Tt is easy to see that
the function V; is such that the equation V) admits a solution. This situation is,
obviously, the most preferable as the considered optimization version is performed.
From (6.22) we find the optimal value of x*:

X2 =12). (6.24)

Equation (6.23) for this choice of x?, up to the change of M 2 to 22, transforms
into the GEP method equation (6.3) for the massive parameter 22. Thus, in the
considered optimization procedure AVeg = Vo and now, by using (6.22)—(6.24), it
is easy to show that

AVeq = AVgep -

To implement the second optimization version, we should keep the parameter
M? being variational. Making use of Eqgs. (6.22) and (6.23) we obtain

11
AVe = (; - 5) M?Aq + %(m2 +12X0%)A¢ + 32 Ao . (6.25)

The optimization condition has the form
OAVerr _

e =0 (6.26)
and gives rise to the equation for M?:
M? = m? +12)p% + 12)4A,. (6.27)

Cémparing (6.27) with (6.23) and (6.24) we conclude that the two optimization
versions lead to the same result:

Ve(é) = Vgep .



1968 A. Sissakian, I. Solovisov & O. Shevchenko

Within the previous consideration we have obtained the GEP by building the
VPT series for a variational correction to the one-loop approximation. Let us derive
the GEP by another approach that does not use the loop expansion and directly
operates with the original functional W[j]. We will consider the two-parameter
anharmonic type addition to the action:

5 a? 5%
Slel = G Silel + gz Silel, . (6.28)
where

Sl = [ de o),

Silel = [ dzp(a).

The VPT series for the generating functional of Green functions looks as follows:
o0 i" -
Wil = 3357 [ eSS

a2
a
The parameters ¢ and 6 are introduced here to give one possibility of obtaining in
the integrand the terms connected with S; and S2, by differentiating with respect
to € and . Then only the interaction action S, remains in a factor in front of
the exponential. The expression in the exponential in (6.29) is reduced to the form
quadric in the fields by using the Fourier transformation. Then (6.29) is rewritten
as

b4

X exp [i (so ~m?S; —e—S2-¢ RE S+ (j(p))] : (6.29)

[ dp o0 dq .
91 _ 02 hul 4 k- § —qy—p?—qt
wij] = 0 /_m dz o= /_ W 5 exp[iQpz — gy - p” - ¢*)]

0 n n—k in—k a\™ P ke
82 4+ M2\ ~1/?
X (det —;-;——) wlJ, M?], 610
where
M? = m? + \feaz,
904 (631)
J = j+ 0%y,

and wi[J, M?] are the ordinary perturbative expansion coefficients for the generat-
ing functional of Green functions W[j]:

welJ, M?] = (‘%)k_ [ / dz ﬁ]kexp <— %(JAJ)) . (6.32)
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In the first nontrivial order for the generating functional of connected Green func-
tions

Z[j] = Q)" mW[j],

we find that
. 1 J? J?
Zbl=3 3 +1 (Mz_mz)[A” M2)2]
3 J .
~ 30 ) M,
I DA J? 1J (6:33)
711 = § (M = m®) B0 + 77| - § 3750 - )

2 J? J4
~a[pa3-+ ooz + i
Here, as before, the method of a stationary phase has been applied to the numerical
integrals. In (6.33), instead of the original a2, b*, the more transparent variational

parameters J and M? have been used. The optimization conditions in this case

read
8z 0 8z

a; ' amr T
where
Z(l) =Zo+ 2.
However, it is more convenient here to define the new variables
J M?

From (6.33) we get
ZM[j] = jz - lmzxz + 1.1 m2yAo(m?y)
2 2 n
- %mon(mzy) — A[3A%(m%y) 4+ 6A0(m?y)z® +2%].  (6.35)

The optimization condition 82(1)/8z = 0 yields the equation

m?z + 4Az(3A0 + %) = . (6.36)
By analogy, requiring 8Z()) /3y = 0 we get the equation

m?(y — 1) = 12A(A¢ + z%). (6.37)

Making use of (6.36) and (6.37) we easily find that

dz1)  pzM

(p:d—j=7j——=z. (638)

IR e
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For the effective potential we obtain

1 1 1 1
Vet = imztpz + (;; - 5) Mon(Mz) + §m2Ao(M2)

+ A[BAZ(M?) + 6A0(M.2)qp2 +¢Y]. (6.39)

As follows from (6.37) and (6.38), the parameter M? satisfies Eq. (6.27), by means
of which it is easy to show that (6.39) coincides with VgEp.

7. Renormalization and the Nonperturbative 8 Function
for the ¢* Model

The massless ©* model in four dimensions has the Euclidean action

Sle] = Sole] + Stlel, (7.1)

where
Soly) = % / dz p(—0%)p, (7.2)
st =4 g [azet. (1.3)

As is well known, the series of perturbation theory for the generating functional
of the Green functions

wlJ] = /qu exp (— Sle) + /d:cJ -<p) (7.4)

diverges. A formal argument consists in a meaningless functional integral for a
negative coupling constant. The function W[J] as a function of g does not appear
as the analytic function for ¢ = 0. The concrete asymptotic behavior of higher
order terms can be determined by the functional saddle point method. The large
parameter is the number of the order term. The main contribution to the functional
integral (7.4) comes from the configurations of the fields ¢ proportional to the
positive power of the large saddle point parameter. In this case, the functional
interaction (7.3) cannot be considered as the perturbative term in the comparison
with the expression (7.2). Consequently, it appears in divergence of the perturbation
series.

The idea of the VPT method consists in the organization of a new effective
functional interaction, S;. We expect that this functional can be considered as a
small value when compared with a new functional Sj. For the realization of this
idea we must be careful about the possibility of making the calculation. Practically,
we must use only the Gaussian functional integrals, i.e. the form of S[i] should be
such that the functional integral in (7.4) can be reduced to Gaussian quadratures.
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Let us consider the VPT functional

Syl = 6°S3[¢) (7.5)
and rewrite the total action (7.1) as
Slel = Sole] + nStle], - (16)
where
ole] = Sole] + Slel, (1.7)
Stlel = Sily] - Slel. (7.8)

In this case, the expansion of the expression (7.4) is carried out in powers of
1. After all calculations we should put 5 = 1. The parameter 62 in Eq. (7.5) is a
parameter of the variational type. The initial functional (7.4) certainly does not
depend on this parameter. We may take 62 so as to provide the best approximation
with a finite number of VPT series terms.

It is convenient to define the new parameter ¢ by the relation

2 —4C, (4”)2 B, (7.9)

where C, = 4!/(167)? is a constant entering into the Sobolev inequality:

/dw“ <C, [/dz’tp(—az)tpr. (7.10)

The parameter ¢ is fixed if we require the contribution of higher order terms of
the VPT series to be minimal. This way of determining a variational parameter is
called the asymptotic optimization of VPT series, and gives the value t = 1 (see
Sec. 5 and Refs. 19, 30).

