
Z. Phys. C - Particles and Fields 53, 41 49 (1992) 
Zeitschriff P a r t i c ~ , ~  far Physik C 

and Fields 
�9 Springer-Verlag 1992 

Search for excited charged leptons in Z ~ decays 
DELPHI  Collaboration 

P. Abreu 16, W. Adam 42, F Adami 33, T. Adye 31, T. Akesson a9, G.D. Alekseev 12, P. Allen 41, S. Almehed 19, 
F. Alted 41, S.J. Alvsvaag 4, U. Amaldi 7, E. Anassontzis 3, p. Antilogus 20, W2D. Ape113, B. Asman 37, p. Astier18, 
J-E. Augustin 15, A. Augustinus 7, p. Baillon v, p. Bambade 15, F. Barao 16, G. Barbiellini 39, D.Y. Bardin lz, 
A. Baroncelli 34, O. Barring 19, W. Bart142, M.J. Bates 29, M. Baubillier 18, K-H. Becks 44, C.J. Beeston 29, M. Begalli 1~ 
P. Beilliere 6, Yu. Belokopytov 36, p. Beltran 9, D. Benedic 8, J.M. Benlloch 41 M. Berggren 37, D. Bertrand 2, 
S. Biagi 17, F. Bianchi 38, J.H. Bibby 29, M.S. Bilenky 12, P. Billoir 18, J. Bjarne 19, D. Bloch s, S. Blyth 29, 
P.N. Bogolubov 12, T. Bolognese 33, M. Bonapart  26, M. Bonesini 24, W. Bonivento 24, P . S i .  Booth 17, M. Boratav 18, 
P. Borgeaud 33, G. Borisov 36, H. Borner 29, C. Bosio 34, O. Botner 4~ B. Bouquet 15, M. Bozzo 1~ S. Braibant v, 

30 11 2 7 26 6 p .  �9 .34  Branchml , K.D. Brand , R.A. Brenner , C. Bricman , R.C.A. Brown , N. Brummer , J-M. Brunet , 
L. Bugge 28, T. Buran 28, H. Burmeister 7, J.A.M.A. Buytaert 2 M. Caccia 7 M. Calvi24, A.J. Camacho Rozas 35, 
J-E. Campagne 7, A. Campion 17, T. Camporesi  v, V. Canale 32, F. Cao 2, L. Carroll 17, C. Caso 1~ E. Castelli 39 
M.V. Castillo Gimenez 41, A. Cattai v, F.R. Cavallo 5, L. Cerrito 32, p. Charpentier 7 p. Checchia 30, G.A. Chelkov 12, 
L. Chevalier 33, p. Chliapnikov 36, V. Chorowicz is, R. Cirio 38 M.P. Collins 2 9  J.L. Contreras 21, R. Contri 1~ 
G. Cosine 15, F. Couchot  15, H.B. Crawley 1, D. Crennell 31, G. Crosettil~ N. Crosland 29, M. Crozon 6, 
J. Cuevas Maestro 35, S. Czellar 11, S. D agoret 15, E. D ahl-Jensen 25, B. D almagne 15, M. Dam 7, G. Damgaard  25, 
G. Darbo 1~ E. Daubie 2, P.D. Dauncey 29, M. Davenport  7, P. David 18, A. De Angelis 39, M. De Beer 33, 
H. De Boeck 2, W. De Boer 13, C. De Clercq 2, M.D.M. De Fez Laso 41, N. De Groot  26, C. De La Vaissiere 18, 
B. De Lotto 35, A. De Min 24, C. Defoix 6, D. Delikaris 7, S. Delorme 7, P. Delpierre 6, N. Demaria 38, J. Derkaoui  38'22, 
L. Di Ciaccio 32, H. Dijkstra 7, F. Djama 8, J. Dolbeau 6, M. Donszelmann 26, K. Doroba  43, M. Dracos 7, J. Drees 44, 
M. Dris 27, y .  Dufour 6, W. Dulinski 8, R. Dzhelyadin 36, L-O. Eek 4~ P.A.-M. Eerola 11, T. Ekelof 4~ G. Ekspong 37, 
A. Elliot Peisert 30, j.p. Engel s, V. Falaleev 36, D. Fassouliotis 27, M. Fernandez Alonso 35, A. Ferret  41, 
T.A. Filippas 27, A. Firestone 1, H. Foeth 7, E. Fokitis 27, p. F olegati 39, F. Fontanelli 1~ H. Forsbach 41, B. Franek 31, 
P. Frenkiel 6, D.C. Fries 13, A.G. Frodesen 4, R. Fruhwirth 42, F. Fulda-Quenzer 15, K. Furniva117, H. Furstenau 13, 
J. Fuster 7, J.M. Gago 16, G. Galeazzi 30, D. Gamba  38, C. Garcia 41, j. Garcia 35, U. Gasparini 30, p. Gavillet 7 
E.N. Gazis 27 j_p. Gerber 8, p. Giacomelli 5, K-W. Glitza 44, R. Gokieli 7, u Golovatyuk 12, 
J.J. Gomez Y Cadenas 7, A. Goobar  37, G. Gopa131, M. Gorski 43, V. Gracco 1~ A. Grant  7, F. Grard 2, E. Graziani 34, 
M-H. Gros 15, G. Grosdidier 15, B. Grossetete is, S. Gumenyuk  36, j. Guy 31, F. Hahn 7, M. Hahn 13, S. Haider 26, 
Z. Hajduk 26, A. Hakansson 19, A. Hallgren 4~ K. Hamacher  44, G. Hamel De Monchenaul t  33, F.J. Harris 29, 
B.W. Heck 7 I. Herbst 44, j.j.  Hernandez 41, p. Herquet 2, H. Herr 7, I. Hietanen 11, E. Higon 41, H.J. Hilke 7, 
S.D. Hodgson 29, T. Hofmok143, R. Holmes 1, S-O. Holmgren 3v, D. Holthuizen 26, P.F. Honore  6, J.E. Hooper  25, 
M. Houlden 17, j. Hrubee 42, P.O. Hulth 37, K. Hultqvist 37, D. Husson 8, B.D. Hyams 7, p. Ioannou 3, D. Isenhower 7, 
P-S. Iversen 4, J.N. Jackson 17, P. Jalocha 14, G. Jarlskog 19, P. Jarry 33, B. Jean-Marie 15, E.K. Johansson 37, 
D. Johnson 17, M. Jonker 7, L. Jonsson 19, p. Juillot 8, G. Kalkanis 3, G. Kalmus 31, G. Kantardj ian 7 F. Kapusta  18, 
S. Katsanevas 3, E.C. Katsoufis 27 R. Keranen 11, j. Kesteman 2, B.A. Khomenk012  N.N. Khovanski  12, B. King 17, 
N.J. Kjaer 25, H. Klein 7, W. Klempt 7, A. Klovning 4, P. Kluit 26 J.H. Koehne 13, B. Koene 26 p. Kokkinias 9, 
M. Kopf  13, M. Koratzinos 7, K. Korcy114, A.V. Korytov 12, B. Korzen 7, V. Kostukhin 36, C. Kourkoumelis  3, 
T. Kreuzberger 42, j. Krolikowski 43, U. Kruener-Marquis 44, W. Krupinski 14, W. Kucewicz 24, K. Kurvinen 11, 

