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It is shown that a one-dimensional hydrogen atom possesses supersymmetry that manifests itself in the momentum represen-
tation. The explicit form of charge operators and analogs of boson and fermion sectors are found.

A one-dimensional atom (1DH) is a system de-
scribed by the Schrodinger equation (A=e=u=1)

Hy(x)=(—13%— x|~ )Ww(x)=Ey(x), (1)

which also describes the realistic hydrogen atom in
a strong magnetic field. For instance, for a pulsar
B~10'2 G and when B=(B,0,0) we have
Vyi+zi=p,=(ch/eB)"/*~3x 107", i.e. the traps-
versal dimensions of the atom are almost three or-
ders smaller than its longitudinal dimensions (the
Bohr radius), which means that in pulsar magnetic
field the hydrogen atom approaches the one-dimen-
sional system (1).

A first systematic study of the 1 DH was performed
by Loudon in 1959 [1]. He has established three re-
markable properties:

(a) the excited levels of the 1DH discrete spec-
trum are described by the formula E,=—1/2n2,
n=0, 1, 2, ... (atomic units);

(b) the excited levels are double-degenerate, which
contradicts the known assertion that the one-dimen-
sional discrete spectrum should be nondegenerate;

(c) there exists a normal level Ey= — co described
by the wave function ‘

Yo(x)= ling) Ya(X)

e~ xl/a

=im 7z =0

=00, x=0, (2)

x#0,

the integral of which over the region ( — oo, o0 ) equals
zero, unlike the J-function. Also zero is the scalar
product of the function y,(x) with any square in-
tegrable function f(x):

[ s ar=tim [ o @)

The latter property was first indicated by Andrews
[2] and Nunez Yepez and Salas Brito [3]. They
threw doubt on the physical reliability of state (2).
However, this problem cannot be considered as
completely solved. Indeed,

[wo(x) |*= ,l,,‘f}, |Wa(X) 1?=6(x) 4)

and therefore it cannot be stated that wy(x)=0.
Maybe, in mathematics, certain objects (functions)
can be introduced the square of which may be in-
terpreted as a generalized function and the function
wo(x) belongs to this class.

The property (b) and the reason for breaking of
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the assertion that the discrete spectrum is nonde-
generate in one-dimensional quantum mechanics was
explained in ref. [1]. From more general consider-
ations this problem was investigated by Andrews [4]
who found that the potential U(x)=—|x| ! is sin-
gular at the point x=0, as a result of which the re-
gions x> 0 and x <0 are physically not connected. A
particle with a given energy may be either in the right
or left region, i.e. there are two states with different
wave functions. The scenario of formation of dou-
ble-degenerate levels was traced for the potential
U=kx?+Q5(x) in ref. [5]. The spectroscopy of this
system is such that there exist levels with even and
odd wave functions and these levels are alternating.
The odd levels do not depend on the parameter £2,
whereas the even ones do. With growing £2 (we are
so far speaking about positive ) every even level
approaches the above odd level and at Q2= + oo they
merge thus forming a double-degenerate energy level.
In this example there is a fall onto the centre realized
in the limit 2— — oo, the normal level Ey= — oo, like
for 1DH, being described by the wave function (2).

The Andrews model is of a rather general char-
acter. There the particular form of the singular po-
tential around the point x=0 (U~—|x|~},
U~ —|x|~2, and so on) is not important. The only
important thing is that the regions x>0 and x <0 are
not connected physically.

Another aspect of the problem of degenerateness
of the discrete spectrum was developed by us in ref.
[6]; we found that among the systems with a poten-
tial singular at the point x=0 the 1DH occupies an
important place. Just for the 1DH an alternative
mechanism of degenerateness, hidden symmetry
0O(2), works. Like in three dimensions this sym-
metry reveals itself only in the momentum represen-
tation. In a sense, the hidden symmetry O(2) may
be considered as more hidden than the Fock sym-
metry O(4) of a realistic hydrogen atom: in one di-
mension the hidden symmetry is completely “sti-
fled” by the competing Andrews mechanism absent
in three dimensions.

In this note, we suggest one more approach to the
problem of degenerateness in the 1DH: we will prove
that the 1DH is a supersymmetric system, which is
far from being trivial. Supersymmetry of the 1DH
was considered earlier in refs. [7] and [8], but the
consideration was based on the fact of double de-
generateness of 1DH excited states. It is, of course,
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a necessary but not sufficient condition of supersym-
metry. We recall that the ground state energy for su-
persymmetric systems FEg=0, whereas for 1DH
E,= —oco. Therefore this problem should be further
analysed, and we apply the momentum
representation.

