© DGBEAMNENRHIR

HHETHTYT
ALEPHBIX
MCCNEAOBANHA

e L o

e

E5-94-119

L.S.Davtyan!, A.N.Sissakian,
V.M.Ter-Antonyan?

THE HURWITZ TRANSFORMATION:
NON-BILINEAR VERSION

Submitted to «Journal of Mathematical Physics»

10n leave of absence from Yerevan Physics Institute, Armenia
20n leave of absence from Yerevan State University, Armenia




I. Introduction

Over 400 years ago Robert Hooke tried to explain the planet motion on
the basis of forces with the linear dependence on the distance. Lately, this
idea was covered by the greatness of the Isaak Newton’s discovery.

Now, we can say that Hooke was not far from truth, because the trans-
formation manifesting the Coulomb-oscillator equivalence exists. The most
general form realizing this conception is known as the Hurwitz transforma-
tion [1].

The Hurwitz transformation (H) is a mapping

H: Es(uo,...,u-,) — Es(l‘o,...,:c‘)
with the following properties:

a. H is a bilinear, i.e.
zi = Hiur = Winueu (1)

b. There takes place the Euler’s identity

zﬁ___u(’

for

z = (23 + 2} + 23 + 23 & 23)'/%,

and
‘ u=(ud +ul +uf+ul+uf+uf+uf+ul)/?

For the u-spaces with dimension more than eight it is impossible to conserve
the Euler’s identity due to the Hurwitz’s theorem [2]. The reduced cases of
the H-transformation for the maps E? — E? and E* — E® were introduced
by Levi-Civita [3] and Kustaanheimo [4] for regularization of the equations of
celestial mechanics. The remarkable peculiarity of the Levi-Civita (LC) and
Kustaanheimo-Stiefel (KS) transformations consists in the fact, that after
regularization, in both cases, we arrive at the h a r m o n i ¢ oscillator
problem. This opened the way for fruitful interaction between the theory of
oecillations and the methods of celestial (classical) mechanics. Particularly,



in the oscillator representation the perturbations to the Kepler's motion can
be calculated with a better accuracy [4].

LC- and KS-transformations were introduced in quantum mechanics too,
in the context of hydrogen atom {5]. KS-transformation was applied in quan-
tum chemistry [6], quantum field theory [7] and functional integration [8].

The general consideration of the algebraic structure for H-type trans-
formations was made in [1], the Lie algebra under the constraints connected
with these transformations was found in [9, 10]. The arising Hopf’s fiber bun-
dle [11] and corresponding analysis through the spinor representation [12]
were performed too. At last, the structure of the generelized Cayley-Klein
parameterization [13] and the geometric quantization procedure [14] were
considered as applied to the investigation of the H-transformation structure.

II. The problem

The H-transformation may be written in the following form:

zo=ul+ud+ud+ud-ul—ul—ul-ul,

T =Ty =Tz = 0 )

Ty = 2(“0‘“4 = Ujus — UgUg — u3u1) 3 (2)
5 = 2(ugus + U uy — Ugtiz + Usug) ,

z¢ = 2(ugus + t1ur + Usug — Uus),

z7 = 2(uoty — Uyt + Uglus + Usly),
(with non-essential change in the notation:

(301 Z1,%32,%3, 14) - (IO’ 0’ 0, 0, T4,Zs,T6, 37))'
For the following, it is suitable to denote
Cup = (ud+ul +ul 4 ud)V2,
up = (4] + ug +ug +u7)'/?. | |
It must be stressed that the H-transformation, in the form (2), determines
the connection between C ar t e si a n coordinates.



Now, let us suppose that coordinates u are expressed through the hy-
perspherical coordinates (u and seven angles additionally). In the general
case, (2) determines z; as functions of r = z = u® and the above-mentioned
seven angles. However, it is possible that the expressions for z;, do not in-
clude s o m e angles. Angles may "shut” due to, for example, the following
cause: , )
a+y a—1 a+yp . a—y

2 cos 3 + cos 2 2

sin =sina 3)

Let us consider LC- and KS-transformations in this context:

a. In the case of the LC-transformation, (2) reduces to (u; = 0,e.9.7 =
1,2,3,5,6,7)
Tog = ‘U,g - uﬁ
Z4 = 2ugtiy, 4)

z;=0,j=1,23,5,6,T.