1 39 36 33 11 C. Lacasta 41, C. Lambropoulos  9, J.W. Lamsa , L. Lanceri , V. Lapin , J-P. Laugier , R. Lauhakangas , 
44 15 18 42 44 G. Leder 42, F. Ledroit 6, J. Lemonne 2, G. Lenzen , V. Lepeltier , A. Letessier-Selvon , D. Liko , E. Lieb , 

E. Lillethun 4, j. Lindgren 11, A. Lipniacka 43, I. Lippi 30, R. Llosa 2 1  B. Loerstad 19, M. Lokajicek 12, J.G. Loken 29, 
M.A. Lopez Aguera 35 A. Lopez-Fernandez15, M. Los 26, D. Loukas 9, A. Lounis 8, j.j. Lozano 41, R. Lueock 31, 
P. Lutz 6, L. Lyons 29, G. Maehlum 7, J. Maillard 6, A. Maltezos 9, S. Maltezos 27, F. Mand142, J. Marco 35, 
M. Margoni  30, J-C. Marin 7, A. Markou  9, S. Marti41, L. Mathis 6, F. Matorras 35, C. Matteuzzi 24, G. Matthiae 32, 
M. Mazzucato 3~ M. Mc Cubbin 17, R. Mc Kay 1, R. Mc Nulty 17, E. Menichetti 38, C. Meroni 24, W.T. Meyer 1, 
M. Michelotto 30, W.A. Mitaroff 42, G.V. Mitselmakher 12, U. Mjoernmark 19, T. Moa 37, R. Moeller 25, K. Moenig 44, 

M.R. Monge 1~ P. Morettini 1~ H. Mueller 13, H. Muller 7, W.J. Murray 31, G. Myatt  29, F. Naraghi 18, 
U. Nau-Korzen 44, F.L. Navarria 5, p. Negri 24, B.S. Nielsen 25, B. Nijjhar 17, V. Nikolaenko 36, V. Obraztsov 36, 
A.G. Olshevski 12, R. Orava 11, A. Ostankov 36, A. Ouraou 33, R. Pain 18, H. Palka 26, T. Papadopoulou 27, L. Pape 7, 
A. Passeri 34, M. Pegoraro 30, V. Perevozchikov 36, M. Pernicka 42, A. Perrotta 5, F. Pierre 33, M. Pimenta 16, 
O. Pingot 2, A. Pinsent 29, M.E. Po116, G. Polok 14, P. Poropat  39, P. Privitera 13, A. Pullia 24, J. Pyythia 11, 
D. Radojicic 29, S. Ragazzi 24, W.H. Range 17, P.N. Ratoff 29, A.L. Read 28, N.G. Redaelli 24, M. Regler 42, D. Reid 17, 
P.B. Renton 29 L.K. Resvanis 3, F. Richard 15, M. Richardson 17, j. Ridky12, G. Rinaudo 38, I. Roditi  7, A. Romero  3s, 



