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The search in DELPHI data for neutral Higgs bosons is described. No candidate for the
Standard Model Higgs is seen in Z° decays to H%#, H% "~ or H% ¥ v~ after selections that
proved efficient for finding simulated H?. One remaining candidate for Z°—»> H%%*e™ is
consistent with background. Together with our earlier studies, these results restrict the H? mass
to be above 38 GeV/c? at the 95% confidence level. No signal is found for decays of Minimal
Supersymmetric Standard Model neutral Higgs bosons to 7% 77, Limits are obtained for their
decays to produce four jets.
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1. Introduction

The Standard Model [1] predicts the existence of a neutral scalar Higgs particle,
HY, and its couplings to quarks and leptons. However the H® mass, m 0, is not
predicted. The Higgs [2] mechanism remains an unverified but essential ingredient
of the Standard Model (SM) and its supersymmetric extensions.

Several searches [3] for the Higgs boson were reported before LEP started
providing Z°. However the interpretation of the searches were subject to signifi-
cant uncertainties for masses outside the region 1.2 to 52 MeV /c? [4].

The experiments at LEP take advantage of the expected production of the
Standard Model H? by

ete = Z' > HY+ 7%, Z%% S qgor ¢ (D

where the virtual Z°* giving an ¢/ lepton pair in the final state is generally used
as a signature for Z° decays that produce H”. The H" mass was restricted to be
small or above about 14 to 20 GeV /c? by searches in Z° decays from the limited
statistics of the 1989 data [5-7]. Furthermore, including the 1990 data, the Higgs
boson was excluded down to zero mass [8—~11]. It remains to look for H® up to the
highest masses which become accessible as larger data samples are available.

Here we present results, obtained with the DELPHI detector, for reaction (1)
with Z°* - vy, e*te”, u"u~ and 7777, for m,;0 between 12 and 45 GeV /c?. For
these masses the dominant H” decay would be to bb pairs, the heaviest available
particles, seen as hadron jets with several charged particles. Also H? —» 77+~
would be present with a branching ratio of some 6%.

Events with an H” and Z%* — v7 pair would be distinguished by only having the
H° decay products detected, with the remaining energy and momentum unseen.
Final states with charged leptons have a smaller branching ratio. They are
distinguished by a lepton pair well isolated from the hadronic remnants from the
H°.

In principle one may also search for H production when both H” and Z%*
decay to qq with four jets in the final state. However we found that any H" peak
would not be well resolved from background mass combinations with these data.

In the Minimal Supersymmetric extension to the Standard Model (MSSM) there
are two complex Higgs doublets which give rise to five physical Higgs bosons
(H*, H, h° #° A% [12]. There are two CP-even scalars h' and #°, which mix
with an angle @, and one CP-odd pseudoscalar A’. The model is fully specified by
two parameters. These can be chosen to be m, (the mass of the lightest scalar) and
tan 8 =v,/vy; v, and v, are the vacuum expectation values of the Higgs fields
which couple only to down-type quarks and charged leptons or to up-type quarks
and neutrinos, respectively. In the Born approximation, the masses are constrained
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such that my,. is larger than my, and m, is smaller than m, [cos 28, although
this is no longer true at higher order [13]. Note that in the limit when m, becomes
large, tan B approaches 1, and h’ becomes equivalent to the Standard Model
Higgs particle.

Production of MSSM neutral Higgs particles is predicted to occur predomi-
nantly by two complementary production mechanisms:

ete > h'Z% or ete > Z" = h'A",

with cross sections proportional to sin’(a — 8)oye and cos*(a — B)a,, where the
SM cross sections oo and o, are fore*e” > Z° > H"Z* and e*e™— Z% - v,
In the model

The h° and A decay modes of interest in the search are into heavy ff pairs which
are kinematically allowed. The branching ratios depend strongly on « and :

BR(h® - 77:c€:bb) = 1:2.1(cot & cot B)*: 1983,
BR(A" - r7:¢T:bb) = 1:2.1(cot B)*:198},

where B, is the b-quark velocity in the Higgs rest frame. Since the mixing angle «
is approximately equal to —p in the mass range considered here, the decay
fractions for h” and A° are roughly similar. For tan 8 much larger than 1, 77~
and bb dominate. The 7"+~ mode is still appreciable (4% to 5%) even far above
the bb threshold. For tan 8 much less than 1 the ¢ mode dominates — with some
admixture of bb for tan B near 1, corresponding to mass differences between h’
and the A” of 5 GeV /c? or more.

Thus in the MSSM model, the search for the SM H° already restricts the
possible values of m,, if tan B were about 1. There can be extra Z° decays with 7
pairs if tan B were above 1, or with four jets with di-jet masses peaking at m, and
m, if tan B were above or below 1. Searches for such decays in the 1989 data from
DELPHI are described in ref. [14].

2. Data

The present analysis is based on data collected by DELPHI during the 1990
scans at LEP around the Z° peak. Some 119000 hadronic Z° decays were
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detected, depending on specific selections on the data taking conditions. A
summary of specific properties of the DELPHI detector [15] relevant to this
analysis follows.

Charged particle tracks are measured in the 1.2 Tesla magnetic field by three
cylindrical tracking chambers: the Inner Detector (ID) at radii 12 to 28 cm, the
Time Projection Chamber (TPC), the main tracking device, covers radii 30 to 122
¢m and the Outer Detector (OD) 197 to 208 cm. Beyond the solenoid coil are
Time of Flight (TOF) counters for triggering. The Forward Chambers A and B,
cover polar angles 10° to 30° and 150° to 170°.

