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A nonperturbative method for calculating functional integrals is proposed. Only
Gaussian quadratures and only those types of diagrams which occur in the standard per-
turbation theory are used for the formulation of this method. The proposed approach is
used for the consideration of the ©?* anharmonic oscillator in the strong coupling limit.

Many tasks in quantum field theory demand application of nonperturbative
methods. In this direction there are a lot of papers characterized by a variety
of approaches. For example, the summation method for the series of perturbation
theory and the asymptotic expressions for distant terms of the series are widely
used.! The summation task for the asymptotic series of perturbation theory has
functional arbitrariness that can be removed only by using additional informa-
tion about the sum of the series.? The characteristics of the series sum, which
are necessary for unambiguous summation, are unknown for the majority of field-
theoretical models.

The approaches that are not directly connected with the series of perturbation
theory are being developed.>® To find a “leading contribution” many of the non-
perturbative approaches use one of the variational procedures. Among them, for
example, is the method of the Gaussian effective potential, which has often been
used in recent years.1%"12. It should be noted, however, that variational approaches
faced certain difficulties connected as a rule with the estimate of accuracy of the
obtained results. The reason is that the formalism realizing the variational principle
does not lead to a natural scheme for calculating corrections to the basic contri-
bution. The existence of a procedure of corrections computation is not enough to
judge the properties of convergence of the series. In this connection, there remains
open the question about stability and reliability of the results obtained within the
variational method.?

*Gomel Politechnical Institute, 246746 Gomel, Byelorussia.
8Gee Ref. 11 about the Gaussian approximation in this connection. R
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In the present paper, we formulate a nonperturbative method for the o2 an-
harmonic oscillator (as a one-dimensional model of field theory with interaction
of Ap?*). The starting point of the proposed approach is the functional integral;
to calculate it we use only Gaussian functional quadratures, as in standard per-
turbation theory. We introduce for consideration some free parameters, which
are then fixed from the optimization principle. The latter plays the role of some
variational procedure. However, the proposed approach is not reduced to the usual
variational methods. Our approach differs essentially from the latter in that its
formalism contains from the very beginning the corrections computation procedure
of any order, as we are dealing with a series and can always calculate a subsequent
expansion term. We deal not with the estimation of the given quantity according to
the variational concept, but with the representation of an initial quantity as a series
called the series of variational perturbation theory (VPT), whose convergence may
be governed by variational parameters, and which, in principle, makes it possible to
calculate a correction of any order and thereby to study the stability of the obtained
results.

The important technical peculiarity of the proposed approach is the fact that for
the Lth order of VPT only those Feynman diagrams are used which determine the
same order of the standard perturbation theory. Contrary to the above-mentioned
asymptotic series of standard perturbation theory, the VPT series has a finite region
of convergence, and the availability of free parameters makes it possible to obtain
the optimal approximation for the quantity of interest. This approach allows one
to obtain the Leibniz series which provides upper and lower series estimates for a
given quantity, and by varying variational parameters we can get the most exact
estimates of the latter.” Note that owing to the functional integral formalism which
allows, at least formally, the consideration of an arbitrary number of dimensions,
the proposed method can be applied to quantum field theory.

We explain the idea of the VPT method by the example of the simple numerical
integral which can be considered as a zero-dimensional analog of the two-component
scalar model in the field theory

Z[g] =/_°° dz, /_°° dza exp[—(So + ¢51)], (1)

where So = z} + zJ = x? is an analog of the free action and S, = z2* + z2* is the

action of interaction. If we rewrite the total action in the form S = So + 0S(’§ +
951 — 65§, we construct a new expansion of Z[g]:

i)=Y Zalo,0), (2)

Z(9,01= o [ dx(05} ~ 951" expl—(5o + 053], 3

bThis problem will be discussed in detail in subsequent publications.
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where @ is the arbitrary parameter so far. Since Z{ g] is independent of the parameter
8, we can choose its value so that a finite number of series terms in (2) would
provide the best approximation value (1). One can propose different versions of the
optimization procedure. First, one can determine the variational parameter 8 from
the minimality requirement for the absolute value of the sum of the last series terms
in VPT being minimal:

min , 1<k<N.

N
Z Zi[g’ 0]
i=k

Second, since the exact value of Z[g] is independent of the parameter 8, the opti-

.. Q) . . . .
mization procedure can be a_z_ﬁ[g_ﬂ = 0. Third, one can require the contribution
of the distant terms in the VPT series to be minimal (the so-called asymptotic
optimization). The asymptotic behavior of the coefficients Zu[9,6) with large n is

o) . L o (5 o ().