42 

I. Roncagl io lo  ~~ P. Ronchese  3~ C. Ronnqv i s t  ~ t, E.I. Rosenbe rg  t, U. Ross i  5, E. Rosso  7, p. RoudeauaS,  T. Rovell i  5, 
W. Rucks tuh116 V. R u h l m a n n  33, A. Ruiz  35, K. Rybick i  14, H. Saa r ikko  i 1, y .  S acquin 33 j. Salt41, E. S anchez 41, 
J. Sanchez 21, M. Sannino 1~ M. Schaeffer 8, H. Schneider xa, F. Scuri 39, A.M. Segar 29, R. Sekulin 31, M. Sessa 39, 
G. Sette 1 o, R. Seufert 13, R.C. Shellard ~6, P. Siegrist 33 S. S imonet t i  1~ F. S imone t to  30, A.N. Sissakian 12, 
T.B. Skaali  28, G. Skjevling :s, G. Smadja  3a'2~ G.R.  Smith  al, N. Smirnov  36, R. Sosnowski  43, T.S. Spassoff  12, 
E. Spiriti 34, S. Squarc ia  1~ H. Staeck 44, C. Stanescu 34, G. S t av ropou los  9, F. St ichelbaut  2, A. Stocchi 15, J. Strauss 42, 
R. Strub 8, C.J. S tubenrauch  7, M. Szczekowski  43, M. Szeptycka  43, p. Szymansk i  43, T. Tabarell i24,  S. Tavern ier  2, 
G.E. Theodos iou  9, A. Tilquin 23, j. T i m m e r m a n s  26, V.G. Timofeev ~ 2, L.G. Tka t chev  12, T. T o d o r o v  12, D.Z. Toe t  26, 
L. T o r t o r a  34, M.T. T ra ino r  29, D. Treille 7, U. Trev isan  1~ W. Tr i schuk  7, G. T r i s t r am 6, C. T r o n c o n  24, A. Ts i rou  7, 
E.N. T s y g a n o v  12, M. Tu ra l a  14, R. Turche t t a  8, M-L.  Tur luer  a3, T. T u u v a  11, I.A. T y a p k i n  12, M. Tynde l  31, 
S. T z a m a r i a s  v, B. Uebe r schae r  44, S. Uebe r schae r  44, O. Ul la land  v, V.A. U v a r o v  36 G. Valenti  5, E. Val lazza 3s  
J.A. Valls Fer rer  41, G.W. Van  A p e l d o o r n  26, p. Van D a m  26, W.K.  Van D o n i n c k  2, N. Van Ei jndhoven 7, 
C. Vander  Velde 2, j. Vare la  16, p. Vaz 16 G. Vegni 24 j. Velasco 41, L. Ven tu ra  3 o, W. Venus 31, F. Verbeure  27 
L.S. V e r t o g r a d o v  12 L. Vibert  18, D. Vi lanova  33 E.V. Vlasov 36 A.S. V o d o p y a n o v  12 M. Vol lmer  44 S. Volpon i  s, 

3 11 34 44 37 39 1 G. Voulgar is  , M. Vout i la inen , V. Vrba  , H.  Wah len  , C. Walck  , F. Wa ldne r  , M. W a y n e  , P. Wei lhammerT,  
J. Werne r  44, A.M. Wetherel l  7, J.H. Wickens  2, j .  Wikne  2s, G.R.  Wi lk inson  29, W.S.C. Wil l iams 29, M. Win te r  s, 
D. W o r m a l d  28, G. W o r m s e r  15, K. W o s c h n a g g  4~ N. Y a m d a g n i  37, P. Yepes  7, A. Zai tsev 36, A. Za lewska  ~4, 
P. Zalewski  43, E. Zevgo la t akos  9, G. Zhang  44, N.I .  Z imin  12, M. Zito 33, R. Z i toun  TM, R. Z u k a n o v i c h  Funcha l  6, 
G. Zumer le  3~ J. Zun iga  41 

1 Ames Laboratory and Department of Physics, Iowa State University, Ames IA 50011, USA 
2 Physics Department, Univ. Instelling Antwerpen, Universiteitsplein 1, B-2610 Wilrijk, Belgium 

and IIHE, ULB-VUB, Pleinlaan 2, B-1050 Brussels, Belgium 
and Service de Phys. des Part. E16m., Facult6 des Sciences, Universit6 de l'Etat Mons, Av. Maistriau 19, B-7000 Mons, Belgium 

3 Physics Laboratory, University of Athens, Solonos Str. 104, GR-10680 Athens, Greece 
# Department of Physics, University of Bergen, All6gaten 55, N-5007 Bergen, Norway 
5 Dipartimento di Fisica, Universit/t di Bologna and INFN, Via Irnerio 46, 1-40126 Bologna, Italy 
6 Coll6ge de France, Lab. de Physique Corpusculaire, 11 pl. M. Berthelot, F-75231 Paris Cedex 05, France 
v CERN, CH-1211 Geneva 23, Switzerland 
8 Division des Hautes Energies, CRN-Groupe DELPHI and LEPSI, B.P. 20 CRO, F-67037 Strasbourg Cedex, France 
9 Institute of Nuclear Physics, N.C.S.R. Demokritos, P.O. Box 60228, GR-15310 Athens, Greece 

