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On the basis of the path-integral formalism in the phase space, a new scheme of quanti-
zation of gauge fields is proposed. The path integral in the configuration space is shown
to contain two functional §-functions that reflect the gauge condition and the Gauss
law. A new propagator is obtained for the vector field which, for instance, for gauges
nkA, = 0 distinguishes choices between time- and space-like vectors ny, and does not
lead to contradictions in the computation of the Wilson loop.

The problems of quantization of gauge fields started as early as in 1967* has recently
attracted much interest (see Refs. 2 and 3 and references therein). A particular
reason is the discovered discrepancy between the perturbative calculations of the
Wilson loop, an obvious invariant object, in different gauges.? The discrepancy can
be explained, according to Refs. 2-5, as follows: a singularity of the propagator
in the Hamiltonian gauge A¢ = 0 with respect to the momentum Ky should not
be understood as the principal value. However, the modified propagator proposed
in these papers is translationary non-invariant. Contradictions due to this non-
invariance are treated in Ref. 3.

In this note we analyze another possibility to remove the above difficulty: we
start with the ordinary functional integral in the phase space,%? and show that
transition to the configurational space can be made so that the functional integral
will contain two functional é-functions due to which the gauge condition and the
Gauss law will be fulfilled. In this way quantization is accomplished only for physical
degrees of freedom of vector fields; this method will be called the §2-quantization.

To start with, we consider the interaction of photons with an ezternal field and
take the conventional path integral in the phase space in the Coulomb gauge®’

¥4 =0
2[j] = / D ADx5(m0)8(0" i + jo)
- §(8'6; Ao + jo) exp {i / diz [;%F‘i F;
+%1r.'1r‘ + 71 (B0 s — BiAo) + j“A,,]} 1)
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as a starting point which is fixed uniquely since upon imposing the gauge 8 A4; ~ 0

in the phase space, the secondary gauge condition & 8; Ag+jo & 0 necessarily follows

from the primary of the Hamilton equations of motion,” like the primary m & 0,

and secondary constraints, 3*7; + j, ~ 0. All the notation in (1) is standard. Note

that the functional (1) already contains two §-functions that make the vector field

Ay subject to the primary gauge condition, and the Gauss law, simultaneously.
Integrating (1) over momenta we obtain

Z[j] = / DAS(8' A;)6(8°0: Ao + jo)

. exp {i / d*z [—iF“"F,‘., +j"AF]} . @)

A standard transformation of (1) into the configuration space leaves a single §-
function of the gauge condition (a 6'-quantization), whereas the §-function that
makes Ao subject to the Gauss law is absent. Transformation of the §2-functional
(2) into the conventional §!-functional is based on the simple possibility of writing
exp[—£(b, K~1b)] in two ways, either '

exp [— %(b,l{‘lb)] = /’Da:exp {i[%(z,K:c)
+@)}. )

or

exp [— %(b, K-lb)] = / D8(z — z0) exp {i[%(x,K:c)

+ (bx)] } , (4)
where zg is a solution to the classical equation of motion
Kzo+b=0. (5)

So, to pass from (2) to the é'-functional which only contains §(&* 4;), it is necessary
to solve the Gauss equation 824y = jj in the form Ag = -81—, Jo, (which presuppose
the field Ao to be decreasing at infinity), to integrate over Ag by 8(Ao — % Jo), and
then to write the obtained expression as a path integral of the type (3), terming
a new auxiliary integration variable, as before, Ag. It is clear that in so doing we
extend the integration region in the configuration space of fields A, and go beyond
the surface dictated by quantization in the phase space and given by two conditions:
the gauge and the Gauss law.

It is also obvious that both Egs. (3) and (4) are admissible at the given step
of consideration, i.e., §1- and §2-functionals at the given step of consideration are
m fact equivalent.* However, as will be seen below, in other gauges, when the

*We leave, for the moment, the problem of boundary conditions which is beyond the scope of our
analysis.
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variable Ao undergoes gauge transformations, the §!- and §2-ways of quantization
lead to different results. The reason is that the loss of the Gauss law, when we
expend the configuration space of integration, makes it necessary to impose a further
condition on admissible state vectors (for gauges that do not fix gauge arbitrariness
completely). In particular, in the §'-quantization, in gauge A = 0 it is necessary
to artificially impose the Gauss law on the state vectors.2™”

If we shift the integration variable: Ao — Ao + grjo, Eq. (2) is rewritten in the
form

2l = / D AS(D A:)6(82 Ao) exp{iSer(A, )} , (6)
where
= So+ 5= [t [-1F2 4 Linss, v+ o4,
Set = So + S = z =3 Fuy +3970u,3" + 3" Aul

85, =num /8 ; 1y =(1,0,0,0) .