After expansion in the powers of § we find that the rest contains the S[p) in the
exponent and, consequently, we have a non-Gaussian form of the functional integral.
However, the problem is easily solved by implementing the Fourier transformation.
As a result, Green--function Gz,, in the Nth order of VPT takes the form

(N) 242) n 2" @ &,
/ daa’ " !exp(—a - 0 a Z "a ’;) B Tk +9) (7.11)

Here the functions g¥, are ordinary perturbative coefficients for the Green function
Gs,. To calculate them, the standard Feynman diagrams can be used.

It should be stressed that expansion of the expression (7.11) in powers of the
coupling constant g contains all powers of g. The first N terms of this expansion
coincide with N terms of perturbative series.
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Let us consider the procedure of renormalization. Instead of the field ¢ and the
coupling constant g we introduce the bare field o and the bare coupling constant
go- The field ¢y is connected with the renormalized field by the relation pg = Z1/2,
The divergence constants Z and go are obtained from VPT expansion. The constant
Z can be calculated by the propagator G;. We will be employing the constant Z
in the first order of VPT series. From Eq. (7.11) we find that

ZM = 1(1)J,(62) + n93T(3)J3(62), (7.12)
where we define
- Ju(6%) = L/w daa’ ! exp(—a - a?6?). - (7.13)
L) Jo

The function J, (62) has the normalized condition J4(0) = 1. The connected part
of the four-point Green function in the second order of VPT has the form

02 I'(6 3 A2
— Gg’é’)(ll?) = ngoJ4(62) + * [go 1—? %4; Je(82) — 3 98Js(6%) In F] . (7.19)

In this expression we have written out only the divergence part, which we need in
the following. We use the renormalization scheme with symmetric normalization
point x2. For the bare coupling constant g, we write down the VPT expansion
90 = g(1+9a+---). The VPT expansions for 62 and J,(62) are introduced
in a similar manner. The divergence coefficient « is defined by the expressions
(7.12), (7.14) and the demand of the function finjte ~Z%G4(u?). If we change the
normalization point y — ' and use that the bare coupling constant independent
of y, we find the connection between g and ¢':

#12
9 =g+n8(g)h e (7.15)

where the 8 function is expressed as

3 Js(0%)/74(0)
A B e (YO Ay v NGV LT, @y (1)

Here the parameter 62 is connected with the renormalized coupling constant g by
Eq. (7.9) with the optimal value ¢ = 1.

The expansion of the 2 function (7.16) in the perturbation series contains all
powers of the coupling constant g. It is interesting to compare the first coeflicients
of the VPT f function (7.16) with the well-known values of perturbation theory.
From (7.16) we get

B(9) = 159 — 2.25¢° + 14.63g* — 134.445 + ... _ (7.17)

In the considered massless case, we use counterterms which containing only
divergent parts. In the framework of the dimensional regularization this conforms



Variational Perturbation Theory 1973

only to the pole part for counterterms.®! The corresponding 3 function in four-loop
approximation looks as follows (Ref. 32):

Bperturb(g) = 1.59% — 2.83¢> + 16.27¢* — 135.80¢° + -- - . (7.18)

Note that in construction of the 8 function (7.16) we used only the lowest order of
VPT. For this approximation the expressions (7.17) and (7.18) are in agreement.

As follows from the expression (7.16), the 3 function is monotonously increasing
and has no ultraviolet stable point (see Fig. 6). For a large coupling constant, the
B function has the asymptotic behavior

2a00 T —
5 (9) ]

1800
1200 F Y,
: / ]

i ]

600 - ]
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/ g

O 1 1 : i 1 1 [l L L i i i 1 1 3 1
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Fig. 6. The behavior of the nonperturbative 8 function.

B(g) ~ 2.99¢%/%. (7.19)

The degree of g in Eq. (7.19) is larger than the linear increase of the 8 function
that was obtained in Ref. 33, and is smaller than the square increase that was found
in Ref. 34.

8. Pure Yang- Mills Theory

Let us consider pure Yang-Mills theory from the viewpoint of the possibility of
convergent VPT series construction. The corresponding action reads

SymlA] = %F‘“’F,,,, , (8.1)
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where we use the conventional matrix notation:
A, = AZT“ s Fu = F;“,,T“ , (8.2)
e FLL = 0,40 - 0,45 + gf e AL A, (8.3)

T, being the anti-Hermitian generators of the SU(N) group in adjoint representa-
tion. For definiteness we shall work here with SU(2), where

fabc - Cabc (84)

and ¢*¢ are absolutely antisymmetric tensors with €123 — 1, but results hold for
any group SU(N).
We split the action (8.1) into free and interaction parts:?

Sym[A] = So[A] + Si[4], (8.5)
SolA] = / ddz[ - 41(6,,A: —8,A%) - %(Ag)Z] , (8.6)
Si[A] = sP14] + 59 (4]

= / diz (— gebe 4D ASom AY — 41g2c“°ce°d/Af,A5A{;A;) @)

Let us choose a VPT functional in the form

BlA] = g / d92(8, A)2 (8.8)
and rewrite the action Sy as follows:
SymlA] = So[A] + Sj[A], (8.9)
SolA] = So[A] + B?[4], (8.10)
SilA] = $1(4] - B2[4], (8.11)

which corresponds to the anharmonic variational procedure. As before, to study
the convergence properties we interested in here, it is enough to restrict ourselves
to consideration of the vacuum functional

2[0] = / DAexp(=Sym[A]), (8.12)

where the functional measure is usually defined as

DA=T]JT a4:.

Ha T

2The term (1/2)(Ag)? in (8.6) fixes the Hamiltonian (temporal) gauge. The advantages of this
gauge choice will be clear later on.



Variational Perturbation Theory 1975

The corresponding VPT series reads

[ 0]
zZ=Y 2., (8.13)
n=0

2= S8 [ DAlSIA) - BHAT exp{-ISu(A) + BXAN) . (8.14)

To study the asymptotic behavior of remote terms of the VPT series, we shall
now apply the n— saddle point method investigated in the previous sections by
considering the scalar case. After the change A% — n!/4A4% the term of the VPT
series Z,, is written as

Zp = S / DAexp (— nSeal[A] - "—3/45'}3)[14] - "-I/ZSO[A]) ) (8.15)

n!

where
Sen(A) = B*(A) - In[S{*)(4) — B*(A)] (8.16)

is an effective action that governs the leading asymptotic behavior of the VPT series
terms.