lO Dipartimento di Fisica, Universit~i di Genova and INFN, Via Dodecaneso 33, 1-16146 Genova, Italy 
11 Research Institute for High Energy Physics, University of Helsinki, Siltavuorenpenger 20 C, SF-00170 Helsinki 17, Finland 
12 Joint Institute for Nuclear Research, Dubna, Head Post Office, P.O. Box 79, 101000 Moscow, USSR 
13 Institut fiir Experimentelte Kernphysik, Universit~it Karlsruhe, Postfach 6980, W-7500 Karlsruhe 1, Federal Republic of Germany 
14 High Energy Physics Laboratory, Institute of Nuclear Physics, U1. Kawiory 26a, PL-30055 Krakow 30, Poland 
15 Universit6 de Paris-Sud, Lab. de l'Acc616rateur Lin6aire, Bat 200, F-91405 Orsay, France 
16 LIP, Av. Elias Garcia 14-1e, P-1000 Lisbon Codex, Portugal 
17 Department of Physics, University of Liverpool, P.O. Box 147, GB-Liverpool L69 3BX, UK 
is LPNHE, Universit6s Paris VI et VII, Tour 33 (RdC), 4 place Jussieu, F-75230 Paris Cedex 05, France 
19 Department of Physics, University of Lund, S61vegatan 14, S-22363 Lund, Sweden 
20 Universit6 Claude Bernard de Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France 
21 Departamento de Fisica Atomica Moleculary y Nuclear, Universidad Complutense, Avda, Complutense s/n, E-28040 Madrid, Spain 
22 D6partement de Physique, Facult6 des Sciences d'Oujda, Maroc 
23 Facult6 des Sciences de Luminy, Univ. d'Aix - Marseille II Case 907-70, route L6on Lachamp, F-13288 Marseille Cedex 09, France 
24 Dipartimento di Fisica, Universit/t di Milano and INFN, Via Celoria 16, 1-20133 Milan, Italy 
25 Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark 
26 NIKHEF-H, Postbus 41882, NL-1009 DB Amsterdam, The Netherlands 
27 National Technical University, Physics Department, Zografou Campus, GR-15773 Athens, Greece 
28 Physics Department, University of Oslo, Blindern, N-1000 Oslo 3, Norway 
29 Nuclear Physics Laboratory, University of Oxford, Keble Road, GB - Oxford OXl 3RH, UK 
3o Dipartimento di Fisica, Universit~t di Padova and INFN, Via Marzolo 8, 1-35131 Padua, Italy 
31 Rutherford Appleton Laboratory, Chilton, GB - Didcot OX11 OQX, UK 
3z Dipartimento di Fisica, Universitg di Roma II and INFN, Tor Vergata, 1-00173 Rome, Italy 
33 CEN-Saclay, DPhPE, F-91191 Gif-sur-Yvette Cedex, France 
34 Istituto Superiore di Sanitg, Ist. Naz. di Fisica Nucl. (INFN), Viale Regina Elena 299, 1-00161 Rome, Italy 
35 Facultad de Ciencias, Universidad de Santander, av. de los Castros, E-39005 Santander, Spain 
36 Inst. for High Energy Physics, Serpukow P.O. Box 35, Protvino, (Moscow Region), USSR 
37 Institute of Physics, University of Stockholm, VanadisvS.gen 9, S-11346 Stockholm, Sweden 
38 Dipartimento di Fisica Sperimentale, Universit~ di Torino and INFN, Via P. Giuria 1, 1-10125 Turin, Italy 
39 Dipartimento di Fisica, Universit~t di Trieste and INFN, Via A. Valerio 2, 1-34127 Trieste, Italy 

and Istituto di Fisica, Universit/~ di Udine, 1-33100 Udine, Italy 
4o Department of Radiation Sciences, University of Uppsala, P.O. Box 535, S-75121 Uppsala, Sweden 
41 Inst. de Fisica Corpuscular IFIC, Centro Mixto Univ. de Valencia-CSIC, Avda. Dr. Moliner 50, E-46100 Burjassot (Valencia), Spain 
42 Institut ffir Hochenergiephysik, Oesterreich Akad. d. Wissensch., Nikolsdorfergasse 18, A-1050 Vienna, Austria 
43 Inst. Nuclear Studies and University of Warsaw, U1. Hoza 69, PL-00681 Warsaw, Polan# 
44 Fachbereich Physik, University of Wuppertal, Postfach 100127, W-5600 Wuppertal 1, Federal Republic of Germany 

Received 28 August 1991 



43 

Abstract. Using a data sample of 115000 hadronic Z ~ 
decays, a search was performed for the production of 
excited charged leptons decaying into an ordinary lepton 
and one photon. Pair production of excited leptons of 
mass below 45 GeV/c 2 is excluded. From an analysis 
of the lepton-photon mass spectra this experiment is also 
able to exclude single production of these particles for 
masses that reach up to 85 GeV/c 2, if the compositeness 
scale is below 1 TeV. 

1 Introduction 

This paper presents a systematic search for unstable 
heavy excited charged leptons assumed to decay into 
a normal lepton and a photon. The decays of Z~ pro- 
duced at LEP are investigated to look for acollinear two- 
prong events with at least one photon visible in the elec- 
tromagnetic calorimeters. 