2k-1g
t= . (5

9

Hence, we can see that the VPT series has the finite region of convergence for
g < 25-19. In the case of t = 1, which corresponds to the asymptotic optimization,
the VPT series becomes an alternating sign convergent series of Leibniz, and there
is a possibility of carrying out upper and lower bilateral estimates of the sum of
series proceeding from the first terms.

In order to reduce the integral in (3) to the Gaussian form, we carry out a number
of transformations, specifically the forward and inverse Fourier transformation:

where

exp(—A¥) = /:: du F(u) exp(—iuA), (6)

where F(u) is the Fourier image of the function exp(—A¥) and

LI /°° daa”~! exp(—aa) (D
@ =T Jo plrad
We obtain the next expression:

oo n on..j
Zelef1= /o daro™ exp(oc = 0a) ;, GoprEEp o @

Z;le) = Jl—. [ axl=atatt + = exp(—x), )
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where Z;[g] is the ordinary coefficient of perturbation theory. Then, in the first
nontrivial order we find that

Zo[g,0] == /000 da exp(—a — a*0) , (10)

9 (k- 1)!!] :

o0
Zy[g,9] :1r/0 da a* 0 exp(—a — a*0) [1— R (11)

Using the optimization procedure in conformity with versions 1 and 2, we obtain

t=t1=t2=(2—kl:!—l)!!. (12)

The results for different k are shown in Table 1. Note that the interval (zM]g,0),
Z(o)[g, 0]) 3 is the variational parameter for asymptotic optimization) determines
the upper and lower estimates for Z[g], which corresponds to the Leibniz series.

Table 1. The results of calculation of Z[ 9,8] for different k in the first order of VPT, where
zM[g,6) = Zolg,0)+ Z1[g,9), Z(o)[y,0] = Zolg,6) and 6, 62, 83 are the variational parameters
for different optimization procedures.

k g Zexact Z(l)[g,el Z(l)[g,Ol Z(°)[_q,0]
0=206, =06, =03 0 =0,
2 0.1 2.8025 2.7994 2.7902 2.8929
1.0 1.8726 1.8585 1.8153 2.0599
10.0 0.8500 0.8369 0.7920 0.9841
100.0 0.3076 0.3016 0.2801 0.3642
10000.0 0.0326 0.0320 0.0294 0.0391
3 0.1 2.7046 2.6881 2.6222 2.8813
1.0 1.9919 1.9556 1.7716 2.2763
10.0 1.2138 1.1769 0.9642 1.4680
100.0 0.6496 0.6247 0.4711 0.8126
10000.0 0.1552 0.1482 0.1033 0.1992
4 0.1 2.6220 2.5873 2.3596 2.8620
1.0 2.0535 1.9974 1.5435 2.3914
10.0 1.4391 1.3806 0.8439 1.7692
100.0 0.9276 0.8806 0.4178 1.1837
10000.0 0.3334 0.3131 0.0986 0.4417

In the strong coupling limit for g — oo we find from (8) the expression for Z (9]
in the Nth order of VPT:

1
F{N+1+ - N ;
1 k - J
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where

gl )

m! (7 —m)!

(14)

The same results for Z[g] in the first order of VPT (g — oo) for different k are
shown in Table 2.

Table 2. The value Z(1)[g] in the first order of VPT (g — 00).

k Zexact ] z(M[g] Error (%)
2 3.28626 g—1/2 3.21488 g—1/2 2.172
3 3.44265g~1/3 3.28119g-1/3 4.689
4 3.547529-1/4 3.31130g—1/4 6.658

Further, let us consider the task of calculating the ground state energy for the
anharmonic oscillator with the Euclidean action

S=So+-;—m25'+g51, (15)

where

. 1 o0} - [o0] o o]
so=§/ dt $?, s:/ dt ¢?, s,:/ dt p* (16)
—00 —00 — 00
in the strong coupling limit as g/m**! — co. We proceed to dimensionless variables
p— g Ty, t—gTHL,

and consider the BT";P- quantity, which is connected with the 2k-point Euclidean
Green function by the expression

0F _x o e AT

o =9 Ga(0), (17)

g
where ,
Gau(0)=N"! / Dy ¢**(0) exp [— (So + %—5’+ 51)] , (18)
w? -
N:/Dgoexp [-— (So+75+51)], (19)
w? = m2g~ T . (20)

We introduce an auxiliary functional in the form

A=oso+§§,

'
ol
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with arbitrary parameters 8 and v for constructing a new expansion, and rewrite
the action (15) as follows:®