Thus, as distinct from the conventional approach, the effective action in (6) contains
the instantaneous Coulomb interaction of charges, %(jo, 31, Jjo), and the functional
integration is made only over the physical degrees of freedom of the vector field,
transverse photons.” The generating functional of the S-matrix corresponding to
(6) (that defines the S-matrix of the mass shell) is of the form

S[A] = exp(iSo(A)) / DBS(8* (Ai — B;))6(8%(Ao — Bo))
. exp {—i/d“:cA“Kfﬁ,B" + iSeﬂ-} , (7

where
K:ﬁ, = g,,,,62 — 0,0, .

A change-over to the gauge ¢ A = 0in (7) is made with the aid of a nondegenerate
transformation (see, e.g. Ref. 9)°

1 i
Ay = Ay = 8,55 lpA - P A 8)
As a result, S|A| acquires the form
S[A] = exp(iSo(A)) / DB6[p(A — B)JS[L(A - B)]
- exp {—i/d"zA“Kfj,B” +iSeﬂ‘} s (9)

bIn this connection, see Ref. 8 where the operator method of quantization has been employed.

€, may be both a vector, for instance, ¢, = nu; ¢u = 7, (the Fock-Schwinger gauge condition
u ( u Pu “ g ug

z# A, = 0) and an operator for example, ¢, = 8, and also any linear dimensionless combination

of them.
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where L, = K¢,
The corresponding generating functional of the Green functions looks as follows:

Z[j] = / D AS(pA)S(LA) exp {i[S(A)+ / d“z(%j“&;,,j"

)l

= exp {-;- j[ diz(j# 55, j")}Z"[j] . | (10)

The functional Z'"[j] determines the propagator of transverse photons D, in the
gauge pA=0:

z"[j) = exp{% / d“zd“yj“(z)vuu(z,y)j”(y)} : (11)

Then, according to (10), the propagator A, that appears in the diagram technique
is given by the expression
Ay =Dy + 6, . (12)

The propagator D, can easily be calculated for all usable gauges. Its connection
with the propagator in the §!-scheme can be found without difficulty. If A,“, is a
propagator arising in the standard 6'-approach in a certain gauge, the propagator
in the same gauge is connected with A,,,, by the formula

_ [AnaLa][Lﬂ Aﬁ#]

Duv = B [LrA,, L*]

(13)

In the gauge nA = 0 we get

nanKv
(nK)?

+

Dpy(K) = - 1 [gpu - K/Jnl‘ t K”n“

K2 + 10 (TIK)
K?(nn)
+ (n.K)[quZ _ (r’I()z] (Kuflv + I(,,r)“)
- (n)’K2K, K, _ K2q,n,
(nK?[m?K? - (1K)~ nK? — (nK)?

(14)

The propagator (14) obeys two conditions, n#D,, = 0 and L¥D,, = 0, simulta-
neously. The latter term in (14) is nothing else but —é5,. Thus the propagator
A,y defined by (12) and appearing in the Feynman diagram technique does not
contain the Coulomb term. This circumstance is, of course, necessary for gauge in-
variance. At the same time, we see that the propagator A,, (Eq. (14) without the
last summand) arising in the §2-approach essentially differs from the conventional
propagator A,,,, in the gauge nA = 0 (the first three terms in (14)). The equality
Ay = A,“, occurs when (nn) = 0, for instance, for the gauge As = 0; but precisely
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for space-like n, the standard propagator A,,,, does not lead to contradictions in
computations of the Wilson loop. Also, attention is to be paid to the fact that the
unitarity of the S-matrix in the conventional approach can explicitly be verified
only for the space-like n,.1°

In the gauge Ag = 0 (n, = n,) where the §'-approach meets with difficulties,

the propagator A,, does not coincide with the standard one A,,,, and reduces to
KyKv"Kﬂ(ﬂ‘;Kv‘i'Ky'lv) }
K »

the usual Coulomb propagator A, lp=y = _T(Tl-i-_iﬁ {g,,,, +
that secures the consistency of the Wilson loop calculations in various gauges.
Thus, if the §1-approach in the gauge nA = 0 leads to the same propagator for
all directions of n, (up to going around poles (n-k)), the 62-quantization essentially
discriminates between the time- and space-like vectors n.
The generating 62-functional in QED is of the form

Zljin,il = [ DB, UIDAS(pA)3(O Fao + o)
. exp {i [S(A; 0, %)+ / d*z(j* Ay + Y + 11317)] } , (15)

where S(A;t/;,tl)) is the total action in QED, and J, = gﬁ'ymﬁ + ju. The sec-
ond §-function in (15) provides the Gauss law to hold in the functional integrand.
Equation (15) can be rewritten as

Zljsinl = [ DI, YIDASpA)(O Fio)exp {i[S(A, 5,9)
+ / d*z(j* Ay + 7Y + ¥n) + -;-(Joa‘zJo)] } : (16)

The second §-function in (16) gives the free Gauss law, and the action contains the
additional Coulomb term.

