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VARIATIONAL PERTURBATION
THEORY IN »*-MODEL

A.N.Sissakian, I.L.Solovtsov

Joint Institute for Nuclear Research, Dubna

Solution of a great amount of physics problems means the
development of nonperturbative methods. Professor N.N.Bogoliubov
paid much attention to the development of methods of that sort. In
particular, we can mention his fundamental works devoted to the
problem of polaron [ ], variational principle [2 ] and to the theory of
dispersion relation [3]. Here we would like to dwell on a
nonperturbative method in quantum field theory — the variational
perturbation theory. This method combines the variational principle
and calculation of the corrections to the leading contribution and uses
the functional integration as a mathematical tool. We hope that the
approach expounded below would be appropriated by Professor
N.N.Bogoliubov.

In the framework of variational perturbation theory (VPT)
[S—7 it is possible to represent the investigated quantity in the form
of a series and it is possible to influence the properties of convergence
of this series through certain parameters of variational type. Thus it
will become possible to make the optimization of VPT series from the
viewpoint of better approximation of a value. Our method is
formulated in terms of the Gaussian functional quadratures (like in
perturbation theory). Also, we shall construct the VPT so that for its
N-th order only those diagrams will be required that compose the N-
th order of standard perturbation theory.

Here we will apply the VPT method to the Green functions of the

p*-model in the Euclidean d-dimensional space. To this end we write
the 2v-point function in the form
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G,, = [ Dplp™ } exp(=Slp)), M

where

{p"} = p(x))--. (%),

and the functional of action looks as follows:
m?
Slp) = Sylpl + 5 S,lpl +AS,lpl;
1
Solp =75 J dx(d o5 Slpl=[dxp”. @

We shall construct a VPT series by using the following Gaussian -
functional quadratures

fD‘;’exp{—[%(elAfP)HW)]} =

X
= ldet——
( —62 + mz)

The VPT series for the Green functions (1) is constructed in the
following way:

-1/2 1 A—l
exp E(JK JH|. ©))

Gy =2 G )
n=0 '
G _(—l)nJ'D {21’}18 _g h
PN Y| PP ( 4[¢] l? ])
m? -
exp| =Solp ] — 75~ Syle 1 = Slel). )

The variational functional s [ ] will be taken to be dependent on
certain parameters, but the total sum (4) surely will not depend on
these parameters. Their choice can be such as to provide the
expansion (4} being optimal (see refs. [S—7D.

The functional S [¢ | should be defined so that the terms of the
VPT series (4) be calculable, i.e. the form of S (¢ 1 should be such that
the functional integral in (5) can be reduced to the Gaussian
quadratures (3). This requirement does not mean that the functional
Slp ] must be quadratic in fields. We can pass to the Gaussian
functional integral by using the Fourier transformation.
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We choose here, for example, the sum of harmonic and
anharmonic functionals being S[p ], i.e.:

. 2
Stp1=2-5,lp1 + €Sl 1, ®)

where M and 6 are the certain parameters through which the VPT
series is optimised. We obtain

n 2
Gayon ; E I(n— k Y f 2~/‘°""( :)x

2, 2 2.n—k—1 aH“‘(/c)
X 0 “ME = mH" - — g ¥))
(M~ m?) ( OMZ) o)
where
a0 = 27§ Dele® NSl D" x
| L
x exp{— Solpl + 5 S,lel } &)
The latter expression can be written as follows
62+ 2 -1/2
2 - 2
£ (%) = det :)2—“1—2- £ ah). 9)

where gz(vl“)n(xz) are calculated on the basis of diagrams of the k-th
order of conventional perturbation theory with the propagator
A(p,xz) = (p2.+ xz)_l. A new mass parameter xz is-dependent on u
and variational parameters M? and 6. Thus, the N-th order of the
VPT expansion (4) can be constructed with the same diagrams as the
conventional perturbation N-th order is made up.