Electromagnetic energy is measured by the High density Projection Chamber
(HPQ) in the barrel and by the Forward ElectroMagnetic Calorimeter (FEMCQ).
The HPC has layers of lead and gas covering polar angles from 40° to 140°. A
scintillation layer is installed after the first 5 radiation lengths for fast triggering.
The FEMC has lead glass blocks covering polar angles 10° to 36° and 144° to 170°.

Hadron shower energies are measured by combining measurements from the
Hadron Calorimeter (the instrumented iron return yoke for the magnet) and the
electromagnetic calorimeters.

Muons are identified by their penetration through the yoke to the MUon Barrel
and Forward chambers (MUB and MUF) which have layers inside and outside the
iron yoke. The calorimeters also distinguish hadron or electromagnetic showers
from muons.

The Small Angle Tagger (SAT) measures the luminosity and is also used to veto
significant energy seen at a small angle to either beam.

The trigger is based on ID and OD coincidences, on the HPC and TOF
scintillation counters, and on the forward detectors. The trigger efficiency for
events with H? in the mass range studied is indistinguishable from that for
hadronic events which is greater than 99.7% [16].

Monte Carlo data samples included Z% — H® + Z9* for several H® masses with
of the order of 1000 events simulated at each mass (and hA° production for
MSSM), and possible background contributions from some 110000 simulated
7% qqg, 11000 7+~ and 22000 p"p~ decays. These were used to define the
selection criteria and determine their efficiencies. H® production processes were
generated [17] and then fragmentation was simulated using the LUND parton
shower model [18] and the results passed through the DELPHI detailed simulation
program. This produces the expected signals in the various subelements of the
detectors. The simulated raw data for these samples were passed through the same
reconstruction and analysis programs as real data.

The Standard Mode! parameters obtained from DELPHI [16] data were used to
predict the cross sections for H production [19,20], 5.5 pb at the Z° for m o = 40
GeV /c?. The calculation included initial-state radiative corrections computed with

exponentiation and a triangle vertex correction with a top quark of mass 200
GeV /c2.
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3.Search for Z° > H’ +v +¥

Due to the large missing momentum carried by the two neutrinos, the Z° —
HPZ%+ 7% — u¥ decays very often appear unbalanced. This is the main feature
used to distinguish these from the majority of Z° — qg decays.

Detection of particles and measurement of energy are particularly important, as
missing momentum is one of the selection criteria. We therefore require that the
TPC and all calorimeters were working.

The reconstructed mass, r,, of most 7' — qq is much larger than a Higgs with
mass 45 GeV /c?. However the decay Z° — 777~ may produce potential back-
ground candidates due to the missing momentum carried by the neutrinos from the
7 decays. These events are efficiently suppressed by selecting charged multiplici-
ties, n,, above 6 and removing such typically back-to-back events. In contrast, the
charged multiplicity of most H® decays is quite large when m is large enough for
decay to bb. Background events from beam-gas and beam-wall interactions are
eliminated by selecting candidates with the particles produced at a large angle to
the beam.

To reduce the background further a set of topological variables are used. These
variables exploit the fact that the Higgs boson events, as opposed to the back-
ground, have a pronounced spatial asymmetry in the laboratory system due to the
(invisible) neutrinos. We use the acoplanarity and A, p and £y, as defined below.

To calculate the acoplanarity the event is split into two hemispheres divided by
a plane perpendicular to the thrust axis. The sum of particle momenta in each
hemisphere is projected onto the plane perpendicular to the beam axis. Acopla-
narity is defined as the complement of the angle between the two sums. If all the
energy is in one hemisphere, we take the acoplanarity as 90°.

A is the angle between the direction of missing momentum and the closest
reconstructed jet. Jets are defined with the algorithm LUCLUS [18].

p is the complement of the largest angle between any two jets, for events with
three or more jets with an energy above 2 GeV.

E,, is the total energy of reconstructed particles in a cone with 50° half angle
about the missing momentum.

The search is divided into two complementary sets of sclections; analysis I has a
reasonably good efficiency for Higgs boson masses from 10 to 40 GeV /c?, while
analysis II is optimised for heavier Higgs masses, up to 50 GeV /c?.

Both analyses initially use charged particles (with momentum above 100 MeV /¢)
as well as showers with energy above 100 MeV (which are not linked to a charged
particle). Candidates must have n_, above 6 and an energy sum of these charged
particles (assumed to be pions) above 8 GeV, missing transverse momentum (with
respect to the beam) above 5 GeV /¢ and missing momentum, P, at more than
18° to the beam axis. Hadronic Z° decays with high-momentum charged secon-
daries can be reconstructed with a large momentum imbalance due to the occa-
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sional deterioration in momentum resolution for shorter, straighter tracks. To
remove this background the particle with highest momentum (above 7 GeV /¢)
must have fractional momentum error below 1. For Higgs masses considered here
the signal is no longer that of a strongly boosted hadronic system. So we reject
contamination from beam related background and Z° — qqy (with a high-energy
y) by requiring | P, | to be below 35 GeV /c and, for m, above 10 GeV /c?,
| P, | to be less than 0.8 X E (where E is the measured energy of all the
detected charged and neutral particles.) In addition events with more than 10% of
their recorded energy going in the forward and backward directions (within 15° of
the beam axis) are rejected since these events may have missed an important
amount of energy along the beam pipe.