Compositeness [1] provides a general framework 
which describes the coupling of the photon and Z ~ to 
excited leptons. One may assume that they have the same 
weak isospin properties as ground state leptons and, con- 
sequently, are pair-produced with standard cross sec- 
tions and angular distributions. Single production of an 
excited lepton could also be possible, however, with un- 
known l* IZ and l* 17 couplings. As pointed out in refer- 
ence [2], the single production of excited electrons is 
greatly enhanced by the contribution of the diagram cor- 
responding to photon exchange in the t-channel. In this 
process the spectator electron tends to be emitted at 
very small angles with respect to the beam direction and 
escapes the detector. In order to be sensitive also to 
this process, the search has been extended to e7 final 
states. 

The main background affecting the present search 
comes from leptonic decays of the Z ~ with radiation 
of one or more energetic photons. This background can 
be substantially reduced by demanding that the photons 
be isolated from the leptons but, ultimately, the l* candi- 
dates have to be distinguished by looking for a narrow 
peak in /+7 mass combinations. For the allowed range 
of l* couplings, the width of these particles is expected 
to be much smaller than the mass resolution of the detec- 
tor. Standard mass reconstruction of l* which uses the 
measured momenta and angles of leptons and photons 
is inadequate for the channel r+ ~-7. However, as the 
z's are energetic, their directions are approximately given 
by their daughter particles so their momenta can be cal- 
culated using energy-momentum conservation. The 
method is very precise and was also used in this analysis 
for the eeT, ##7 and e7 channels. 

2 Apparatus 

A detailed description of the DELPHI detector, of the 
triggering conditions and of the analysis chain can be 
found in [3]. Here, only the specific properties relevant 
to the following analysis are summarized. 

The charged particle tracks are measured in the 1.2 T 
magnetic field by a set of three cylindrical tracking detec- 
tors: the inner detector (ID) covers radii 12 to 22 cm, 
the time projection chamber (TPC) from 28 to 122 cm, 
and the outer detector (OD) between 192 and 208 cm. 
The end caps are covered by the forward chambers A 
and B, at polar angles 0 between 10 ~ and 36 ~ on each 
side. A layer of time-of-flight (TOF) counters is installed 
for triggering purposes beyond the magnet coil. 

The electromagnetic energy is measured by the high 
density projection chamber (HPC) in the barrel region, 
and by the forward electromagnetic calorimeter (FEMC) 
in the end caps. The HPC is a high granularity gaseous 
calorimeter covering polar angles 40 ~ to 140 ~ . For fast 
triggering a layer of scintillation counters is installed 
after the first 5 radiation lengths of lead. The FEMC 
consists of 2.4500 lead glass blocks (granularity 1- 1 de- 
grees), covering polar angles from 10 ~ to 36 ~ on each 
side. The small angle tagger calorimeter (SAT) is an elec- 
tromagnetic calorimeter covering polar angles from 43 
to 125 mrad in the forward and backward directions. 
It is composed of alternate layers of lead sheets and 
scintillating fibres parallel to the beams and it provides 
the measurement of luminosity. 

Muons and hadrons are identified using the forward 
and barrel hadron calorimeters (HCAL) which cover 
10~ 0_< 170 ~ followed by muon chambers which cover 
10 ~ < 0 _< 45 ~ 51 ~ __< 0 _< 129 ~ and 135 ~ _< 0 < 170 ~ The to - 
tal amount of iron traversed varies from 5 to 7 interac- 
tions lengths. 

The trigger is based on signals from the inner and 
outer detectors, the HPC and TOF scintillation counters, 
and the forward detectors. These signals are combined 
in several sets of coincidence, back-to-back and majority 
logics. The logical OR of the various subtriggers provides 
a high redundancy for events of the type studied in this 
analysis, in which high-momentum charged tracks and 
high-energy photons are simultaneously present. 

3 Event analysis 

The data presented here have been collected during the 
energy scans performed at LEP during 1990. Only those 
runs where all the essential subdetectors were fully oper- 
ational were used; they correspond to a total of about 
115000 registered Z ~ decays. 

Charged tracks are retained in the analysis if they 
have a momentum greater than 100 MeV/c and are emit- 
ted at more than 25 ~ with respect to the beam axis, 
where tracks are well reconstructed by the TPC. They 
must also come from the interaction point to within 
10 cm in the longitudinal coordinate and 2 cm in the 
radial direction. 

To define a photon, a cluster is required in the HPC 
or the FEMC with a total energy deposit above 2 GeV 
and at more than 25 ~ with respect to the beam axis. 
It is also demanded that this photon is isolated, being 
emitted more than 15 ~ from any charged particle. This 
cut removes many of the standard lepton pairs with final 
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state radiat ion and has little impact  on the search for 
heavy excited lepton. 

The identification of electrons is based on the compar-  
ison between the track m om en t um  and the energy depos- 
ited in the electromagnetic calorimeters Eem. In order 
to distinguish pr imary electrons from those coming from 

decay, the mome n t um  calculated by imposing energy- 
momen tum conservation in the events Pcalc was used; 
due to the missing energy carried away by the neutrinos, 
a cut requiring the value of Eem/Pcalc to be close to one 
will reject the majority of secondary electrons. 