It is of fundamental importance that only the part of Sy of the fourth power
in the gauge fields S{*[A], which is given by (8.7), gets into the effective action.
This circumstance allows us, as we shall see later, to reduce our consideration to
the scalar case investigated in the previous sections.

Taking advantage of the formula

€abc€®Y = 8pabes — 845 6ca, (8.17)

we can represent S}“)[A] as follows:

S14) = ¢ / d4z[(AS AZ)? — (A% A2)?). (8.18)
Making use of (8.8), (8.16), (8.18), we write the set of saddle point equations
é
S“ =0
5As
as ~ ~ ~ -~ ~ ~ - -~
- 62A; - QA)[(AVA)) AL — (A3 A))AT] = 0. (8.19)

Here we have introduced the notation fiz for the saddle point function and

2¢2
B[A)6(1+ D[A])’

Q[A] = (8.20)

where
D=5s®_ B2, (8.21)
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The saddle point equation (8.19) gives rise to the relation
BlA] = Q@SP4
(4] = mQ 1 (4]

By using this relation we get

BY[A] =1,
SWIA] = 1+ D[A].

(8.22)

Let us stress that the expression (8.22) has been obtained without using an implicit
form of the solution to Eq. (8.19).
Let us conjecture® the following form of searched solution:

(8.23)

where the first equation is in accordance with our gauge choice, n® being an arbitrary
vector in the color space. Using (8.17) we obtain

(A2AN) A2 = 2n%A¢ = n?pPe;qn’,

(A2ANAS = p?(2A? — nin; A) = n?p3eiapn® .

£ 3

(8.24)

Substituting the ansatz (8.22) into (8.19), and making use of (8.23), (8.24), we get
the equation

0%*p +n’Q[A(p)p® = 0. (8.25)

We shall now evaluate the quantities Q[A(p)), S}”[/i((p)], B?[A(p)] and D[A(p))
in terms of the scalar function ¢ by using the relations (8.17) and (8.23). A short
calculation gives

SPUA) = 20°(7)? [ d'20(a) = 4? sl (8.26)
B2[A(p)] = 4(n?)* [ [t ¢(Z)(—32¢)] —4@?Ap), (827)
DIA()] = 4s%)2(Sil¢] - A%I6]) (8.28)

QlA(p)] = 2—33(2 (0?)?A[¢]{1 + 4(n’)* Dle]}) " . (8.29)

It reminds us of the wellknown 't Hooft-Poliakov monopole solution, where the space and
isotopic degrees of freedom are mixed.
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It is easy to see that, except for dependence of the arbitrary color vector module
n?, we have the same equation as a saddle point equation determining the large
order behavior of the VPT series in the scalar case with the interaction action

sl =% / d'z p*(z) (8.30)

[compare (8.26)-(8.29) with the scalar case in Sec. 5). However, this dependence of
n? is pure imaginary since it can be removed by means of the substitution

¢ — (20%)" 2.
Then we have eventually the following set of equations instead of (8.25)—(8.29):
o+ QUA(p)le* = 0,
: 292 n -1
QIA(p)] = -~ (A(p){1 + DIA(RIN ™,

D[A(p)] = Si[p] — A%[¢],
SealA(p)] = A%[¢] — In D[A(p)],

and Sy[p] is determined by (8.30). The subsequent consideration performed in
complete analogy with the scalar case has been studied in detail in Sec. 5.

Let us note in conclusion that we have represented here one of the solutions
of (8.19) providing the minimum of Seg. This means that there exists a solution
giving rise to an absolute minimum of S.g which, in particular, may coincide with
the found one. However, even if it is not so, it would not change our main conclusion
about convergence of the VPT series (8.13) and could lead only to another value of
the VPT parameter.

9. Coupling to Spinor Fields; Yukawa Model

In the previous section we have considered pure Yang-Mills theory and constructed
convergent VPT series by using the anharmonic VPT procedure. Having in mind
application to QCD, it is of great interest to introduce couplings into spinor fields
and to investigate how the fermionic fields influence the convergence properties of
VPT series. To this end we first consider the simplest case of coupling the self-
interacting bozonic fields to the charged fermions—Yukawa model.

We consider a Yukawa theory with a bozonic self-interaction in Euclidean space-
time dimension d < 4. The corresponding VPT series for the vacuum functional®
looks as follows:

€As was earlier argued, the term with a source did not influence the convergence properties because
of its lower power in fields.



1978 A. Sissakian, 1. Solovtsov & O. Shevchenko

z[0) = iz,,,

Zn= 571 f a7 [ DDl (9.1
x exp (= {(Sole) + So[#, ¥] + A2[y])
-+ A(St[, ¥ 0] + Sile] — A%[g])}),

.‘-‘

where
1 , , m? 2
Sole) = 5 [ de(00)? + 2 [ aeter,

Sl =h [dzy.
The VPT functional is chosen to be in anharmonic form:
2

Alp] = [ﬂ/d:c(&p)’.}. %z/dz(w)z]

Sol, 9] = — / B PO+ wy, (92)

S99 = v [ atz iy, (9.3
and the integration contour lying in the complex A— plane surrounds the point

(value of VPT expansion parameter) A = 1.
Integrating in (9.1) over spinor fields we obtain

Z, = f /\—f% / Dy exp (—{(Solel+A%[¢])+A(S1[p]~ A%[¢])~In Dlp; A1}, (9.4)

where the normalized fermionic determinant

Dlg; 3] = det(id + 4 + Ap)
’ det(id + p)

A=A, (9.6)

is a nonlocal functional of the field . It is clear that due to the positive power of
the determinant only the large values of ¢ are “dangerous” for asymptotic behavior
of Z,, i.e. it is only for large ¢ that the contribution of Dip; ] in asymptotic can
become essential as compared with the bosonic one and may lead to nonconvergence
of the series at large n. Indeed, as long as det(id + p + Xgp) is an entire function of

, (9.5)
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X in the whole complex plane3® (for regular ¢ fields), nonanalytic terms in X may
arise only from the nonconvergence of the functional integral at a large ¢ field.d
On the other hand, when

the quasilocal (Tomas~Fermi) approximation becomes available:3
Gz, y,30(z)) = Ge(z, i Ap),  1Bulne(@)lz -yl <1,

where G.(z,y; Ap) is the fermionic propagator in a constant field Ap.

The intuitive basis for this approximation is the following: It is well known that
the large order behavior of the fermionic determinant is governed by the order p of
the determinant as an entire function of a charge.3® On the other hand the value p
is determined by the number of zero eigenvalues of p+p— Ap:

(ﬁ+ﬂ—xn¢)¢n=0'

The number of zero eigenvalues of p+ p — X is the same as that for (p+ ny A-o.
Their asymptotical distribution as X — oo for a given “external” field ¢ (which
is equivalent to ¢ — oo for a given fixed A) determines p. Evidently, large A is
the same as small A and g, and one expects the semiclassical approximation to be
good as X — oo (or, equivalently, ¢ — o0). Therefore we can conjecture that to
estimate large order behavior of D[y; 1] it is enough to treat ¢ in D[A ) as if it
were quasiconstant by setting

5, = O(R) = 0.