Let us consider a case of the quantum-mechanical anharmonic

oscillator (AO) as an example of exploiting the VPT method. The AO
_ from a point of view of the path integral formalism is a one-

dimensional p“-model. The connection between the ground state
energy E, and the dimensionless four-point Green function

G,(0,0,0,0) takes the form
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dE, (10
0 _,-2/3

31 A G4(0,0,0,0). .

For calculating the Green function G, we will use the two-parameters

anharmonical VPT functional
Slp 1= 16540p 1+ 25,lp 1% an

The application of the asymptotic optimization that requires the
contribution of the remote terms in the VPT series to be minimal
allows one to find the relation between the parameter 6 and

x:1680 13 = 9. The remaining variational parameter is fixed on the
basis of a finite number of VPT expansion terms. For the ground
state energy in the first order of VPT we get strong coupling
expansion

ED = 217310.663 + 0.1407 w® - 0.0085 % + ...],  (12)

where the dimansionless parameter w?=m% %3, We have to
compare the obtained result with the exact value 81

EF® = 21/310.668 + 0.1437 0* - 0.0088 w* + ...} (13)

We can also calculate the mass parameter ;42 connected with the
two-point Green function: /4_2 = G,(p = 0). In the strong coupling

limit we obtain ,442 = 3.074% 3, whereas the exact value is
'u:xact = 3.0091%/3. We can estimate the energy of the first excited
level E,. Defining the energy shift 4, = E, — E, and using the
spectral representation for the propagator we arrive at the following
estimate foru, 1 p < ,u§+), where

#{H) = 2G,(x = 0)/Gy(p = 0). (14

By analogy with the sum rules, we may expect a sufficiently rapid
saturation of the spectral representation, which brings 4, and :“(1+)
closer to each other. In the first order of the one-parameter VPT in

the strong coupling limit we get y$+) = 1.7631" 3, whereas exact
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value is u{**' = 1.7261'/3(8]. The effective potential and

corresponding numerical characteristics for AO have been computed
inref. [6].

Let us consider the renomalization, procedure in 1¢4-model. The
massless /lw‘-model in four dimensions has the Euclidean action

Slpl=Sylel + S,lp], (15)
where 1
so[?] = 5fdx P(—az) 14 (16)
2
S1[¢]=£‘1—n,Lgfdx¢4. amn

As is well known, the series of perturbation theory for generating
functional of the Green functions

W[J]=fD¢exp{—S[¢]+fde-¢}. (18)

diverges. A formal argument consists in a meaningless functional
integral for negative coupling constant. The function WI(J] as
function of g is not the analytic function at g = 0. The concrete
asymptotic behavior of higher-order terms of the perturbation theory
can be determined by the functional saddle-point method (the large
parameter is the number of the order term) [9—12]. The main
contribution to the functional integral (18) comes from the
configurations of fields ¢ which correspond to the positive power of
the large saddle-point parameter. However, in this case, the
functional (17) cannot be considered as the perturbative term in the
comparison with expression (16) which appears as divergence of the
perturbation series.

The idea of the VPT method consists in the organization of a new
effective functional interaction § ;'- We expect that this functional can

be considered as a small value when compared with a new functional
Sy’. For the realization of this idea we must be careful about the
possibility of making the calculation. Practically, we must use only
the Gaussian functional integrals, i.e. the form of Slg ] should be
such that the functional integral in (18) can be reduced to the
Gaussian quadratures.

Let us consider the VPT-functional

Slp1=6252[p] (19)
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and rewrite the total action (15) as

Slpl=Sy'lpl+nS,'lpl 20
where 5 _ .
Sy’ lel=S,le 1+ Slel, @n
and _
S/'lp)=S,lpl - Slpl. 22)

In this case, the expansion of expression (18) is carried out in
powers of 7. After all calculations we should put = 1. The
parameter 6 Zin eq. (19) is a parameter of variational type. The initial
functional (18) certainly does not depend on this parameter. We may
take the 62 so as to provide the best approximation with a finite
number of VPT series terms. The different methods of the
optimization were considered in refs. [§—7].