When x#0, eq. (1) can be multiplied by 2| x| and
reduced to the form

|x| (p?—2E)y=2y, (5)
where p= —id,. We apply to.eq. (5) the operator
R=(p>-2E)|x|(p*-2E)

from the left and pass from the function y(x) to the
function

1(x)=(p*-2E)y(x) .

(A similar procedure was used in the theory of the
hydrogen atom, in the Hylleraas three dimensions
[9]. Details can be found in ref. [10].)

The above transformations lead to the equation

(P*-2E) | x| (p*=2E) | x|x(x) =4x(x) . (6)
It may easily be verified that

|x|p?—p?| x| =2isgnx p+26(x) ,

from which we get the equality

| x| (§2—2E) | x| = (p*—2E)x*+2ipx . (7)
Taking (7) into account we obtain, instead of eq.
(6), the equation
[(B*—2E)*x*+2i(p*—2E)px]x(x) =4x(x) ,

which does not contain the absolute value |x| and
we may pass to the momentum representation using
the ansatz

p=—10,-p, x->-4,.
As a result, we arrive at the equation

2
(=26 Th 427 -2E P +4p=0,  (®)

which replaces the initial equation (5); ¢(p) is the
Fourier transform of the function y(x).

We started with the second-order equation (5) and
arrived again at the second-order equation (8); thus
losing nothing and acquiring nothing. In ref. [11],
instead of eq. (1) in the momentum representation
two first order equations have been obtained. This
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approach is based on the ansatz

x| -1 -,
|x]—>1sgnx ap
which is valid only for the class of functions which
are zero either in the region x> 0 or in the region x<0
(in connection with this see ref. [12]).

Taking advantage of the replacement

=/ -2Etg(p/2) (9)

(—n<p<m) we can greatly simplify eq. (8). This
replacement is a one-dimensional analog of the ste-
reographic projection used by Fock [13,14]. Intro-
ducing the notation ¢(p)=G(p) and using (9) we
obtain, instead of (8), the following equation,

d*G 1

d_¢2 -_ E G= 0 .

Thus, we have arrived at a remarkable conclusion:
between the 1DH and a two-dimensional rotator
there exists a one-to-one correspondence, namely, to
the 1DH corresponds a two-dimensional rotator with
the Hamiltonian A= (—id,)>?,

ﬁGE(-—ia¢)zG=EG. (10)
Here € is connected with E as

l 2
e._—ZE_ , n=0,1,2,... - (11)

Note that to the ground level of the rotator €,=0 there
corresponds the 1DH ground level Eq= —o0.

Now it is easy to prove the 1DH supersymmetry.
For n=0, 1, 2, ... to every level of the rotator (11)
correspond two wave functions, even and odd:

G =ccosnp, G =csinng.

To the ground state corresponds the wave function
G§*) =const. Thus, we have a supersymmetric
spectrum.

Let us introduce the operators

0=1(1-2)(-id,), Q'=1(1+2)(-id,),
where 2 is the parity operator,
2 flo)=f(-9).

Obviously, the operators 2 and —id, anticommute
with each other, therefore it may be shown that

h=00*+0%Q, Q*=0, (Q*)*=0,
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[Q’ E]= [Q+’ ﬁ]=o .

From these relations it follows that /4 is a super-
Hamiltonian and Q and Q% are the change opera-
tors. The super-Hamiltonian £ can be represented as
a sum of superpartners,

he=0%Q=1(1+2)(-id,)?,
Fe=00*=4(1-2)(~id,)?.

The pairs (f, G$*’) and (fg, G§) realise, re-
spectively, boson and fermion sectors; the operators
Q" and Q can be shown to connect these sectors:

0GP =inG{™), QG{) =0
Q*G =0, QMG =—inGL{P).

In conclusion, in the coordinate representation the
1DH falls outside the scope of the systems described
by the Witten scheme [15]; whereas in the momen-
tum representation and with stereographic projec-
tion (9) the Witten scheme becomes valid. There-
fore we conclude that the 1DH supersymmetry is
hidden and reveals itself only upon passing to a plane
rotator equivalent to it.
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