Muon tagging is obtained by combining the informa- 
tion from the calorimeters and the muon chamber sys- 
tem. In order to be identified as a muon, a track must 
leave an energy deposit in both  the electromagnetic and 
the hadron calorimeter compatible with that expected 
for a minimum ionizing particle, and/or be associated 
to at least two hits in the muon  chambers. The overall 
identification efficiency is 90% per track. 

The Z ~ decays to the various composite channels 
studied in this paper  were generated using the detailed 
simulation program of D E L P H I  [4]. For  background 
simulation, which requires much larger samples, a sim- 
plified program [5] was used, which was tuned to repro- 
duce the experimental data. 

Trigger efficiencies were measured for each of the indi- 
vidual subtriggers by analyzing the trigger pattern in 
leptonic Z ~ decays; these efficiencies were then used in 
the Monte  Carlo simulation for all the relevant channels. 
The lowest trigger efficiency, 85_+5%, corresponds to 
the ##7 final state, for which the redundancy between 
the subtriggers based on charged tracks and those based 
on electromagnetic energy is smallest. 

3.1 Pair production 

x 

Fig. 1. Display of the ee77 event in the plane perpendicular to 
the beams. The two electrons (continuous lines) and the two pho- 
tons (dashed lines) produce showers in the HPC; part of the shower 
of one of the electrons leaks into the HCAL. (Run: 14854, event 
1245) 

Table 1. Invariant masses (in GeV/c 2) of the ey pairs for the ee77 
e v e n t  

1st Combination 2nd Combination 

35.4_+ 1.4 27.7_+ 1.2 10.4_+0.5 8.8+_0.4 

Pair product ion of excited charged leptons having the 
same weak isospin as the standard leptons can be ex- 
cluded for a large range of masses directly from the mea- 
surement of the Z ~ width. In [6] an upper limit of 
28 MeV (at 95% c.1.) is given on any non-standard con- 
tribution to ~ ; this implies a lower limit of 33 GeV/c 2 
on the mass of the l*, completely independent of its decay 
properties. 

For  higher values of the l* mass, a direct search was 
made for the process Z ~ -~ l *+ l*-  with l* ~ 17. The selec- 
tion asked for events having only two charged particles, 
each with momen tum above 2 GeV/c, and two photons. 
The two charged particles should have an acollinearity 
angle between 10 ~ and 170 ~ Due to the photon  isolation 
cut, this direct analysis is sensitive only to excited leptons 
heavier than ~ 6 GeV/c 2. 

Two events have been found. In one of them the less 
energetic photon does not  point to the interaction vertex, 
and the remaining three particles are coplanar. It was 
therefore identified as a #/~y event with an additional 
spurious hit in the HPC. The second event was confirmed 
as a four-particle event (Fig. 1). It was classified as an 
e e77 event, since both charged particles are identified 
as electrons and the total measured energy is consistent 

with the LEP energy. Table 1 shows the masses of the 
different ey combinations. Within the errors, the event 
is compatible with an e* + e*-  final state in the second 
combination,  corresponding to an average mass of about  
9.6 GeV/c z, well within the region excluded by Fz. The 
first combinat ion appears to be excluded. However, the 
errors on the momen tum of the electrons could be under- 
estimated, since the bremsstrahlung inside the detector 
can induce a~ additional systematic contribution that 
is difficult to evaluate, so that a common mass of about  
32 GeV/c 2 cannot  be completely ruled out. The particle 
energies can be recalculated with greater precision from 
the measured angles between the four particles, using 
a 0-constraint fit. Since undetected radiation along the 
beam axis would induce an error in the result of the 
fit, the calculation was repeated with varying amounts  
of missing energy and momen tum along this axis. It was 
found that no solution exists where both e7 masses are 
above 36 GeV/c 2. 

The expected number  of selected events from e* + e*-  
production at masses below 36 GeV/c 2 is over 500; 



therefore, one can conclude that there is no evidence 
for this decay. 

The efficiencies for the detection of e* and #* pairs 
increase from 4 5 + 5 %  at mz.=20 GeV/c  2 to 50_+5% at 
the kinematical limit; for z* it is about 17_+2% over 
the whole mass range above 20 GeV/c 2. 

To estimate the standard background, the program 
K O R A L Z  [-73 was used. It predicts 0.8_+0.1 #~77 events 
within the selection cuts. However, this program does 
not include all the amplitudes for the radiation of two 
hard photons (the radiation of two photons in the final 
state is missing), so the quoted number is probably a 
lower limit on the expected background. No generator 
is available for ee77, but one expects roughly the same 
number of events as for #/~77. 

3.2 Single production in annihilation 

The kinematics in this process allow the production of 
an l* heavier than 45 GeV/c2; for this higher masses, 
the photon isolation criterion has been strengthened. 
Two charged particles are required, each with momen- 
tum above 2 GeV/c, and one photon at more than 30 ~ 
with respect to either of them. The two charged particles 
should have an acollinearity angle between 10 ~ and 170 ~ 
To avoid large errors on the calculation of the mass 
due to initial state radiation, as explained below, the 
runs where the LEP energy was on the high tail of the 
Z ~ resonance were rejected; it was demanded that 2Eb 
<=Mz+Fz/2, where Eb is the beam energy. After this 
selection, 151 events remain. 