S=Sy+51,
where

2~
{,:So+f‘-’2—s+A*, St =8 — A,

Carry out the expansion in powers of the new action of the interaction Sj. Then,
the VPT series is written as

Cu©) =N Y = [ Do g ON-5" exn(-51). (21)
n=0

Again, due to the fact that the exact-value of G3;(0) is independent of § and v, we
can use any optimization condition. Let us use the asymptotic optimization. For
that we must find the asymptotic form of the functional integral

/ D(A* - 81)" expl—(Sy + 4*)] (22)

for large n. We use substitution ¢ — n3% ¢ and the functional method of steepest
descent to determine the saddle point function o, which gives the basic contribution
to the functional integral (22):'3

polt) = = (\/%—a{cosh[(’c — 1)Va(t - to)]}"‘) = ,

v 2

=0 T DA Dl = ATl = Sl

where the parameter ¢y reflects the translational invariance of the theory. The
contribution of the distant terms of the series (21) will be minimal when D[go] = 0.
This requirement leads to the relation between the parameters 8 and v:

9 k-1 E:le
2— D ——
2k—2 (k l)r[k—l]

| svar[]

(23)

There is a limit: limg_, o, ¥(6) = 1/8. The remaining variational parameter 8 will
be fixed proceeding from the finite number of expansion terms of VPT. Using again
the formulas (6) and (7) and having in mind the intermediate dimensional regu-
larization, as well as introducing differentiation with respect to the parameter « in
order to achieve any power of A, we find that in the strong coupling limit

I S I AN 4(=)
G”‘(O)’:‘;; (n =) (da) /_wd ) (1 = ay % sy’
(29)

€A similar method was applied in Refs. 4, 8 and 9.
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where
2 witiuy(l —-a)l/t

1+ iub(1 — a)1/F
9;(z%) = (_;—1')] / Dy p**(0)S] exp [— (So + %ﬁg)] : (25)

g;j(2?) are ordinary coefficients for perturbation theory series. One can establish

their connection with the A, coefficients for the expansion Ey(g) in the perturbation
3

theory series
00
m g n
Bl =g +m 3 A (i)
n=1
The corresponding expression has the form

2y _ (L+5)A1y;
9(") = e

Then, in the Nth order of our approximation we obtain (if ¥ = vop: and w? = 0)

N n . kG145
1 1+])A1+ 1 2
E(N) = k+1 gm (_______J_ -
0 ( ) ; JZ=; (n —])' v
. . . i1y —1
« {r [k(J +21)—J] r[k(’ +21)+J]} R (6), (26)
where
o _p kUAD-§
R, ;j(0) = dee Tz~ 2
0
x / dy y" " 0z 4 gD exp [~z +1)*] . (27)
0

The calculational results for different k and for various optimization procedures are
shown in Table 3. The “exact” numerical results for E, were taken from Ref. 14.

Table 3. The ground state energy E'f,l) (g] for different k (g — oo).

k o E§(9) E5(s)

2 0.027926 0.668 g1/3 0.663g1/3
0.038009 0.680 g1/4 0.698g1/4

4 0.040149 0.704 g1/5 0.709 g1/5

Apart from the dominant contribution to Eg, the VPT method allows one to
determine corrections to the basic contribution. This is reached by expanding in
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power of w?. As a result, for the ¢* oscillator (k = 2) in the first order of VPT
(m? = 0) we ﬁnd that

ED = g3 (0.663 +972/3%0.1407 — g=4/30.0085 4 - . ) .
We can compare this result with the exact expression:
gt = 913 (0.668 + g~%/%0.1437 — g=4/30.0088 + - 3.
The ground state energy E((,s) (k = 2) for different g (m? = 1) is shown in Table 4.

Table 4. The ground state energy E((,s)(lc = 2) for different g (m?2 = 1).

g Egract E,gs) Bopt Error (%)
0.1 0.559 0.56407 0.0255 0.906
0.5 0.696 0.69793 0.0246 0.277
1.0 0.804 0.80557 0.0241 0.220
2.0 0.952 0.95334 0.0218 0.141

50 2.499 2.50322 0.0215 0.141
200 3.931 3.93627 0.0215 0.134
1000 6.694 6.70317 0.0215 0.137
8000 13.367 13.38603 0.0229 0.142
20000 18.137 18.16315 0.0229 0.144

We use the ratio connecting the ground energy level with the propagator:!®

ﬁl wfﬂ[l..