After the initial selections, events are removed in analysis I when significant
energy is seen in the regions where the detectors have incomplete coverage. The
sum of the energy in all SAT detectors is required to be below 4 GeV and the
thrust axis and P, to be at more than 25° to the beam. If m, is below 10 GeV /c?
then all particles must be in one hemisphere,

Comparison of the differential distributions for the simulated Z° - qg and 77
backgrounds and the possible Z? - H% % signal led to selections that optimise
background rejection and H" acceptance. Fig. 1 and table 1 show the effects of the
sequential selections on the data, on simulated Z° decays initially normalised to
the data, and on H” with a mass of 40 GeV /c?. After the preselections described
above, the remaining events must have:

{a) p above 30° for events with more than two jets, fig. 1a;

(b) A above 42°, fig. 1b;

(c) acoplanarity above 15° (or 30° if m, below 25 GeV /c?), fig. 1c;
(d) m, below 40 GeV /c?, fig. 1d.

is

TABLE 1
The numbers of events remaining after Z® — H%7 sequential selections on the data, and on a Monte
Carlo background sample normalised to the number of hadronic Z° decays in the initial data sample

Selection Real Simulated myo =
data Z% > qq 40 GeV/c?
Analysis-I preselections 56132 51080 2.9
p>30° 13380 15205 2.6
A>42° 685 671 2.4
acoplanarity > 15° 160 161 2.2
m, <40 GeV/c? 0 1 2.1
Analysis-11 preselections 60419 54127 31
acoplanarity > 2.5° 32791 27401 31
p>36° 5138 5538 2.7
Es <1 GeV 63 64 2.0

m, <45 GeV/c? 0 2 1.9
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TABLE 2
Standard Model H® production: for various masses in GeV / 2, selection efficiencies €, and expected
number of events n

Mo H%7% Hl% e~ H%  u™ 7 channel
€% n €% n €% n €% n
12 24 1291 38 3.22 68 6.12 15 1.51
15 28 11.60 45 2.85 69 4.62 16 1.18
20 38 9.7 45 1.81 68 2.88 19 0.90
25 51 8.39 45 1.15 68 1.83 24 0.64
30 56 5.94 45 0.74 66 1.13 27 0.49
35 59 391 47 0.48 65 0.70 26 0.30
40 58 2.35 45 0.28 67 0.44 29 0.21
45 45 1.05 42 0.15 65 0.25 28 0.12
50 30 0.40 44 0.09 63 0.14 27 0.06

No events from the real data passed these selections in analysis 1. There was
one remaining background candidate among the Monte Carlo Z° — qg decays,
with an energetic, isolated photon pointing towards a region (around 40°) where
photon detection is absent.

In analysis II the comparison of the differential distributions for the simulated
backgrounds and possible HY signal led to the following selections:

(a) acoplanarity above 2.5°, fig. 2a;

(b) p above 36° for events with more than two jets, fig. 2b;
(c) E,, below 1 GeV, fig 2c;

(d) m, below 45 GeV /c?, fig. 2d.

Again no events from the real data passed these selections, while two events
from the simulated background Z° — qg were selected. One was the same as in
analysis 1, the other had both a large initial-state radiation and a jet pointing
towards the region (around 40°) where neutral particle detection is poor. When
normalised by the sample sizes, the two Monte Carlo events correspond to an
expected background of 1.8 + 1.3 events.

Accepting all events in both analyses results in the detection efficiency for a
Higgs boson mass in the range 10 to 50 GeV/c? shown in table 2 (and fig. 10a).
Systematic errors (typically +0.028) were evaluated by comparing the small sys-
tematic differences between the data and Monte Carlo differential distributions.
The expected number of selected H” decays is also shown in table 2 (and fig. 10b).

4. Search for Z° > H +e " +e~

The signature for Z° — H°Z%* Z°* - e*e~ is two isolated high-energy elec-
trons and some hadrons. Isolation is essential to reject background from semilep-
tonic decays of heavy quarks.
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In order to accept as many electrons as possible, this analysis used two different
definitions of electrons (with momentum measured by the tracking chambers, p.,
shower energy in the electromagnetic calorimeters, E,, and residual energy mea-
sured by the hadron calorimeter, £,.) The “firm” electron is distinguished from
other charged particles by requiring (a) E, over 3 GeV, (b) E,. /| p. | above 0.3 and
(¢) E, below 1 GeV. The “loose” electron can be either (a) an electromagnetic
shower with E, above 3 GeV and E, below 1 GeV, associated with a charged
particle or behind an insensitive region between TPC modules, or (b) a charged
particle with p, above 4 GeV /c extrapolating to an insensitive region between
HPC modules with E, above 1 GeV. After selections the main background is from
true electrons from other sources rather than from misidentified hadronic showers,
so stricter electron identification criteria are not neecded.

The electron energies (associated with the extrapolation of the electron track)
are augmented by adding the energies of satellite showers, due to bremsstrahlung
in the material in front of the calorimeters, within a cone whose opening angle is a
decreasing function of the parent shower energy.

We analyse all data when the TPC and the electromagnetic calorimeters were
working properly.

An event that could be from HZ* production must come from the interaction
region, within 10 cm in the beam direction and within 4 c¢cm in the transverse
direction. The event must have two (or more) possible electrons (from the Z°%*),
including at least one firm and a second firm or loose electron with opposite
charge and 4 or more charged particles with momentum above 500 MeV /¢ from
the H® decay. Fig. 3 (and table 3) show the effects of further sequential selections
for data and simulated qq event initially normalised to the data, as well as for
Z? > H% e events with m ;0 =40 GeV /c°. Events must have:

(a) one electron energy above 12 GeV and the other shower energy or tracking
momentum above 5 GeV, fig. 3a;

(b) the opening angle between the two electrons over 20°, fig. 3b;

(c) the isolation angle between each electron and the closest jet axis over 25°, fig.
3c.