Let us introduce polar coordinates in u-spaces

0
Ug = UCOS =, Ug = USIN 3

2 2

_Then it is obvious that
zg =rcosf, z4=rsind, '
So, as a result, we again arrive at the polar coordinates.

b. In the case of the KS-transformation (u; = 0,e.9.7 = 2,3,6,7):

zo = u+ul-—ul—uf,
4 = 2(uous — t1us), (%)
z5 = 2(uous + u1l4),

z; = 0,j=1,2367.



The situation here is not so simple as in the preceding case. Firstly, in
E*, there exist three possible types of the hyperspherical coordinates,
instead of one. But, only o n e remains hyperspherical after the KS-
transformation. Namely, if we have take the following coordinates

[ [

Up = UCOS 5COSW, Uy =usinzcosey,

, , (6)
U3 = uCos ESIDW, Ug = usm;smtp,

(060 <7,0 <w < 2r), from (4)~(6) we can be obtain

29 =rcosl,zy = rsinfsin(p — w),zs = rcos B cos(p — w).

So, we see that the angles 6 and ¢ — w form with r = u? a spherical
map in E3.

It is important that in the H-transformation case the connection between
angles in E® and ES is not easy, as in examples a. and b. [13]. Furthermore,
this connections define by thet ranscendent al equations in general
case. Practically, it is impossible to operate with these equations (except for
the special case considered in [17]).

In this paper we propose an approach that is free from the transcen-
dental connections. In brief, the idea consists in r e f u s a | from the H-
transformation in the known formulation. Is it possible to derive the H-type
transformation which does not generate difficulties with the hyperspherical
coordinates? Below, we will prove, that two equivalent variants of the choice
of the transformation exist, which conserve the two above-mentioned prop-
erties. As will be clear from the following, we have achieved the aim through
the refusal from bilinearity of the H-transformation. As a result, the devel-
oped scheme allows us to determine, in sec. 1V, the geometric structure of
the H-transformation.



ITI. Left and right A-matrix

Let us substitute the following hyperspherical coordinates

. '
5 COs é—’cosw Uy = USIH%COS%COSUI

Ug = U COS
¢ cos & sin '
3 €0s 5 sinw

. . R ’
Uj =ucos-—sm§cosgp Ug = usm%sm%cosw

[}
2
_ § 8. _ .
Uy = ‘UCOSECOS 2smw Us = usin
[}
2
[ ]

(M
. - - 3 ¢ -
u3=ucosism§sm¢ w:usm%sm%smgo’,

into the transformation (2), then

z4=rsinf [cos g cos %' cos(w + w') — sin % sin %I cos(p — cp’)]
z5 =rsind [cos % cos %I sin(w + w') + sin g sin %’ sin(p — cp’)]

(8)

z¢ = rsinf [cos g sin %' cos(¢' —w) + sin £ cos %i cos(p + w')]
zy=rsind [cos g sin %l sin(p’ — w) + sin -‘23 cos %' sin(p + w’)]

It is evident that the relations (8) d o n o t define the hyperspherical
coordinates in E®. For another choice of hyperspherical coordinates in E®,
the expressions for z;(: = 4,5,6,7) are too more complicated.

The expressions (8)(with accounting zo) may be rewritten in the followmg
8-dimensional matrix form:

[ zo \ rcos 0 \
.0 0
0 0
0 0
z4 =Ar rsin @ cos g cosw |’ ©)
x5 r sin 4 cos Q sinw
zg rsin @ sin 2 cod¢
\31/ \ rsm9smesmcp }
where
A '



I o
4=(5 an )

] v, . ' . ',
cos & cosw’ —cos %— sinw’ —sin % cosp' —sin % sin ¢’
.