It is convenient to define the new parameter by the relation

2
6= 4C:£%Lg-l. 23

Here C = nt!/(lt‘m)2 is a constant entering into the Sobolev

inequality (see, for example, refs. [13,14 ] and also ref. [15 ]
‘ 2, 12

fdxe sCs[fdxw(-—a)p] . Q4

The parameter ¢ is fixed if we require the contribution of higher order
terms of the VPT series to be minimal. This way of determining a

variational parameter, is called the asymptotic optimization of VPT
series, gives thevaluet =1 [7].

After expansion in the powers of  we obtain that the remainder
contains the S|p] in the exponent and consequently, we have a
nongaussian form of the functional integral. However, the problem is
easily solved by implementing the Fourier transformation. As a
result, the Green function G,, in N-th order of VPT takes the

following form
Gz(vN) = [ daa”"! exp(—a — 8%?) x
0
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n on (02)" ~k 32/; 25
"2 : 2 (n—k)! TQk+v)’

Here functions ng, are ordinary perturbative coefficients for Green’s
function G,,. To calculate them, the standard Feynman diagrams can

be used.

It should be stressed that the expansion of expression (25) in
powers of coupling constant g contains all powers of g. The first N
terms of this expansion coincide with N terms of perturbative series.

Let us consider the procedure of renormalization. Instead of field
# and coupling constant g we introduce the bare field $o and bare

coupling constant 8 The field Po is connected with the renormalized

field by relation: o =2 v 2¢. The divergence constants Z and 8, are

obtained from VPT expansion. The constant Z can be calculated by
the propagator G,. We will be employing the constant Z in the first

order of VPT series. From eq.(25) we find
z® =1(1)7,82) + n 62 T(3) 1,62, (26
where we define

J,6% = r( 7/ f daa” ! exp(—a — a%6?). Q@n

The function Jv(()z) is normalized by the condition J (0) = 1. The

connected part of four-point Green’s function in the second order of
VPT has the form

-GAw? = ngol @ +
65 T A
! T 7,8 - go 7,60 ln;— . (28)

In this expression we wrote out only the divergence part, we need in
the following. We use the renormalization scheme with symmetric

normalization point ;42. For the bare coupling constant 8, we write
down the VPT expansion g, = g(1 + na + ...). The VPT expan-
sions for 6‘2) and JV(B(Z)) are introduced in a similar m*:ﬁner. The diver-
gence coefficient « is defined by expressions (26), (28) and the requi-
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rement for the function —Z 2G4(/42) being finite. If we change the

normalization pointu - ' and use that the bare coupling constant is
independent of u, we find the connection between g and g'
2
g=g+npEIn ’-‘——, 29)
H

where the Gell-Mann-Low function is expressed as

3
mw=58x
16314 ,6%
X 3 3 2 3 3 30
1— B{IT(6)J ((6%)/T(4)J (69 1-2IT(3) 567/ T(1)/ (%) I}

Here the parameter 6% is connected with the renormalized
coupling constant g by eq.(23) with the optimal value 7 = 1.

The expansion of S-function (30) in the perturbation series
contains all powers of the coupling constant g. It is interesting to
compare the first coefficient of the VPT B-function (30) with the well-
known values of perturbation theory. From (30) we get

Bg) = 1.58% — 2.258° + 14.63g* — 134.44¢° + ... 3D

In the considered massless case, we use counter-terms
containing only divergent parts. In the framework of the dimensional
regularization this conforms only the pole part for counter-terms
116 ]. Corresponding S-function in four-loop approximation looks as
follows {17 ]

Boernury. (8 = 1.58° — 2.83¢° + 16.27g* — 135.80¢" + ... (32)

Note that for the construction of -function (30) we used only the
first order of VPT. For this approximation the expressions (31) and
(32) are in agreement.

As follows from expression (30), the S-function is monotonously
increasing and has no the ultraviolet stable point. For a large coupling
constant, S-function has the asymptotic behavior

Ble) = 2.99¢°'%. (33)

The degree of g in eq. (33) is lager than the linear increase of
B-function obtained in ref.[18], and is smaller than the square
increase found in ref. {19].
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