Thus, we conclude that if we are interested in the leading contribution in n, then
we can restrict ourselves to the large, smooth enough values of .

Let us return to the quantity (9.5), which we wish to calculate. It can be
rewritten using the reflection symmetry:

det((id + p + Xp)(—id + u+ Ap)]
det[(id + p)(—=i0 + p)]

Calculating the corresponding products and making use of the well-known relation

D?[y; :\] = 9.7

In det ||A|| = spIn|lA]l,

we get

In D[p;A] = % Spn{[-8% + (n + Ap)’ + 2] (0% +#5)7Y, (9.8)

dThis has to be contrasted with what would happen if ¥ and ¢ were boson fields. Then the L

integration over spinor fields would give rise to det—1, so that the zeros of the determinant would
give singularities which would contribute to the large order behavior.

R
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where the symbol Sp means the trace operation with respect to Lorentz indices and
spatial variables.

In accordance with our approximation we neglect the derivative of ¢(z). Then
the trace over y— matrices yields a factor N = sp1 and the remaining part of the
calculation is identical to the scalar case of the Fredholm determinant D[V; X]:

In D[V;A] = Indet[AB="] = trIn{[-% + p® + V()](-07 + p2)~'} (9.9)

with the potential : ;
V(z) = Ap* + 22mep. (9.10)

Taking advantage of the formula
-1 Cdt B _ia
In(AB™%) = —t—(e —e ) (9.11)
0

and noticing that for |V (z)| large the integral over ¢ is dominated by the small ¢
region, and therefore we can use the approximation

e A ~ ~tBe~HB-4)

neglecting the term

t2 2 .

A, Bl = 5[-0"V(z) + 20,V(2)d,],
we obtain

00 d
trln AB™! = / % (—%‘;e—'(?’“” / d’z(1 - e V@), (9.12)
0

where the symbol tr means the trace operation with respect to spatial variables
only. Integrating over p and then over t we get

trln AB~! = _WF (_ ‘2_’) / dz{[? + V(@ - (). (9.13)

Neglecting the mass u for V(z) large we get eventually

_d
Dlp; A] ~ exp [—-% :;Sr)dz}z /dd:c Vd/"’(:c)} . (9.14)

Let us now return to (9.9) and derive (9.14) in another way, which will be useful
in the following and will help us to clarify the sense of quasilocal approximation we
use here.

We again use the formula (9.11) to integrate over ¢ in (9.12) and obtain

trin[AB~ 1]_/:1" o )dl [1+pvf,)‘ ] (9.15)
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We can see that the latter equation coincides with the equation obtained as if we
regarded V(z) as a constant, V(z) = V, and “recalled” that V(z) is a function of
z only at the final stage of calculations. Indeed, let us regard V' as a constant from
the very beginning. Then the operator AB~1 satisfies the translation invariance
property and we can use the formula

d
trlnM(z—y)=Q/(—g7'rI))—dlnM(P)’

where Q = [ d%z is a volume of d-dimensional space. We obtain the equation

d? vV
-1 [ qd p
trin[AB ]_/d z an)? In (1+p2 “2),

which, after restoration of the z dependence in V, coincides with (9.15).
By introducing the notation M2(t) = u? + tV(z), making use of the identity

1
1
ln(1+z)—/o dtm,

we can rewrite (9.15) as
dép 1

1
t B~ l'=|d? / .
rin A / zV(z) A dt @n)i 7T+ M2Q)

Performing in this equation the integration over p,

dp 1 1 ) q
-/ @r)d P+ M2~ (4m)i/2 (M4 1I‘(l - 5) ’

and then over t, we again obtain just Eq. (9.13).

Thus we conclude that in the quasiconstant field approximation the expression
for In D[p; A}, though computed for constant ¢, is used at the final stage of calcu-
lations as the effective addition to the action, where the coordinate dependence is
restored.

One notices that if d/2 is an integer, the expression (9.14) has singularities which
correspond to ultraviolet divergences of Feynman diagrams and are removed by the
corresponding (one-loop) counterterms. For instance, for d = 2 we get instead of
(9.14) the equation

Dlp; M|, ~ exp {— (T{l)W/dd’“'[_ 1‘(— ;) Valt(z) - r<1 - g) V(z)] } .

Let us clarify this procedure. We expand In D[V] in powers of V treating V(z),
in accordance with our approximation, as a constant. Thus we take as a basis for
expansion the relation (9.12) and can write

00
trinAB™! = Y Dafp; 4], (9.16)
n=1

Y1 — (—1)"/ d n /oo n—-l/ ddp —t(p?+4%)
Dynlp; Al = — d’z V" (x) | dit ——(27r)"e . (9.17)
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In dimensions d < 4, which we are interested in here, all of the terms of the expansion
(9.16) are convergent except for the first,

Dilyid) = i ()0 (1= §) [z via),

which is singular in dimension d = 2. In this case we must subtract this addendum
which is divergent as € — 0 (d = 2 — 2¢) from the divergent “exact” value (9.13) of
the determinant to obtain the finite® (renormalized) quantity,

. N 2 1% 2
In Drenlip; ] = m/d%(V—,ﬁln"; ~Vin¥ :2' V), (9.18)
or,as V/u:>1,
v N |4
Dien[p; A] = exp [é—;/dz:z (V —ViIn ‘?)] . (9.19)

In odd and fractional dimensions (9.14) is a finite quantity. In particular, as
d = 3 we get instead of (9.14) the relation

~ N
In D[p; Al],_ 5 ~ ~Ton / d3z V32 (z). (9.20)

Thus, neglecting the low powers of ¢ in (9.14) and (9.19), we now can write the
following large VPT order estimate instead of (9.4):

Zn~ § sz [ D expl=([So(e) + A%(o)

+ MSi(p) — A*()} — ASF[p; M) - (9.21)

ASF[p; A] is an effective addition to the action that arises due to integration over
the spinor fields, which are treated in our approximation as coupling with the large
quasiconstant scalar fields. It has the form

d
ASplp; ] = _-’2‘1 (:15)24)/2 g4/2\e / d’z p4(z), (9.22)

asd < 4 (d#£2), and
N1 2, .2 p?
ASrlpid = 3 700 [ Pepi@m S (9.23)

in two dimensions.