The momenta of the three final state particles are 
computed from the measured angles between the three 
particles, e 12, c~13 and ~23, using energy-momentum con- 
servation. Since in a genuine 3-body event the three par- 
ticles must lie in a plane, the sum of these angles is 
required to be above 358~ this cut removes the back- 
ground from two-photon interactions and very forward 
hadronic events. Monte Carlo simulation shows it affects 
only the z*z channel, where 3% of the events are lost. 
There are 118 events which pass this last cut. 

To compute the momenta, the following formula was 
used: 

P~ P2 Ps 2Eb 
sincG3 sinc~a 3 sincq2 s in~ lz+s incq3+s incG3"  

Figure 2 shows the distribution of 17 masses for the can- 
didate events; there is a good agreement both in shape 
and normalization with the curve predicted by a Monte 
Carlo generation of 400000 standard leptonic decays of 
the Z ~ [--8]. 

The excess around 80 GeV/c 2 is of low statistical sig- 
nificance and it is not dominated by any of the three 
lepton channels. 

3.2.1 Channel identification. The final lepton channel is 
identified by relying on the particle identification and 
on the comparison between the measured momenta and 
those calculated with the above formula. Events are clas- 
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Table 2. Number  of lly events found for each channel, and number  
of events expected from standard processes 

Channel Observed Expected 

eey 54 5 6 + 4  
#/~y 34 37_+3 
T~? 24 21.4 4-1.7 

sifted as e e 7 if there is at least one charged particle identi- 
fied as a primary electron, that is, for which Eem/Pr162 
falls in the peak above 0.7 (Fig. 3a). For  /~#7 it is re- 
quired that at least one of the charged particles be identi- 
fied as a muon, and that the ratio of the sum of the 
two measured momenta to the sum of the calculated 
momenta be above 0.8 (Fig. 3 b). The second requirement 
removes the background from z ~ y events. Finally, events 
are kept as zzy candidates if they do not show ee or 
##  signatures and have at least one particle whose mea- 
sured momentum is unambiguously below the computed 
value (pm~.s/Pcalc<0.5). Table2  gives the number of 
events selected for each channel together with Monte 
Carlo expectations for the background from standard 
Z ~ decays. 

3.2.2 Mass resolution. The angular resolution of the de- 
tector is the main factor that determines the mass resolu- 
tion for e* and /~*, since the momenta are calculated 
from the measured angles. These resolutions have been 
measured for electrons, muons and photons by analyzing 
the acollinearity and acoplanarity distributions of e + e-  
and/~+ if-  events. The widths of these distributions are 
influenced by soft-photon radiation, but since this effect 
is also present in the lly events and affects the mass 
resolution, no correction was made for it. Initial state 
radiation is limited by the resonant shape of the cross 
section, and it was further reduced by rejecting data tak- 
en above the Z ~ peak. 

These experimentally measured resolutions were used 
in the Monte Carlo simulations of l* l production, in 
which radiative effects were also included. The resolution 
is found to be _+250 MeV/c 2 for the ee7 and ##7 chan- 
nels and _+2.0 GeV/c 2 for rz7;  the latter is dominated 
by the angle between the z's and their daughter particles. 
These values are practically independent of the l* mass. 

An independent verification of the consistency be- 
tween data and Monte Carlo can be obtained by study- 
ing the distributions of the product  (/}1 X P2)'P3 of the 
unit vectors defined by the observed particles. This vari- 
able, which measures the coplanarity of the three parti- 
cles, is sensitive to the same effects that define the mass 
resolution. As shown in Fig. 4, there is good agreement 
between data and the results of Monte Carlo simulation 
of standard Z ~ decays. 

3.2.3 Results. Figures 5a, 6 and 7 show the observed 
mass distributions for the three channels; the binning 
has been chosen so that 80% of the signal from l* decay 
would be concentrated in two bins. No apparent struc- 
ture is seen. The acceptances of the present selection 
for the various channels are given in Table 3. 
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nally, to avoid contaminat ion coming from e + e -  events 
where one of the charged tracks is lost, only the photons  
in the barrel region (40~ 0 <  140 ~ are selected, and q~ 
is restricted to be at more than 4 ~ from the boundaries 
of the sectors of the TPC. 

After these selections 24 candidates remain. The back- 
ground from standard processes comes mainly from 
Compton  scattering. It  was computed using a Monte  
Carlo program where the photon  flux is given by a 
Weizs/icker-Williams approximat ion (see for instance 
[9]), and which includes multiple initial-state radiation: 
22 events are predicted, in good agreement with the data. 

The computat ion of the mass from the angles is still 
possible assuming that the spectator electron is approxi- 
mately aligned with the beam. The method is however 
affected by initial state radiation; to eliminate the events 
with energetic photons  along the beam direction, a loose 
cut is imposed on the match between the missing energy 
and the missing longitudinal momentum.  Demanding 
IP~nisl/Emis > 0.5 rejects 4 events in agreement with Monte  
Carlo expectation. The resulting mass spectrum is shown 
in Fig. 5 b; again, no peak is seen. 

The acceptance of the present selection criteria for 
different e* masses is given in the last line of Table 3. 
The mass resolution is 450 MeV/c 2, al though there is 
a non-Gaussian tail due to radiation effects, as shown 
in the inset of Fig. 5 b. 