The selection efficiencies shown in table 2 (and fig. 10a) have been calculated by
generating samples of Monte Carlo events for different values of the mass of the
Higgs boson. A systematic crror of 2% on all the efficiencies has been evaluated by
varying the selection criteria. Table 2 (fig. 10b) also shows the expected number of
events.

The simultaneous requirements of relatively high multiplicity and electron
isolation remove background from leptonic Z® decays. No background from
hadronic events was found in a sample of 120000 simulated qg events.

However one event in the data does have two isolated, high-energy electrons
(see table 4). The electrons with momenta 31.5 + 3.1 and 21.3 + 2.7 GeV /¢ are at
large angles to the beam and 100° and 43° away from the nearest jets (and 72° and
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TaBLE 3
The numbers of events remaining after the Z° - H% ™ ¢~ sequential selections on the data, and on
Monte Carlo background samples normalised to the number of hadronic Z° decays in the initial data

sample
Selection Real Simulated Simulated Mo =
data A 4 fermions 40 GeV/c2
¢ identification 508 566 N 0.63 0.40
e energies 154 169 0.53 0.38
ete” angle > 20° 141 142 0.52 0.38
e-jet angle > 25° 1 0 0.39 0.28

31° away from any charged particle with momentum over 300 MeV /¢ and neutral
hadrons above 2 GeV) while the missing mass to the electron pair is 35.4 + 5.0
GeV /c?. The measured mass of the two close jets (jets 1 and 2 with 7 charged
particles taken as pions) is 9 GeV /c?. There is evidence of other particles in the
direction of the missing momentum, towards the less efficient forward region.

Two particular mechanisms which may simulate the H% e~ final state were
studied with larger statistics: bb production and the four-fermion processes e*e ™
—e"e~qq. In order to have statistical precision equivalent to fractions of an
event, 800000 Z° — bb were generated with the Lund Monte Carlo program [18],
JETSET. 900 of these events passed wide selections and were submitted to full
simulation and reconstructed. Only 2 passed all final selections, corresponding to
an expectation of 0.05 + 0.04 events in our experimental sample.

The four-fermion background has been studied with a simple simulation [20,21]
assuming zero-mass fermions. Two-photon processes making qq are included.
Final-state particles were generated using quark fragmentation from JETSET and
submitted to the full detector simulation. The cross section has been calculated as
a function of the centre-of-mass energy, after selections that are required by the
experimental acceptance or H candidate criteria. These selections avoid infrared
divergences in the calculation. The full simulation shows the background to

TaBLE 4
Z°%— H% e~ candidate, run 10600 event 4505, momenta and energies. Missing mass to
eTe” =3544+50GeV/c?, miets 1,2)=9.0 GeV/c?, mets 1,2, 3)=17 GeV /2

p, (GeV/c) p, (GeV/c) p, (GeV/c) E (GeV)
4.62 —20.78 —1.98 21.39 e’
~-0.13 22.72 21.84 31.51 e’
0.04 —6.60 4.89 9.19 jet-1
—4.51 -3.02 1.24 5.89 jet-2

0.58 0.85 —2.81 3.00 jet-3
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79 - H%" e is 0.39 + 0.04 + 0.08 (syst.) events (see table 3, column 4) including
a reduction factor 0.74 (averaged over the beam energies) to account for the
effects of initial-state radiation. The systematic error is due to the theoretical
approximations made in the calculation.

Summarizing, the search for Z° - H" e~ gives one candidate and an ex-
pected background of 0.44 4+ 0.10 events.

5. Search for Z° > Hu. ™

The selection of the H% "4~ channel relies on the identification of high-en-
ergy, isolated muons, which distinguish H® production from semi-leptonic decays
of bb pairs.

Pairs of muons are selected using different criteria for the two particles. The
first “firm” muon is selected by a good match in space between the extrapolation
of a track of a charged particle and a set of hits in at least two detection planes of
the muon chambers. In the transverse plane, the distance from the first hit to the
extrapolation and the deflection between the set of hits and the extrapolation, are
required to be less than five times their intrinsic resolutions due to multiple
scattering at small angles. In addition, the energy depositions measured by the
electromagnetic and hadron calorimeters must be consistent with those expected
for a minimum ionizing particle. This condition is fulfilled by restricting the total
shower energies as well as the energy depositions in each part of the calorimeters.

In order to select as many muon pairs as possible, the second “loose” muon is
allowed to fail the conditions for muon chambers hits, or for the energy deposits in
the calorimeters. The single muon selection efficiencies were monitored on real
and simulated u*u~ events as well as on real 7*7~ events where one 7 decays
into one charged particle while the other decays into three particles. These 7
decays were also used to estimate the expected pion contamination. The results
are given in table 5 with the corresponding statistical uncertainties. Requiring one

TABLE 5
Efficiency for p identification (in %)

Efficiencies and contamination Firm Loose
identification identification
efficiency from real +* r~ events 88.4+9.0 95.3+9.5
efficiency from real = events 89.1+0.4 96.7+0.2
efficiency from simulated "~ events 92.4+0.4 98.2+0.2

7 taken as u from real 7777 events 21405 4.4+0.7
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“firm” and one “loose” muon identification leads to a high dimuon selection
efficiency and a small pion contamination. The simulation is found to be in
agreement with the data to within 3%.