2
B g e B .8 ,
Qn = cos 5-sinw’  cos G cosw sin5-siny’  sin 3 cosy
. ! . ', ] ',
sin '[;— cosp’ sin % sing’  cos %— cosw’ —cos %- sinw'
in&sing —sinZ / B inw' g '
sin 5 sin g sin 5 cos’  cos 5 sinw cos 5 cosw

The matrix QR action is a four-dimensional rotation because

QrQrT =1,DetQg = +1

Obviously, .
( rcos @ : ( To \
0 0
0 ]
0 0 )
. = AnT
rsin 8 cos g cosw Ar Z4 (10)
rsin @ cos ‘2—’ sinw x5
rsinfsin g cos zg
\ rsin05in§singo / \131

Thus, the action of A} after the »H-tra.nsforlhation allows us to obtain
hyperspherical coordinates (10) from hyperspherical coordinates (8) with
simple connections between the angles. Furthermore, this can be done in two

el



equivalent (left and right) manners:

(=

0
0
0
T4
Ts

6

z
\ 27

\

AL

/

rcos 8
0
0

0

. ¢

r sin § cos %

H

7
. . !

rsin @sin % cos ¢’

' .
%— sin ¢’

(

cosw’

rsinf cos & sinw’

r sin @ sin

)

)

) (11)

Let us turn back to the Cartesian representation for making the consid-
eration universal, i.e. independent of the choice of hyperspherical map:

T4 Uy
Ts =2 Us
Te Us
Ty Uz
or
Ty Ug
Is =9 Ui
Zs U2
7 Uz

—Us —Ug
Uy —Uu7r
ur Uy

—Ug Us

—U; —Uz
Uo U3

—Uz Uo
Uz -~

—Uur Ug Ug
Ueg U 9 Uy

= 2u 12
—Us Uz RQR Uz (12)
Ugq U3 U3
—us Uy Uy
] Us 2 Usg

= 2u 13
u ve LQL. ve (13)
Uo Uy Uz

As a consequence, we can reverse (12), (13) and obtain

()
\ s
/';:\

Ug
\ ur

/;:\
\ = /
/;:\
\ =r /

T

1
= mQR

(14)

(15)



The relations (14), (15) allow us to reconstruct the complete structure of
hyperspherical coordinates in E® from the structure of hyperspherical coor-

dinates in ES.

Now, let us consider the matrix form leading to (2):

( U U

Uy —Yo

Uz —us

H= us uz
Uy —u‘s

Us Uy

Us Uy

\ Uz —Us

Uz
U3
—ug
—uy
—ug
—uy
Uy
Us

“U3

—u,
u
~ug
~Uq
Ug
—ug
Ugq

—uy
—ug
—ug
—us
Ug
Uy
Uz
U3

—ug
Uy
—uq
Ug
—u,
Uo
—us3
U2

—ug
uy
Uy

—ug

—ug
U3
Uo

—uy

—uq
—ug
Us
Uq
—ug
—u,
Uy

,uo

It will be easy to check the orthogonality of this matrix

(This property validates the Euler’s identity.)

Consider the matrices

H,=AgH, Hp=A H

If the matrices Ay and AR are orthogonal

HHT = 42

ALAT = ApAT =1,

then the matrices Hg and Hy, will satisfy the condition (17).

In agreement with (19),

U
iy ) =4

where Uz, Ug, X, and Xp are

Yo

Uy
UL = 1 UR =
. u2

U3

)

)

i

(16)

1

(18)

(19)

(20)

(21)



Now, it is easy to see from (20) and (21) that the matrices H; and Hpy

transform E® into 5-dimensional Euclidean spaces, which we denote by E}:

(ve)=m=(35) @

(2)=m=(35) @

where Y1, YR and Zy, Zg define similiarly Xp, Xg in (21). Instead of (2),

andE}

we obtain
o = = - -l
1 = y2=ys=0 (24)
yi = 2(ud+ud+ud+ud)Vu;,=4,56,7

and :
zo = ugtultul+ud—ul—ul-—ul-ul
21 = =23 = 0 ’ (25)
Ziga = 2(ul +ul +ud +u?)?u;,5=0,1,2,3