4 Limits on Compositeness 

Table 3. Detection efficiencies (in percent) for singly-produced ex- 
cited leptons. Relative uncertainties are below 10% 

1" m a s s  ( G e V / c  2) 

Channel 50 60 70 80 85 

eey 48 47 49 49 50 
#~y 42 42 43 43 43 
zz? 28 28 28 25 16 
e(e)7 18 22 26 34 30 

3.3 Single e* production via t-channel exchange 

Excited electrons can be produced through photon  ex- 
change in the t-channel. In most  cases, the spectator 
electron stays very near to the beam direction and re- 
mains invisible while the photon  and electron from the 
decay of the e* are back-to-back in the plane perpendicu- 
lar to the beam. To select this type of event the following 
requirements are imposed: the event must have a single 
photon  with energy above 8 GeV and a single charged 
particle with mome n t um  above 5 GeV/c and an electro- 
magnetic energy deposition above 2 GeV. The acollin- 
earity angle between the two particles must  be above 
5 ~ to eliminate the background from e e ~ y 7  events 
where one of the photons  converts before the TPC. Fi- 

All the limits discussed in this section are based on the 
assumption that the decay branching ratio of an excited 
lepton into a standard lepton plus a photon  is 100%. 

Pair product ion allows one to derive direct limits on 
the masses if s tandard couplings of the l* to the Z ~ are 
assumed. 

As explained in Sect. 3.1, the only candidate event 
is in a mass region where the number  of expected events 
is very high, so the limits obtained are not affected by 
it. The calculation of the expected number  of events took 
into account the luminosities collected at each energy 
point for the total event sample considered in the analy- 
sis. The limits obtained are (at 95% confidence level): 

me. > 45.6 GeV/c 2 

m,. > 45.6 GeV/c 2 

m** >45.3 GeV/c 2. 

These results do not depend on the compositeness 
scale, except that  the l*17 coupling is supposed to be 
strong enough to allow the l* to decay inside the detec- 
tor. However,  a stable l* can be excluded up to masses 
of 40 GeV/c 2 on the basis of a previous analysis [10]. 

Single product ion of an excited lepton is given in 
terms of unknown l* lZ and l* 17 couplings. The effective 
Lagrangian is of the form: 

~ =  Z fA ~r +h'c" 
V = y , Z  ~ 
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Fig. 8a-c. 95% confidence level limits on the minimum value of 
the effective scale for the l*lZ and l*17 couplings, expressed as 
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dashed lines correspond to the limits derived from the searches 
for production through Z ~ decay and through photon exchange 
in the t-channel, respectively, b #* couplings, e z* couplings. The 
regions above and to the left of the lines are excluded 

where A is an arbitrary energy scale. CP-invariance im- 
poses the condition that Cv and dv be real, while g - 2  
measurements imply chirality conservation and hence 
Cv = +_ dv 1-11]. Explicitly, one finds the following expres- 
sion for the production cross-section in Z ~ decay: 

a(T* 1 + Tl*) = 16 ~--2 (Cz z + dzZ)" sin20w cos 20w(1 - x2) 2 

�9 (1 + 2 x  2) a~v 

where s is the square of the cm energy, Ow the weak 
mixing angle, x =m~,/mzo, and a~v the neutrino-antineu- 
trino cross-section. The decay of l* into 17 has a 1 + c o s  0 
dependence due to chirality conservation. 

The model of I-2] allows cv, d~, Cz and dz to be ex- 
pressed in terms of two parameters,  f and f ' ,  that specify 
the SU(2) and U(1) couplings respectively. With the as- 
sumption f = f ' ,  the cross-section depends on a single 
variable, f / A .  To allow easier comparison with limits 
obtained from other analyses, the limits from this experi- 
ment are presented in terms of the parameter  ).~mr,, de- 
fined as: 

f 
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which was used in previous e+e  - experiments testing 
the coupling of the l* to the photon. The contours given 
in Fig. 8 show the limits (at 95% confidence level) on 
2/m~, as a function of m~,. They take into account the 
mass resolution and the estimated background contribu- 
tions from standard processes. For  a value of the effective 
coupling 2/m~, equal to 1 TeV-1 ,  this analysis excludes 
e* with masses below 85 GeV/c 2, #* below 77 GeV/c 2 
and z* below 63 GeV/c 2. Similar limits have been ob- 
tained by the other LEP experiments [12]. A recent anal- 
ysis of the e + e -  annihilation into two photons [13] also 
excludes e* in a mass range that extends above mz, al- 
though only for values of the effective coupling above 
100 G e V -  1 

5 Conclusions 

From the analysis of the events that have two leptons 
and one or more energetic photons in the final state, 
limits have been obtained on the masses and couplings 
of excited charged leptons decaying into a normal  lepton 
and a photon. The non-observat ion of the pair produc- 
tion of these particles sets lower limits on their mass 
that reach 45.6 GeV/c 2. The results of the search for sin- 
gle product ion allow the exclusion of masses below 
85 GeV/c 2 for e*, 77 GeV/c 2 for #* and 63 GeV/c 2 for 
r*, as long as the scale that  characterizes the l* 1Z and 
l* 17 couplings is smaller than 1 TeV. 
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