Candidates for Z® - H% ¥~ are selected by requiring events with six or more
charged particles (including the two muons) coming from the interaction region,
within 10 cm along the beam direction and within 5 cm in the transverse plane.
This selection eliminates radiative events with the photon producing a shower at
the beam pipe or when entering the detector. In such events, the tracks coming
from the shower do not extrapolate back to the beam crossing with the same
accuracy as particles produced at the Z° decay. This type of background can
therefore be reduced by requiring that all tracks taken into account in the charged
multiplicity come from the interaction region.

Furthermore, the two muons must have opposite charges and momenta above 5
GeV /c, while their opening angle has to be larger than 30° in order to suppress
the contribution from sequential leptonic decays of b-quarks. A set of kinematical
cuts is then applied to further reduce the contamination from bb decays. These
selections take advantage of the fact that muons produced in association with a
Higgs boson are expected to be isolated and of high momentum, unlike those
coming from the decay of a b-quark. Fig. 4 and table 6 show the effects of these
sequential selections on data and simulated qq events initially normalized to the
data, as well as on Z° - H% "~ events with m o =40 GeV /c?. The following
conditions are required:

(a) momentum of one muon, u,, above 15 GeV /¢, fig. 4a;

(b) transverse momentum of w, over 5 GeV/c with respect to the thrust axis of
the system recoiling from the dimuon, fig. 4b;

(c) transverse momentum of the other muon, u,, over 3 GeV /¢ with respect to
the same axis as in (b), fig. 4c;

(d) angle between u, and the closest jet above 30°, fig. 4d;

(e) angle between u, and the closest jet above 10°, fig. 4e.

The Higgs selection efficiency, shown in table 2 and fig. 10a, is almost independent
of mye. The systematic uncertainties are dominated by a 4% relative uncertainty
in the dimuon selection efficiency. The expected number of events is shown in
table 2 and fig. 10b.

A background study was made on samples of some 110000 Z° — qg, 11000
Z° — 771~ (see table 6, columns 3 and 4) and 22000 Z° — u ™ decays. A
sample of 3000 Z° — bb decays with at least one muon in the final state was also
used to study the expected background from hadronic Z° decays with a higher
statistical precision. No events in these samples passed the selections. The four-
fermion background was studied using the procedure already described in sect. 4.
Final states with one pair of muons and either one pair of quarks, taus or electrons
were taken into account. For cach final state, a sample of a few hundreds of events
was generated and passed through the reconstruction and analysis chain. The
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background from u*u"e¥e™ is small: 0.003 + 0.002 events. The contribution from
w* " qq final states is 0.43 + 0.02 events, while the background from p*u =77~
is 0.052 + 0.007 events. Table 6, column 5, summarises the effect of the selections
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Fig. 4. Distributions showing the effects of the sequential selections on the variables used for the
Z° - H% *u~ analysis for samples of data (dots), simulated (histogram) Z" — qg (initially normalised
to the data) and simulated H% *p~ with mgo =40 GeV/c?: (a) highest muon momentum; (b, c)
transverse momenta of the faster and slower muons with respect to the thrust axis of the system
recoiling from the dimuon; (d) the angle between the faster muon and the nearest jet.
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TABLE 6
The numbers of events remaining after the Z° — H% * .~ sequential selections on data, simulated
H% * 1™ events with m = 40 GeV /c? and simulated backgrounds. The Monte Carlo data are
normalised to the number of hadronic Z° decays in the initial data sample

Selection Real Simulated Simulated Simulated Mo =
data 7" - qq yARSE Y 4 fermions 40 GeV /c?
preselections 1331 1506 10.20 0.74 0.50
pH1>15GeV/c 375 409 7.65 0.57 0.50
pit>5GeV/c 46 46 0 0.54 0.49
pE2>3GeV/c 14 12 0 0.51 0.48
Oy jet) > 30° 1 1 0 0.50 0.46
8, je) > 10° 0 0 0 0.48 0.44

on four-fermion events. The total expected background in the H%% "~ channel is
0.48 + 0.02 + 0.10 (syst.) events.

Finally, to further check our background computation, we relaxed the selection
on the impact parameter of tracks taken into account in the charged multiplicity,
allowing impact parameters up to 20 cm along the beam direction and up to 10 cm
in the transverse plane. One event was then selected in the data. In this event,
most of the charged particles recoiling from the dimuon form a narrow jet, with
low mass, pointing in the forward direction to an electromagnetic shower of 9
GeV. This jet can either be due to a photon conversion at the beam pipe or a
primary low mass e e ™ pair. With these relaxed selections, the additional contri-
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Fig. 4. (¢) The angle between the slower muon and the nearest jet.
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bution from radiative Z° » u*u~ decays is 0.33 + 0.23 events, while the other
backgrounds remain practically the same.

6. Search for H® production with final-state =+~ pair

According to the Standard Model final states with isolated tau decays can be
produced both by Z? decay and by H? decay (see table 7). A  decay candidate is a
“slim” jet with low multiplicity and intermediate energy. Qur analysis does not
look for identified electrons or muons but any charged particles, so we use all runs
in which the main tracking device, TPC, is working.

Selected events must have at least two slim jets (with one to three charged
particles with | p| above 300 MeV /¢ made into jets using LUCLUS) and two or
more other charged particles. Variables y and ¢ are introduced to reduce the
background from Z° - qg. Both use the measured energies, £", of charged
particles. The quantity y = [(ES}, — Efh )/Efh + E )| measures the relative en-
ergies of exactly two jets constructed from all the charged particles that are not
included in the two 7 candidates. The quantity ¢ = (ES* + EXM)/E, ., is the ratio
between the energy of the two 7 candidates and the total energy of the charged
particles in the hemisphere (with axis along p, /1 p, | +p, /| p. 1) that contains
them.