€As usual, this subtraction may be justified by adding an appropriate mass counterterm to the
action. The latter, however, being quadratic in fields, does not influence VPT series convergence
since it is suppressed by the anharmonic VPT functional A?{y] and does not get into the effective
action.
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Let us now apply the functional steepest descent method to Z, for further
estimates of its large n behavior. For large n the integrals in (9.21) are dominated
by a simultaneous saddle point in the variables ¢ and A. Making the change of
variables’ ¢ — n!/4p, we obtain

za~ [ Do §arexs (— nSestlp; Al — VASolie] — In A

+nlASFlp; A + -;— 642n* InnASF(p; /\]> , (9.24)

where the quantity S.q[p;A], which determines the leading-in-n behavior of VPT
series terms, has the form

Seatlip; N = A%[p) + A[Si(p) — A*(p)] +In ). (9.25)

The saddle point equations look thus:

d
dXg

Seftlpo; Ao) =0,

6
———Sefilo; Ao] = 0,
6‘/’0(3) ff[‘PO 0]

and thus:
Xo = [A%(p0) = Si(po)] ' = D™} (o), (9.26)
_ §A(po) 1 [6S1(po) _ §A(po)
0= 24(00) Foo ) D(soo)[am(z) 24(p0) 6soo<z>]' (9.27)

We notice that Eq. (9.27) is just the same as the saddle point equation deter-
mining the large VPT order behavior in the pure scalar ¢* model and gives rise to
(5.22). Indeed, in this case we would have

1 [ dx
x exp ( — {(Sole] + A%le]) + M(Stle] — A%[¢D}) »

and it does not depend on whether we apply the steepest descent procedure to the
integral over A first and then to the integral over ¢, or we implement the steepest
descent procedure looking for simultaneous saddle points in the variables ¢ and
X; the result would be the same. Namely, we would get for the saddle point in A
Egs. (9.26), and the asymptotic for Z, in both cases would be the same as that
obtained by using the direct n-steepest descent method (see Sec. 5) and would be
given by (5.34).

It 3¢ important that ) remains unchanged at that.
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Thus we can conclude that the coupling with spinor fields does not essentially
influence the large VPT order behavior in the Yukawa model, which as well as in the
pure scalar case is determined by the main cutting factor exp[—nSea(yo)], where
%o submits to (5.22).

10. Yang-Mills Theory with Fermions

Up to now we have discussed the example of a pure gauge theory without the
matter fields. Let us now consider the gauge theory involving the fermions. The
corresponding action reads

S[¥, ¥; Al = Sym[A] + Sr[v, ¥; 4], (10.1)

where the Yang-Mills action Sym (together with the temporal gauge-fixing térm) is
given by (8.5)~(8.7), and Sr[¥, ¥; A] is the action of spinor fields minimally coupling
with the gauge fields:

Sel¥, b 41 = [ diali(in Du— ), (10.2)
where
D, = 8, + g A%, (10.3)

is a covariant derivative, and T, and t, are the generators of the color group SU(N )
in the adjoint and fundamental representations, respectively.

We choose the VPT functional in the form (8.8), and the corresponding VPT
series in the d-dimensional Euclidean space reads

Z[0} = f: Zn,
n=0

Zn = f %/DA Diy¥)exp [ — ({So(A) + So[¥, 9] + B*[A]} (104)
+A[SP(A) + SP(A) + 51(4,8; 4) - BY(4)))] .
Here So[A], S{)[A] and S{"[A] are given by Egs. (8.6) and (8.7),
Sol¥, ¥] = - / d*z (6 +m)y, (10.5)
Silb.biA) = =g [dizgrae, (10.6)

where
Ay, =AT,,

and the symbol I stands for transmission of the matrices for the Lie algebra of the
SU(N) group from adjoint into fundamental representation:

IN(T,)=1t,.
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Integrating in (10.4) over spinor fields we get
dA 2
Zn=  sa37 | PACxP [ - ({So(A) + B*[A]}

+ MSP(4) + 519(4) - B*[A]} - m D[4;N])], (10.7)

where the fermionic determinant

detfid + m + AL(A)]

DA Al = det[id + m]

(10.8)

A=gh, (10.9)

contains the whole information concerning the spinor sector of the theory. Thus, our
main goal now is to explore the quantity In D[A; )] as a function of the “external”
field Aj. To this end we again use quasilocal approximation for the gauge field,
whose eligibility have been argued in the previous section.

As is known,3? in non-Abelian theories there are only two types of gauge fields
which produce a constant field strength tensor:

F2, = 0,A5 - 0, A, +9 fereALA; = const . (10.10)

The first is an “Abelian” gauge field,

A;(‘c) = —% qavayv s (10.11)
Fj, =n°F,, = const, (10.12)

where
Fu = 0,A,(2) — 9y Au(z) (10.13)

is a constant Abelian field strength tensor and 7, is a constant unit vector in color
space. The second is a constant gauge field,

Aj, = const, (10.14)
which is purely non-Abelian and produces a constant field strength tensor:

Fa, = gfabcAZAﬁ = const . (10.15)

g

We note, howéver, that there exist such gauges that are inconsistent with the choice
of gauge potentials in the form (10.14). One of these gauges is the Fock—Shwinger
one, z* A, = 0, which is obviously consistent only with the zero value of the constant
potential Aj. Another is a temporal (Hamiltonian) gauge we just used here, whose
combination this the condition (10.14) gives rise to the zero value of the chromo-
electric field E,. Thus, we can dispose of necessity to consider the case A} = const
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through the appropriate choice of gauge in which we build the VPT series from the
very beginning, and the task is to evaluate the fermionic determinant (10.8) for the
quasiconstant background field (10.11).

By analogy with four-dimensional QED we call the part of action arising due to
integration over spinor fields by the Eulier-Heisenberg (EH) effective action:

Sen[A] = —iln D[4;}). (10.16)

We first calculate (10.16) considering the gauge field as a pure Abelian background
field with a constant field strength tensor, and then we will easily generalize obtained
results to the case (10.11) under consideration.