Eo=—¢

G5 (p)G(p))] - (28)

Assuming that § = 0 we can rewrite expression (24) in the form
Gu)=3. 3 ot (&) T wrwces| L s
n=0 ;=0 J a=0
22 =W +iuw(l - a)V*
where i
Glp) = 5— 1 —g(k )z_*_‘m+ (30)

g(k) and the results of the calculation are shown in Table 5.

Table 5. The results of calculation of E(()l) (9] in the case § = 0.

ko g(k)  Eeae(g) E{)(g) Error (%)
2 12 0.668 g1/3 0.645 g1/3 3.41

3 22.5 0.680 g1/4 0.602g1/4 11.49

4 105 0.704 g1/5 0.602g1/5 14.45
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Finally, we consider the construction of a nonperturbative effective potential
using the proposed method. To calculate it the generating functional of connected
Green functions will be necessary:

Z[J] = (i9)~! In W[J], (31)

where
wiJ = / Dy exp{ilS(¢) + ()]}

The effective potential is found by the formula

Verlpo] = Jpo — Z[J], (32)
where J is the function of o,
_0z[J]
Po = 87 ’ (33)

since it is sufficient to use only constant source J = const. We introduce a variational
parameter, by analogy with the previous case, as follows:

2& at &k ak ok
S[so]:(So'—mS—Qk_IS - gSl_FTS ?

where Sy and S) are as in (16), § = 3 [ dty?, and Q is the “volume” of the one-
dimensional space. Further, expanding the integrand exponent in powers of the new
interaction action and making some transformations (in particular the forward and
inverse Fourier transform), we obtain

Q (o0] =]
—-00 —00

x exp [iQ (vC — Ck)] E ((;1_)n—j (die)n—] w;[J, M?],

2 G- J),

| z_gg_r'/ Y (i
wi[J,M?*] = 7 [ dzan"(z) exp 2(JAJ),
A(p) = (p* - M2 +i0)"},

M? =m? 4 e/ *qp.

For example, for the case of k = 2 in the first order for the generating functional
of coupled Green functions (31) in the limit of strong coupling we get

3 +3 s + J
Y\ T e T My

S

zM] = (34)

J: 1

S (M?
M? 4( )
where M? is a new variational parameter computed by the optimization procedure.
The effective potential is constructed with the use of (32)-(34), and the correspond-
ing graphs are shown in Fig. 1.



5138 L. D. Korsun, A. N. Sissakian & I. L. Solovisov

10
Vess

| Po
0 / 2

Fig. 1. The graph for the effective potential corresponding to the first order of VPT for k = 2
(Eqs. (32)-(34)].

0

We consider the anharmonic oscillator for k = 2, 3,4. In the first order of VPT
(J = const) we find that

W) = % / v / " dC expliS(v, Ol + 2 AS(6,C)],  (35)
where 1 \
S=Cv—c"—§(M2)5, (36)
1, oond 1, n-3]"
AS(v,C) = 7 (M?)* - g(2k - 1! [—E(M ) ] . (37)

We require the optimum value of the parameter M? to correspond to the minimum
of the absolute value of AS(v, C):

M?%: min|AS(v,C)|.
In the case of k being even, the optimization condition is AS(v,C) = 0, and since
Vi (eo) = E(V + 0(p}) (38)

the ground state energy is found from the stationarity condition for the function
S(v,C):
EMN = —S(vo, Co), (39)
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where

as as

—_— = 0 s — = 0 .

ocC c=co Ov c=cq
Then we have for even k

(M2)V? = -;—[Skg(2k — ) (40)
) _k+1 241/2
EO e 4k (M ) )

k=2: E" =0681g"3,
k=4: E=0.79245.

For the case of k = 3 the optimization will consist in choosing such a real positive
value of M? at which |AS| = min. Since

(Mz)ln 15 2\-3/2

AS =

the parameter (M?2)!/2 is 2.866 A1/4.
Further, two ways are possible. First, we can use the method of a stationary
phase for the expression

exp[i(S + AS)] = exp(iQS).

Then, we get
ESM = —~S(vo, Co) = 0.6396 g*/*.

The second method implies that owing to the smallness of AS we consider the
expression [1+i2 AS(v, C)] to be a frequency factor and apply the above-mentioned
method to S(v,C) . Then, we write

R

1 +iQAS(v,C)] = exp(i2 AS).
In this case, we get
E{Y = —S— AS =0.6396g'/%.

Thus, we obtain the same result as in the first case, which is a criterion of internal
conformity of our approach.
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