A study of the differential distributions for the simulated Z° — qg and Z° —
7*7~ background lead to selections that optimise background rejection and H?
acceptance. Details (see below) are given in table 8 for data and simulated qq
events and Z" = Z"*(—> 77 )H" with m ;0= 40 GeV /c?.

The first 7 candidate is required to have only one charged particle.

After this selection only 7 real events and 6 simulated Z%— qg events (no
simulated Z° — 77 77) have a second slim jet with one charged particle (the 1-1
topology.) After further selections to reduce background (y below 0.6, ¢ above
0.6, and sphericity above 0.2) no events remain.

If the second slim jet has two or three charged particies (the 1-2 and 1-3
topologies) then other sequential selections are used, see table 8 and fig. 5. Events
must have:

TasLE 7
Standard Mode! H" production with final-state 7+~ pair: branching ratios and detection efficiencies
for myo =40 GeV /c?

Decays Branching ratio Efficiency
yARYALIE T AR : O 3.3% 1%
205729 (s q@H (-t 77) 70.9% X 6% 1%

ZY 5 Z2%% (5 s HN - 7)) 3.3% X 6% 26%
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TaBLE 8
The numbers of events remaining after the Z® — H% * 7~ sequential selections on the data and on
Monte Carlo background samples normalised to the number of hadronic Z° decays in the initial data

sample
Selection Real Simulated MC Myo =
data 7% - qg 4f 40 GeV/c?
1-1 topology 7 6 0.35 0.22
x <0.6 5 4 0.30 0.17
¥ =06 3 3 0.29 0.16
sphericity > 0.2 0 0 0.08 0.13
1-2 and 1-3 topologies 143 120 0.21 0.34
6 GeV< E <225 GeV 42 41 0.09 0.17
T opening angle > 90° 25 22 0.06 0.15
¥ > 0.8 19 15 0.05 0.10
sphericity > 0.25 0 0 0.02 0.08

(a) energies of both slim jets above 6 GeV and below 22.5 GeV, fig. Sa;

{b) opening angle between them above 90°, fig. 5b;

(¢) ¢ above 0.8, fig. 5c;

(@) sphericity above 0.25, fig. 5d.

The simulated Z° — qq sample is normalized to the real events in table 8 and
figure 5 after preliminary selections.

After the selections no candidates remain in the data or simulated Z" — qg or
Z" - 771~ decays, while we expect 0.21 + 0.02 + 0.02 events when m o is 40
GeV /c? (see table 2). Systematic errors were evaluated by changing the selections.

Contributions from backgrounds from four fermion processes giving all £7¢~ qg@
and 7t ¢*¢ final states have been evaluated. After the selections we expect
0.10 + 0.2 + 0.02 background events (see table 8 column 4).

Results of the search for the Standard Model Higgs particle are summarized in
sect. 9.

7. Search for MSSM neutral Higgs decaying to 7~

The search for MSSM h® or A" (see sect. 1) decaying to 777~ looks for two
isolated 7 decays accompanied by two heavy quark jets. This search for MSSM
decays is different from the above search for the Standard Model H? » 777 It
includes both charged and neutral particles and uses different selections. Results
of both analyses have been cross-checked and agree. Slim jets are defined as
having up to three charged particles and are selected as candidates for v decays.
No restriction is made on their neutral multiplicity but their mass must be below
2.5 GeV /c2.

The search is restricted to four-jet events (using LUCLUS) with thrust below
0.9. The number of charged particles included in the slim jets is shown in fig. 6 for
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H': 7~

~ with m 0= 40 GeV /2

analysis when the second slim jet has 2 or 3 charged particles: data (dots) and simulated
(histogram) initially normalised Z° — qg and Hr* r

. (a) Minimum 7 energy

reconstructed from charged particles; (b) opening angle between the 7; (¢) ¢ (see text); (d) sphericity.
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the data, simulated Z° — qq decays initially normalised to the data and Z° — h°A”,
As expected, slim jets with three charged particles dominate the background while
jets with a single charged particle dominate the possible signal. We therefore apply
different selections according to the topology of the = decays.

Two of the jets must be slim jets. The first slim jet is required to have only one
charged particle, E above 2 GeV, and total energy above 3 GeV (including any
neutral particles). When (a) the second slim jet also has one charged particle, one
of the slim jets must have E" above 3 GeV. When (b) the second jet has two
charged particles, it must have E® above 1 GeV. When (¢) the second jet has
three charged particles, both jets must have £ above 3 GeV.

The two slim jets (r candidates) have a large opening, 6,. The cosine of this is
plotted in fig. 7a against cos 8, (the angle between the high-multiplicity jets) for
the selected real events (black circles), and in fig. 7b for simulated Z° — h°A°
decays with myo=m, =40 GeV/c>. A concentration is seen for the simulated
hYA” (black squares) about cos 8,, cos 8, = —0.6 but no similar structure is seen
for the data. No events in the data have both cos 8 between —0.8 and —0.2,
where about 1 background event (open circles) is expected.
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The efficiency for finding Z° — h°A® decays by these selections is 12 + 2% and
varies very slowly for m o between 35 and 42 GeV /c?.