To calculate (10.16) in arbitrary dimensions d we can use the proper time
method that was developed by Schwinger?® to perform similar calculations in four-
dimensional QED. For convenience we calculate the EH action in Minkowski space.
Using the fact that the trace of an odd number of 7 matrices is equal to zero, we
easily prove the identity

Spln(b+ B*y,) = SpIn(b ~ B#y,),

where the symbol Sp means the trace operation with respect to Lorentz indices as
well as spatial variables, and B and b are arbitrary operators acting in coordinate
space. Making use of the last equation we get

Senl[A] = —i Spln [(D — m +i€) (§ — m + ie) "]
=—iSphn [(D+m—ie)(d+m—ic)7], (10.17)
where
D, =id, - AA,, (10.18)
and thus
Sen[A) = --;- SpIn [(D? — m? + i) (8 — m? +ie) ™) . (10.19)
By virtue of the relation
bZ (2 1 2 :\ mz
= (0, — AA,)° - EU"VF , (10.20)

where .
! .
Opy = 5[7;4;7:/])

and by using the identity

In

a _ /w E(e“(b+i£) _ e—s’a(a+ic)) ,
b o S
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we can rewrite (10.19) in the formé

SeulA] = fddz Lgu(z),

;[0 d (10.21)
LEH(z) = _%/ -;_: SP[UA(J:’:BI;T) - Uo(z’xl;r)]z—w’ .
—00

Here the operator

Ua(r) = 7 (10.22)

is one which describes the evolution of a quantum-mechanical system (a particle
interacting with an external electromagnetic field in d-dimensional space) in the
proper time 1, governed by the “Hamiltonian”

H=(p,—A,)? — %a,wF“" —m? 4 e, (10.23)
taken in z representation:

Pu = iau ) [z;npu] = _iguv ) (1024)
(z|z') = 6@ (z - 2'). (10.25)

The corresponding “Feynman transition amplitude” reads
Ua(z,2';7) = (zl0a(7)lz') = (2(7)|='(0)) , (10.26)

where |z(r)) = U} (r)|z) is the eigenfunction of the coordinate operator in Heisen-
berg representation.
It is easy to show that the quantity Ua(z,z’; ) obeys the equation

i8,Ua(z,z';7) = Ha(z,p)Us(z,2';7) (10.27)

and the boundary conditions

lim Ua(z,2';7) = §D(z - '), (10.28)
lim Ua(z,2';7)=0. (10.29)

The former boundary condition is obvious and the latter is fulfilled due to the
presence of an imaginary addition" ie to m? in (10.23).
Equation (10.27) may be rewritten in the form

i0r (2()2'(0)) = (2(7)|Ha(a(7), ()| (0)), (10.30)

EThe remaining symbol, sp, means the trace operation only with respect to Lorentz indices.
hAs is easy to see, this addition provides the convergence of the integral over 7 in (10.21) as
T — —00.
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where z(7) = Ut (r)zU(7) and p(r) = U*(r)pU(r) are the coordinate and im-
pulse operators in Heisenberg representation. To find the solution of (10.39) with
boundary conditions (10.28), (10.29) we first solve the praper -time dynamical
equations'

Lo lHa,24(r)) = ~2D,(0), (1031)
D) _ i{h,, D, (7)) = ~2VF, V(7). (1032)
Besides, the equations
[i67 — Mu(@)(=(n)le’ (0)) = (2(7)|Dy(7)|='(0)), (10.33)
[i6%' = AAu(=){2(r)|'(0)) = (2(7)|Du(0)I=' (0)), (10.34)

reflecting the right relations between coordinate and impulse, must be taken into

account.
Solving the set of equations (10.28)—(10.34) we get

UA(.’B,z’;T) = aqexp I:z:\/ d{#A“(g)};lez_
X exp {% (z— :c')“[:\F coth(:\FT)]u,,(z - z')"}

x exp[—M ()] exp (% Xra“"F,,,,) exp[ir(m? — ie)], (10.35)

where integration over £ is performed along the straight line joining points z
and z’,

ag = (2v/7) dexp (i %d) , (10.36)

M(r)= %sp In[(AFr)~!sinh(AFT)] . (10.37)

Substituting (10.35) into (10.21) we obtain

. 0
1 "
- 00

X sp [e'M(’)exp (% :\‘ra""F,,,,) - l} . (10.38)

iIn the second equation two terms containing derivatives of F,, are omitted, in accordance with
our condition Fj,, = const.
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We shall now calculate the quantities M(7) and spexp ((Aro#*Fy,) in d = 2,
d=3and d=4.

Let us first recall that in two dimensions, Dirac fields are two-component objects’
and Dirac matrices may be chosen to be Pauli matrices:

V=0, y=id?, y5=-0, (10.39)

with the following obvious connection among them:
Py =g* + ¥y (p,v=0,1), (10.40)

where ¢#” is an absolutely antisymmetric tensor with

01 _

€ ——601=1.

In three-dimensional space-time the Dirac algebra is also realized with 2 x 2
Pauli matrices, and 4 matrices may be chosen as follows:*

=0 7+ =ic®, vs=ic. (10.41)

They satisfy the relation
™y ="y, +¢* (1,v=0,1,2), (10.42)
where €#¥® is an absolutely antisymmetric tensor with
012

€ =€012=l.

In four dimensions we shall use a conventional representation of (4 x 4) v
matrices.

To evaluate the quantity exp[—M(r)}], which in virtue of (10.37) is determined
by a determinant:

exp[-M(7)] = det™ || L(D) ||, (10.43)
WL()| = LU FI)) = (A Flr)~" sinb(A]| F|7), (10.44)

it is first necessary to find the eigenvalues of the matrix || F|| in different dimensions.
To this end we can iterate the eigenvalue equation

FP*®, = qd* (10.45)
by introducing the auxiliary matrix || K||:
Kuy = FuaF*PFs, (d=12,3),
Ku = FSFEF)F,, (d=4).
iAside from any further degrees of freedom associated with internal symmetry.

KThere is no ~s matrix in three dimensions since no matrix anticommutes with all three Pauli
matrices.
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One then €astly gets
1 -
Kl = =5 F2IFl|= F2||F)| (d=2),
1, -,
1Kl = -3 FAIF|=~F|F|| (d=3),

1Kl = =5 FFIP+ & PRV (a=4),

where the corresponding dual strength tensors are defined as follows:

F,, = —e,,,,ﬁ’, F= -;—c""F,,,, (d=2),
Fuv = €upaF®, PP = %e"“ﬂFap (d=3),
F, = -% CuvapFoP, PR = %e""“ﬂFap , (d=4),
and
F?=Fwp,, . F’:—%Fz (d=2),
Fr=fuf, = %F? @=3), (FF)=FwF, (d=4)

are scalar functions.
Combining then Egs. (10.45)-(10.48) we find eigenvalues ¢:

dQ1,2 = iﬁ (d= 2)!

0=0, g¢2==i|F|= VFrE, (d= 3),
(1,2)? = —41 [F2+\/(F2)2 + (FF)?] (d=4).