. Particularly, for the hyperspherical coordinates (7) discussed at the begining

of III, the relations (24) and (25) are written as

Yo = rcosd
= rsinf cosZ cosw
Ya 2 .
. ' . ' :
ys = rsinfcos % sin '’ (26)
. J ’
y¢ = rsinfsin % cos ¢’
. . LN
7 = rsin@sin £ siny’
2



é 3
i)
i
i
i
e
it

- ran

or

zg = rcosf

z4 = rsinfcosé 3 Cosw

zs = rsinfcosSsinw (27)
zg = rsinfsin Q Cos

2z = rs1n0s1nésm<p

We conclude that the transformations (24) and (25j aren o n - bili.
n e ar, in distinction to the H- transformation (8). We can introduce the

hyperspherical coordinates
‘(U, 0, ar, ,BL’ VL, OR, ﬂRa ’YR)

in E? as follows:

— { ucos%fi(aInﬂLy'YL)rj=0’la2,3 (28)
usin £ f;(ar, Br, 1R),j = 4,5,6,7
with the evident constraints
B+Ri+3+3=1,
(29)

Rt R+f+fi=1
Here (0 < 8 < 7) and ranges of values for remainding angles are deter-
mined by- the functional form of f;. If we substitute (28) into (24) and (25)
we obtain
= u? cosd
omt e . (30)
Yy; =usm ofj(aRv Br, 73)’] =4,5,6,7
and :
20 = u?cosf

: .. (31)
Zj4qa = u281n0f1'(aL1ﬂL’7L)’J = 011’213- .

Thus, choosing in E8, the class of hyperspherical coordinates determined
by (28) and acting with HL and Hp on them, we obtain in ES two classes of
the hyperspherical coordinates (30) and (31).

10



Resuming, it is to be noted, we can use on the decomposition of E® in
agreement with the scheme

E? =E‘'®E*

in the approach developed here. Just the same decomposition corresponds
to the hyperspherical coordinates (28). Other decompositions (for example,
E8 = E3 ® E®) are out of our consideration.

IV. The geometric structure of the
H-transformation

We can develop connections between H, H; and Hg from somewhat
general position. For this aim it is convenient to use the following diagram

EB

Ef E® ~ Ej
AR AL

From the latter the structures of the Hy- and Hp-transformations are
clear. So, as the matrices Ay and Ag are orthogonal and unimodular, they
realise the rotations. Therefore, the maps E® — Ej and E® — E} are
equivalent to compositions of maps E® — E® — E} (E® — E® — E}).

The Az- and Ag-rotations "switch off” the dependence of the coordinates
in E® (z- space) on the angles parameterizing two corresponding subsets of
variables and lead to (26) and (27). '

11



Now, let us clarify the geometric structure of the A -transformation. It is
easy to obtain that the matrix (16) is a product of three matrices

H=ATHoA], (32)

where A7 is a transponent matrix of Az, A3 is an orthogonal matrix that
is the "skew” transposed matrix of 4x4 - blocks of Ay:

(o
a=(¥ 1)

H, is a "spaced H - matrix” and has the following form:

(u[, 0 0 0 —Uuy —Us —Ug —U7r \
0 —UrL 0 0 —Us Uq uzr —Ug '
0 0 —Ur 0 —Ug =—U7 U4 Usg
0 0 0 —up —u; Ug —Us Ug
: H, = u, —us —ug —-ur ur O 0 0 (33)
. us uq -ur -—ug O ur 0 0
! ug ur ug -—us O 0 u O
\u1 —ug Us Uy 0 0 0 ur )

H, , as H, satisfies the otrhogonality condition
HoH? = «? '

The sequence of the maps (32) gives

UL\ _ UL\ _ Yo\ (X))
() = am(gr ) =41 (%) - (53)

. where .
N urL Yo Ya
’ 0 0 Ys
|  § - YL = , Yr=

| L 0 Y. 0 R ve.

12



and Uz, Up, X and Xp are determed by (21).

Now, we can represent the structure of the H-transformation through the
diagram

Eg

E8 ES

So, the H-mapping is equivalent to the following three steps:

A} - rotation, in essence, coinciding with the Hopf’s mapping ( the so-
called ”quaternionic fibration” [16]),

Hpy - local scale transformation, a "straightforward generalization” of the
Levi-Civita matrix (4),

AT - rotation that violates the "regular” hyperspherical map of E}, and
leads to (8).