If f, is the branching ratio for Z°— h°A’ and f, the branching ratio for
h®A’ - r7 + 2jets, then the absence of events means f,-f, <2.5X 107 at the
95% confidence level. Fig. 11, contour B, shows the corresponding MSSM limit in
the (m,, tan B)-plane, assuming values for f, and f, calculated from the formulae
defined in sect. 1.

8. Search for MSSM neutral Higgs decaying to 4 jets

The MSSM Higgs h” and the A” also decay to purely hadronic final states (see
sect. 1) and may be reconstructed from their decay products. In order to study the



DELPHI Collaboration / Search for Higgs 27

expected mass resolutions and detection efficiencies, we simulated Z°— h%A°
decays with various combinations of masses (m,, m,), for both tan B above and
below 1. Decays of the h® and the A° into ¢C, 777~ and bb were given branching
ratios predicted by the MSSM. Subsequent hadronization used parton shower
evolution and string fragmentation from the Lund Monte Carlo program [18]. The
data analysis required the simultaneous operation of the TPC, OD and HPC at a
high-quality level.

First, all hadronic events with a visible energy larger than 20 GeV are recon-
structed as four-jet events (if possible), using an iterative procedure based on
maximization of 4-thrust [22] (a generalization of thrust to the case of fourjet
axes). The jets are reconstructed from the measured charged particles (with
momentum above 0.1 GeV /¢, fractional momentum error below 1, and | cos 6|
below 0.93, where 6 is the polar angle) and reconsiructed electromagnetic
calorimeter clusters in the HPC (with |cos 8] below 0.8). Noisy channels are
removed from the electromagnetic calorimeter signals by an algorithm which
removed less than 1% of the solid angle. This has a negligible effect on the jet
finding efficiency. Each jet was required to consist of at least four particles.

Next, in order to improve the jet—jet mass resolution, a constrained fit is
performed, in which the measured jet energies and momenta are corrected, using
the constraints from energy and momentum conservation. The twelve fitted param-
eters are chosen in such a way that their distributions in simulated Z° — h®A" are
nearly gaussian. For each jet they are a;, the log of a rescaling coefficient, €%,
applied to the energy and momentum of the jet, and two momentum components,
b, and c;, transverse to the measured jet direction. The mean value of q; is
(0.14 + 0.5 cos? Hj), where 6; is the polar angle of the jet axis with respect to the
beam. Similarly, the gaussian widths of the parameters used in the fit are
o(a;)=(0.26 + 0.21 cos® §;) and o(b;) = o(c;) = 1.9 GeV /c. The x* of the fit had
to be smaller than 20. Only minor differences were found between the simulated
decays in regions with tan 8 above and below 1.

After the fit, each of the three pairs of di-jet masses that can be formed is
entered in a plot of the smaller di-jet mass, mg, versus the larger di-jet mass, m, .

Since the main background comes from Z° — qg decays, selections are made on
the minimum opening angle, Gg?i“, and the minimum jet energy, E/", among the
four reconstructed jets. Fig. 8a shows the distribution of 97" plotted against E;™"
for simulated Z°® — qq subjected to the same analysis (with arbitrary normalisation),
and fig. 8b Z° — h°A". From such comparisons, and the MSSM branching ratio for
Z°% — hYA°, the statistical significance of a possible signal in the mass region above
25 GeV /c? is optimized by requiring 877" X E[™ larger than 9 rad GeV (the curve
on fig. 8).

The resulting plot of mg against m; is shown in fig. 9a for the data and in fig.
9b for simulated decays with m, =30 GeV/c? and m, =35 GeV /c?, where
events generated with tan 8 above and below 1 have been combined. The simula-
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TABLE 9
Detection efficiency for Z°% — 4 jets

my, (GeV/c?) ma (GeV/c?) Efficiency (%)
25 40 202+1.4
30 35 222415
30 45 13.0+ 1.1
35 40 208+1.4
35 50 122411
40 45 165413

tion shows an accumulation at about the correct masses, surrounded by a wider
distribution due to the other jet—jet combinations.

The Higgs boson signal would be a cluster of events in fig. 9a since simulated
Z° - qg events show a smooth variation with mass. Whereas the jet—jet mass
resolution is typically around 2 GeV /c? at lower masses, the Monte Carlo studies
show that the signal becomes distorted when the kinematical limit is approached.
The search for the signal is therefore made in a rectangular window in the
(my —mg, my +mg) plane, with constant window area (corresponding to 36
(GeV/c?)? in fig. 9) with sides that depend on the position in the plane. The
background is computed by extrapolating from the observed distribution itself,
averaged over a region of the same size adjacent to the window. Hence the results
do not depend on the simulated Z° — qq. The efficiencies for finding h® and A° at
masses examined here are shown in table 9.

The expected number of signal events in the search window is calculated from
the cross section for h’A’ production, and a smooth interpolation of the efficien-
cies shown in table 9. The efficiencies take into account the part of the signal
spilling into the region used to estimate the background. The confidence level
corresponding to the calculated signal, given the observed number of events and
the estimated background, is then calculated, using Poisson statistics, and the
contour corresponding to 95% confidence is located.

The resulting limit on the masses of the h® and A° is shown in fig. 9 as a contour
in the (m,, m, ) plane (95% confidence level). The straight line AB is because the
larger mass is plotted as m,. The contour between B and C is where Z” — h°A°
production is limited by the cross section (the small excluded island at m, ~ 42
GeV/c? m, ~ 43 GeV /c? is not used for the limits quoted). The four-jet search
was not made to the right of the line CDGH where the MSSM limit comes from
the SM HP search (see fig. 11, discussed below). The interesting feature DEFG is
where h%A’ production cannot be excluded due to fluctuations of the data. Thus
m, ~29 GeV/c? m, ~ 43 GeV /c? remains as a possible region for MSSM that
may not be excluded by the data analysed here.