Making use of (10.43), (10.53)~(10.55) we calculate e~M(r), So,
MO = [L()) L(ga))*

_ [ Arqs Args ]% _ ArF
- sinh(Xqu) sinh(X‘rqg) B sinh(:\‘rﬁ)
in two-dimensional space,
™M = [L(go) L(01) L(g))
_ [ Argo Arqs Arg, J% _ XTII":'I
B sinh(:\rqo) sinh(A7q;) sinh(irqz)

- sin(i‘rli’l)

(10.46)
(10.47)

(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

(10.54)

(10.55)

(10.56)

(10.57)
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in three-dimensional space, and

= @ Q2
-M(r) _ 0a:) = 12 - _ .
¢ =[] 2%) =X sin(ArQ1)sin(A7 Q2)’ (10.58)

=1

1
Q2= % [F’ +1/(F2)?2 + (f‘F)2| , (10.59)

in four dimensions. The last equation may be reduced to the more convenient
(conventional) form making the change of variables:

Qi=b, Q,=-—ia.

where

Then we obtain

e_M(f) _ XTG :\Tb (10 60)
"~ sinh(Ara) sin(Arb)’ '
where'
a?— ¥ =E?*~-H?,  ab=EH. (10.61)

The only remaining thing to be done now in (10.38) to accomplish calculation
of Lgy is taking the trace over the Lorentz indices of the matrix

T = exp (% Xm""F,,,) . (10.62)

In two dimensions, by using (10.39) and (10.40) we obtain

o* F,, = 2ivsF = 2iosF, (10.63)

and hence
T = cosh(ATF) + o3sinh(ArF), (10.64)
spX = 2cosh(ArF). , (10.65)

In three-dimensional space, by using (10.41) and (10.42) we have
o F,, = —2F%,, (10.66)
and, by expanding ¥ in powers of Feyq, using (10.42), and noting that
Py =0,
IThe validity of (10.61) can be easily verified by using the identities:

1, = 1 1 -
-(FF)=-EH, -F*=_-F?=H?-E*.
48 ) 2 2

P
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we find that

I F, .« =
L = cos(A7|F|) + iy* IF] sin(Ar|F|), (10.67)

spL = 2cos(Ar|F|). ~ (10.68)

In four dimensions one can perform calculation of sp ¥ by using one of the well-
known representations (for instance, “standard”) of v matrices._A direct calculation
yields

sp X = 4 cosh(Ara)sin(Arb). (10.69)

By substituting Eqgs. (10.56), (10.57), (10.60) and (10.65), (10.68), (10.69) into
(10.38), we get eventually
1 [ dr

Legu(A) = —— = ¢fT(m’-ie) [ArF coth(ArF) - 1], (10.70)

2
. dr J_ oo T

in two dimensions,

1 % dr . e o - =
LEH(A)=—§;1§W€%" / —%e"<'"’-“)[)\f|F|cot(,\r|F|)-1] (10.71)

5
~o0 T

in three dimensions, and

1 % dr .2 i0[v5 , cosh(Aar)cos(Abr) 1
Lew(A) = — L [ 47 jir(m u)[,\z p cosh(A M2 o2
en(4) 82 /_oo T ° ¢ sinh(Aar)sin(Abr) T2 ( )

ab=EH, da’-b’=E’-H?, (10.73)

in four-dimensional space.

Let us now analyze obtained expressions for Sgy. It is easy to show that Sgx[A]
in the case d < 4, when expressions for this quantity are free of divergences, behaves
at large |F| = \/FV‘—”F; as a polynomial of the power d/2 in gauge fields and reduces
to the form

SeulA] ~ 39/ / déz| 907 (10.74)

where the symbol ~ denotes the quality up to a numerical constant. We shall now
illustrate this statement by considering, for instance, the case d = 3. Deforming the
path of integration, 7 — i, we get instead of (10.71) the equation

1 had dr 2T [T & - -~
Len(A) = 5 /0 Sz (irlFl coth il Fl) - 1] (10.75)

Passing then in (10.75) to dimensionless variables,
. 2

r = Ar|F], = 2 ,

: AlF]
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we obtain

Lgu(A) =

dz _
~ % 3/2 (/\|F|)3/2/ 2o ¢ “*(zcothz —1). (10.76)
We notice then that our approximation of large (constant) |F| corresponds to ¢ <
1 and, therefore, the leading asymptotic behavior of Sgy is determined by the

equation

Sen(A) =~ CX3/? / ez|F]P2, (10.77)

where the constant C is
*® dz
CI‘/O m(zcothx—l).

On the other hand, when d = 4 the expression for Lgy (10.72) suffers ultraviolet
divergence as s — ( and the additional subtraction of the second term in the Laurent
expansion in s of the integrand™ is necessary. We first consider, for simplicity, the
case B = 0. Then, deforming the path of integration, 7 — ir/m?, and passing to
dimensionless field variables

* X L X
a =;l—2-a, b =;§b, (10.78)
which corresponds to _ _
R A . A
E = ;17 E s H = —2 H s

we obtain instead of (10.72) the equation

mt [ dr

T8z, T

Len(A) = (10.79)

2 [r*2
e " [TH‘ coth(tH*) —1— z ;I ] ,
where H* = VH*? and the third term of (10.79) just corresponds to the additional
subtraction and ensures convergence of the integral at the low limit. By making the

change of variables 7 = z/H*, the expression for Lgy can be rewritten in the form

Lgu(4) = / dz < f(z) (10.80)

where the parameter ¢ = 1/H* satisfies the condition

1

m <b

€=
in accordance with our approximation of a large (constant) strength tensor, and the
function

MWhich, as usual, is justified by introducing the counterterm ~ F2 into the action, which being
quadratic in gauge fields does not influence the convergence properties.
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4 *2 1
f(z) = _Sm? 112 (zcothz— 1- 3 :!:2) (10.81)

goes to zero as £ — 0 and behaves for z 3> 1 as follows:
1
fz)= f(=)+0( ),

where

’\2 *2
f(oo) = gz H™.

It is easy to show that asymptotically, as ¢ — 0, for functions with such behavior
the following estimate holds: '

00 e—fl’ 1
[ @ seomy, e,

s z €
and hence we obtain the following asymptotic expression for Lgy for H* > 1,
E*=0:

2

A 2
~ H*, H*>1. .
Len =~ 5 H* InH*, > (10.82)

By analogy, one can show that in the case E* 3> 1, H* = 0 the function Lgy admits
an estimate:

2
2472

It is not difficult to generalize Egs. (10.82) and (10.83) to the case of arbitrary E
and H. We have an estimate:

E’InE*, E*>1. (10.83)

Legy ~ ~

SEH~:\2/d4zF21n|F‘I.
Let us now return to the non-Abelian case of the quasiconstant gauge field

(10.11) under consideration. We have seen that Sgy(A) in the Abelian case behaves
at large gauge fields as follows:

Senl[A] ~ X““/d"zwr‘/?, d<4, (10.84)