From this point of view, the transformatjon Hp is the following composition:
HoAj.

13



Resume

The versions Hy and Hp of the H-transformation violating the bilinearity
are suggested. We show the following

1. Hy and Hg conserve three important properties of the H-transformation:
they are orthogonal, realize the reduction E® — ES.

2. The relation of the Hy and Hg with the H-transformation is estab-
lished.

3. The Hy, and Hp transformations acting on the 8-dimensional hyper-
spherical coordinates with the 4x4 - structure (28) project them onto
the 5-dimensional hs-coordinates (30) and (31) with the 1x4 - struc-
ture. The seven hyperspherical angles may be sorted into three groups

(0)’ (O'L, ﬂL, 7L)’ (aR’ ﬂR7 7R)
Hy(HRg) transforms u — u? and 8/2 — 6, conserving ( or shutting) L
and R angular triplets, respectively.

" 4. The geometric structure of the H-transformation is revealed.
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Hastan JI.C., Cucakan A.H., Tep-Antronsn B.M. E5-94-119
IIpeoGpasosanue I'ypBuua; HEOWINHEHHAS BEPCUS

PassUT anpTepHATHBHHI NOAX0 K npeodpasosanmo ['ypsuua (H), peny-

HUPYIOMEMY EBKJIMAOBO MPOCTPAHCTBO E B eBktMaoBo npocrpascTso E°. ITo-
Ka3aHo, YTO OTKA3 OT yCJIOBHS OMIMHEHHOCTH IPHBORKT K 3aMeHe H-1ipeobpa-
30BaHMs mpeobpa3zoBanusamu H; m Hyg. UccnenoBanu H;- u H z-nipeobpaso-

BaHHS 8-MepHHX runepcepHYECKHX KOOPAUHAT ClIelMaabHOro tuna. B stom
HOXXOAE pamuaibHas KOODAMHATA u M MOASPHHM yron 6/2 npeobpasyorcs B

u’*u 0, kak u B cryvae H-npeobpasopanns. JleiicTBiE ITHX peobpa3oBanmit

Ha OCTAJIbHHE runepchepuyecKue KOOPAUHATH, B OTJIHYHE OT ACHCTBUSA HAa HUX
H-npeolpa3oBaHus, S)KBHBAJEHTHO COXPAHEHHIO (CXJIOMBBAHAIO) OMHOFO YIJIO-
BOTO TPHUIUIETA M CXJIONBIBAHMIO (COXPAHEHMIO) OPYTOrO. YCTAaHOBJIEHA CBA3b
H;-vH R-npeo6paaonannﬁ ¢ npeobpasosanueM H, a Takxe BHSBJICHA CTPYK-

Typa caMoro npeofpasosanus H.
Pabora swnonsesna s JJaboparopuu reoperuyeckoit pusnku um.H.H.Boro-
mobosa OUAN.

[penpunt OfbeAUHEHHOIO MHCTHUTYTA SAEPHBIX HCCeaoBaHuit. ybHa, 1994

Davtyan L.S., Sissakian A.N., Ter-Antonyan V.M. . E5-94-119
The Hurwitz Transformation: Non-Bilinear Version

An alternative approach to the Hurwitz (H) transformation reducing Eucli-
dean space E3 10 Euclidean space ESis developed. It is shown how refusal from

.the bilinearity condition leads to the replacement of the H-transformation by

the H;- and Hg-transformations. The H (Hg)-transformation of the specific
type 8-dimensional hyperspherical coordinates is investigated. The radial coor-
dinate u and-the polar angle 8/2, in this approach, transform into u? and 6, like
in the H-case, respectively. Action of these transformations on the remaining
hyperspherical coordinates, unlike the H-case, is equivalent to the invariance
(shutting) of one angular triplet and the shutting (invariance) of another triplet.
The connection of the H; and the Hp with H is established and the structure of

the H-transformation itself is revealed on this basis.

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.
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