Since the mass resolution and efficiency is the same for tan 8 both above and
below 1, the result is valid for both.
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The search was optimized for masses above 25 GeV /c?, but since the exclusion
contour that can be derived from the search for the SM Higgs particle (contour A
on fig. 11) overlaps with our previously published limits [14] for m, below 26
GeV /c?, this leaves no uncovered regions at lower masses.

9. Results and conclusions

Fig. 10b shows the expected number of H? events within the Standard Model as
a function of myo. The total error bar shown includes the uncertainties at-
tributable to systematic changes in the selection criteria for each channel, the
Monte Carlo statistics used for H® detection efficiencies (4 1.5%), and in the
computation of expected numbers of H® decays for uncertainty in the H® produc-
tion cross section and decay branching ratio ( +2%) and normalization to hadronic
Z° decays( +0.6%). Including statistical and systematic uncertainties the total H®
signal would be 3.27 + 0.06 + 0.12 events at 40 GeV /c>. We lower the expected
number of events by one standard deviation (the fitted curve on fig. 10b) before
calculating mass limits to allow conservatively for the experimental uncertainties.

The candidate for Z° - H% "e~ is consistent with the total expected back-
ground of 1.0 + 0.2 events in all three Z°* —¢*#~ channels due to four-fermion
processes (or Z° — bb with two leptonic decays). Including the expected back-
ground of 1.8 + 1.3 events in the Z°* — 7 channel gives the total background of
2.8 + 1.3 events. Since one event survives the selections, we take it into account to
compute the 95% confidence level (see fig. 10b) taking the mass of the candidate
H? to be between 27.2 and 43.6 GeV /c?. In this region the maximum signal is 3.9
events at 95% confidence level, using the procedure described in ref. [23], ex-
tended to allow for the error on the background. Comparison of the expected
signal with the 95% confidence level restricts m o to be outside the region 12 to
38 GeV /c.

Since masses between 0 and 14 GeV/c? has been excluded by our previous
results [7,11], there is no Higgs boson with mass between 0 and 38 GeV /c? (at the
95% confidence level). This result is in agreement with the conclusions of recent
searches [24-26] by the other experiments at LEP.

In MSSM (without higher-order corrections [13]) this limit can be used directly
to give contour A on fig. 11. The search for h® or A’ producing 7 provides the
95% confidence level contour B on fig. 11. For m, = m,, this restricts m, to be
above 42 GeV /c?. The contour shows the combined limit, with m,, restricted to be
above 34 GeV /c?, for all tan B above 1. The search for four jets from h® and A°
gives the 95% confidence level contour C on fig. 11, when the mass limits are
transformed from fig. 9 into the (m,, tan B) plane. For tan § above 1, the limit C
(from four jets) would be slightly less restrictive than the limit B from 7 decays.
For tan B8 between 0.3 and 0.5, m,, can be as low as 29 GeV /c?.



32 DELPHI Collaboration / Search for Higgs

> L B e N . ffl
g ! DELPHI
@ a) Efficiency for H°Z°
C 2°>vy
i A PPoete
0.8 — O outw
;L 0 7T channel
F ‘ 4
Lob 0 % {
L ! ¢ é? i ¢' ‘ 4
06

p
0,4‘ $ EIF |
st b 1
0.2 - %

Og\..AA\.\.\IAA;‘¢,
10 20 30 40

:LA i44i 1

m(H’) Gev/c?

2 p
c

g 28 -
5 | DELPHI ]
£ 24 4 b) SM pred. for H°Z® |
3 —

c ' 0O 2°>vy 7
3 . A Poete 1
T ' O °—>p’uw

14 20 A ¢ 7 channel -
] A Sum of above

16 i
12 _
8 .
4 .
e ‘ ]

0 [P ST SN TTT'T$TT‘|~| Farom ek 8 ]

10 15 20 25 30 35 40 45 50

m{(H") Gev/c?

Fig. 10. Standard Model H? decays expected for e Te~ — HZ%* with Z%* -5 (squares), et e™

(triangles), p "~ (circles) and 77~ (diamonds) as a function of myo. (a) Efficiencies for detecting

HO. (b) Expected number of detected decays and their sum. The sum is reduced by one standard

deviation (the curve) to calculate mass limits. The horizontal line with a step is the 95% confidence
level for the analysis with the candidate and backgrounds discussed in the text.



DELPHI Collaboration / Search for Higgs 33

DELPHI

10

tan 3

TR I W W SO VO N

28 32 36 40 44 48
mh GeV

Fig. 11. In MSSM the shaded region in the (tan 8, m, ) plane is excluded (at the 95% confidence level,
using limits A+ B combined and limit C). Contour limits are from searches for: (A) h° decays to SM H’
channels, (B) h? or A” decays to 7777, (C) h? and A” giving 4 jets.

As small values of m,, are already excluded in ref. {11}, the combination of the
contours restricts h® and A’ to masses above 29 GeV /c? for tan B between 0.3
and 0.5 (at the 95% confidence level, for MSSM without the higher-order correc-
tions discussed recently {13]) and above 34 GeV /c? for all other tan 8.

We are greatly indebted to our technmical collaborators and to the funding
agencies for their support in building and operating the DELPHI detector, and to
the members of the CERN-SL Division for the excellent performance of the LEP
collider.
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