It is interesting to apply the §2-approach to the well known ezactly solvable
gauge models. Consider the Bloch-Nordsiek model differing from QED in that it
contains a vector u,, u? = 1, instead of the Dirac matrices v, and compute the
gauge-invariant spinor propagator

G(z,y|C) = iPexp {ig/dZ“Es—ﬁé(—Z—)}
8225, 7,m)
67(z)én(y)

Integration in the exponent that makes Eq. (7) gauge-invariant is performed along
an arbitrary contour joining points z and y. Constructions of objects of type (17)
within the Lagrangian formalism and their study can be found in Refs. 11 and 12.

Making use of the generating functional (16), writing the Coulomb term in the
action as a functional integral over the variable A, and integrating over spinor fields

(17)

j=0;n=7=0
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we obtain

G(z,y|C) = / DAexp [ —%(A,BZA)] / DAS(p A)S(LA)

- exp {i[So(A) +ig / dZ*(A, + n,,A)]}
F G, uldu + muh) (18)

where G(z, y|B,) is the Green function in the external field B,,. In deriving (18) we
have taken into account that the determinant arising from integration over spinor
fields is equal to unity owing to the absence of the vacuum polarization in the model.
Explicitly, the Green function is

G(z,ylAu + nuA) = i/ dvé(z — y — uv) exp[—iv(m? — i0)]
0

. exp [—ig /, Y dzm(a, +n,,A)] : (19)

Contour integration in (19) is made along the straightline joining points z and y.
Substituting (19) into (18) we get

G(2,yIC) = Go(z — Y)W[[oy]Wee[Tsy] (20)

where Gy is the free propagator, W, [Tzy] and Wi, [['5,] are the Wilson loops defined,
respectively, by the Coulomb term and transverse photons.

Wellzy] = / ’DAexp{ - %(A, 8%A) + ig }i dZOA} ,

(21)

WirlTay] = / DAS(0A)S(LA) exp {iSo(A)+ig }i dZ“A,‘(Z)}.

v

The integration contour Cyy in (21) is shown in Fig. 1.
Cxy

Txy

Fig. 1. The integration contour in Eq. (21).
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All the possible contours, Cyy, can be distinguished geometrically by the
straightline connecting the points z and y, and in this case the propagator G(z,ylC)
equals the free propagator. Therefore, the straightline contour adequately reflects
the physical nature of the Bloch-Nordsiek model in which the interaction vanishes
in the gauge u#A, = 0 and there occurs splitting into fermion and photon sectors
non-interacting with each other.

The $2-quantization allows a somewhat different outlook on two-dimensional
gauge theories. The point is that in two dimensions transverse photons are absent,
their propagator Dy, = 0 (which may be easily verified with the aid of Eq. (14)).
Therefore, the integration over a vector field in two dimensions is trivial, and the
functional (16) can be written in the form

Ztianl = [Dslesn {i[s0(5.9)
+ 200, 0700) + () + ()|} (22)

The functional (22) describes fermions interacting with each other by the Coulomb
law and it is the same for all gauges ¢ A = 0. Thus, the §2-quantization does not
admit any gauge arbitrariness in two dimensions.

In the massless case (the Schwinger model) the bosonization (22) leads to a
massive scalar field with a mass g/7.

In the non-Abelian QCD, model the S-matrix is of the form (time asymptotics
of the vector field obey the standard Feynman conditions of radiation):

S= DAS(VH Fuo)b(p* Ay) expiSym(4) ,
A—Aout
t—too im
where Syp is the non-Abelian action, and V, is the conventional covariant deriva-
tive. It can be seen that in all gauges ¢ A = 0 including the Lorentz gauge
A = 0, there are no ghosts and self-interaction of gluon fields, and the propa-
gator Ay, = —nun, /K? is the same for all choices of the operator ¢, fixing the
gauge.
In conclusion we note that the same results can be obtained if we make use of
any gauge consistent with the phase space, for instance, A3 = 0, as the initial gauge
for the §2-quantization.
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