SenfA] ~ Z\Z/d“z Fin|F*|, d=4, (10.85)

where
|Fl=VF?= VFWF,,

and the symbol x stands for dimensionless field variables [see (10.78)]. The gener-
alization of this expression to the case (10.11) is obvious and looks as follows:
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Sen[A] ~ A4/? tr/dd:c”FZHd“, d<4, (10.86)

Sen[A] ~ 3 tr / S| P2 ||F2) V2, d=4, (10.87)

where the matrix || F2|| is defined as
|F?|| = Fa, B et

and the symbol tr means the trace operation with respect to color indices.
To perform subsequent calculations we consider, for definiteness, an SU(2) gauge
theory coupled to fermions in the fundamental representation with generators

r
t, = 5% (a=1,2,3),
where 7, are the Pauli matrices, but obtained results are easily generalized to other
gauge groups.
With such choice of t, one can see that due to the identity 747° = —7%79 the
nondiagonal terms in the sum F, F}*"t,t; cancel each other and we have

1
—-=-F F;‘”TaTb

P2l =~ Fo,

1
= - (Fu F"ri + Fi, F{*r} + Fi, F{*15) = FJ, F/*1, (10.88)

where 1 stands for the unit matrix in the color space with tr 1 = 2. Thus, up to an
inessential numerical factor, we get instead of (10.86) and (10.87) the equations

SpnlA] ~ 342 / diz[F2, Fe4 | d < 4, (10.89)

Sen[A] ~ \? / d*z[Fg, F* P In[Fe, FM)%, d=4, (10.90)

where F2, is given by (10.12), and we can see that the power of Sgy[A] in gauge
fields is less than that for the anharmonic VPT addition B?[A]. Therefore, Sgu[A]
does not get into the effective action" that (through simultaneous saddle points in
X and A variables) determines the large VPT order behavior and, therefore, does
not influence the VPT series convergence properties.

11. Conclusion

We have proposed a method for nonperturbative calculation of the functional in-
tegral, which we have called variational perturbation theory. The method is based
on the mere computation of the Gaussian functional quadratures. It does not

"The latter, as in the pure Yang-Mills theory case, has the form (8.16).
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require new diagrams and uses only those that appear in standard perturbation
theory in the same order of approximation.

Very important for a nonperturbative method is the problem stability. It must
be noted that the possibility of calculating corrections is not still enough for one
to conclude about stability. Here the properties of convergence of the series play
a special role. Indeed, if the small parameter coupling constant is present in the
theory, then even divergent perturbative series regarded as asymptotical can give
useful information concerning the region of the small coupling constant. Quite a
different picture arises when such a small parameter is absent from the very begin-
ning and does not emerge in a certain effective way. Here we may hope to derive
reliable results only when we deal with the convergent series. Thus, in the nonper-
turbative approaches the tasks of calculating corrections to the main contribution
and analyzing the properties of series convergence have to accompany each other.

Within this method, a quantity we are interested in is represented by a series
whose convergence may be governed by variational parameters. The VPT approach
allows one to obtain convergent series, for instance the Leibniz series which provides
upper and lower series estimates for a given quantity. The method implies the opti-
mal choice of parameters. However, unlike many other variational approaches, the
VPT method allows us to compute corrections since we are dealing with a series and
can always calculate a subsequent expansion term. Therefore we avoid the problem
typical of variational approaches of the determination of stability and reliability of
the result obtained. The proposed VPT given a regular method of computation of
corrections, and without going beyond its scope, allows us to answer the question
concerning the realistic degree of dominance of the “leading contribution.”

In this paper the GEP as a first nontrivial VPT order has been derived by using
one or another variational addition to the action. In other words, we have shown
that VPT series possessing different structures may give rise to the same result
when only the leading contribution is retained.

We have shown here how the GEP emerges in the framework of VPT in the
first nontrivial order. It is important that from the very beginning we deal with a
series that, in principle, allows us to calculate the corrections and, thus, to explore
the question about stability of the results obtained by using the “main contribu-
tion.” The possibility of calculating corrections advantageously distinguishes the
VPT method from other nonperturbative approaches, where the question about
stability of the results obtained, for example, by using the variational method,
turns into a serious problem because of the absence of a simple algorithm for cal-
culating corrections. Moreover, the VPT method allows one to construct a series
whose convergence properties can be influenced through special parameters. It is
particularly important in the essentially nonperturbative tasks, where, despite the
absence of a small initial parameter, reliable results can be obtained on the basis of
a series whose convergence is fast enough.

In this paper we have analyzed the properties of convergence of VPT series for
the Ap* theory obtained by various methods of varying the action functional. When



Variational Perturbation Theory 1997

the variational addition is harmonic, the VPT series is asymptotic and its higher
order terms behave like the terms of standard perturbation theory. Nevertheless,
the harmonic variational addition produces a certain stabilization of the results for
further radiative corrections. In the regions where the partial sums of conventional
peérturbation theory suffer oscillations specific for asymptotic series, the VPT series
gives a stable result.

The VPT method gives us the possibility of combining the advantage of the
variational approaches in nonperturbative effects investigations with a possibility of
calculating the corrections to the main contributions. A similar approach has been
developed in Ref. 15, where a procedure analogous to our harmonic VPT method
has been used. As has been noticed in this paper, the harmonic procedure gives rise
to the divergent series if we keep the variational parameter values equal in all the
VPT series orders. However, it was observed empirically in Refs. 24 and 41 that
the results seem to converge if the variational parameter is chosen, in each order,
according to the optimization condition. This induced convergence phenomenon
has been discussed in detail in Ref. 42, and in Refs. 43 and 44 it has been proved
that § expansion based on a harmonic type procedure does converge in dimensions 0
and 1. We have shown that the anharmonic VPT procedure gives rise to the conver-
gent series without redefinition of the variational parameters from order to order.
This can be explained as follows: for higher order terms of the VPT series the
major contribution to the functional integral comes from the field configurations
that are proportional to the positive degree of the large saddle point parameter.
Therefore, the effective interaction ASs[¢] — S[¢] is dominated by the conventional
term AS,[¢], which, as in perturbation theory, leads to an asymptotic series. A dif-
ferent picture arises when the action is varied with the help of an anharmonic func-
tional. Here the degrees of fields in ASs[y] and S[p] are the same and the variational
addition greatly influences the asymptotic behavior of higher order terms of the VPT
series. In this paper we have shown that there exists a finite region of values of the
variational parameters where the VPT series converges for all positive coupling
constants.

An analogous situation arises also in the other theories considered here. So, in
pure Yang-Mills theory the four-gluon part of interaction suppresses the three-gluon
term in the large orders of VPT series. This occurs because only the four-gluon
term gets into the effective action which governs the asymptotic properties of VPT
series. It is remarkable that the coupling to fermionic fields does not influence the
convergence properties, as was argued here.
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