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1. ABSTRACT

The problem is exactly solved of expansionse
of the parabolic and spherical bases of a
hydrogen atom over the bases of a
four—dimensional> isotropic oscillator. The
results are expressed in terms of the tabulated
Clebsch-Gordan coefficients of SU(2) group and
the Wigner function.

2. INTRODUCTION

In the paper by Kibler et al. [1] a problem important
for the physics of hydrogen atome in external fields has
been formulated as how expand parabolic and spherical bases
over the bases of a four-dimensional isotropic oscillator.
There an expansion was established for the parabolic basis
of a hydrogen atom over the double polar basis of the
four-dimensional isotropic oscillator, some selection rules
and bilinear vrelations were derived, and programs of
numerical and analytic computations were constructed.

In this note, we have found an exact solution to the

above-mentioned problem. Our results are expressed in terms
of the well studied and tabulated “objects”, the
Clebsch-Gordan coefficients and the Wigner function.



3. THE KS-TRANSFORMATION
The KS (Kuctaanheimo-Steifel) transformation [2] is a

square transformation

x u4 a u2 u1 u!.
y - “u, ouo-uou, | u, (1)
z -u, -, wu,ou u,
0 -u, u. u, -u u,

which makes each point (ui, w,, u,, u‘) of a
four-dimensional space R* correspond to a point (x, y, 2)
of a three-dimensional space R?; and there holds the
so-called Euler identity:

2 4

_ 2 H 2, _ 2 2 2 2,2 _
r = (x+y + 27) = (u‘ +tu, +u 4+ u‘) =u (2)
The KS-transformation matrix is not determined
uniquely.For instance, a matrix obtained from the matrix
(1) by transposing the rows also leads to the identity (2).
Which our choice, it follows from (1) that

X = 2(u1u4 + uzus)

y = 2(u2u4 - ulus) (3)
N UL L .

z =4, u, 1 Y,

This transformation 1is useful in the ©physics of
hydrogen-like systems because in terms of the variables u,
the problem of a free hydrogen atom gete identical with the
problem of a four-dimensional isotropic oscillator with
some auxiliary conditions. Switching on the external
electric and magnetic fields breaks that simple
correspondence, and in the u-space there appear anharmonic
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terms. The anharmonic oscillator was studied in some
particular problems of QFT, and along that way powerful
aprroximate methods were developed [3]. It may happen that
the above-mentioned methods will be more efficient than the
approximate methods so far applied in the physical space
X,¥,2. In all cases the KS-transformation connects problems
of the nuclear with atomic physice, and this may provide
new computational possibilities in both the two branches of
physics.

Prior to formulate the connection between the spaces
R* and R® in terms of the Schrédinger equation, we write
one useful formula expressing derivatives in the x-space
through the ones in the u-~space with the matrix (1):

a/dx u u u u a/du

4 2 2 1 1

a/3y - fl; -u,ouo-uou | 9/0u,

a/dz - -u u u a/au

1 -~ 1 2 3 4 3

E—;X tu, uou -ug 6/au‘

where
x:mwmz—%wm1+mwma—%wm‘ (4)

To solve the Schré8dinger equation
B 2[.1 -+ -+ -
A¥r) + = [E - V(D)]J¥(F) = 0 (5)
is the same as finding solutions of the equation
a g + 2L ma® - Pvd]e@) = o (6)

that satisfy the two auxiljary conditions
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a) 3(-d) = #(d)
b) X#(1) = 0

The condition a) implies that the transformation (3) is
quadratic, i.e. to points 0 and -4 there corresponds one
roint of the space R®. The condition b) selects, among the
eolution to eq. (6), only those which depend merely on three
variables x, y and z. For the Coulomb field V= -Zez/r,
equation (6) transforms into the Schr&dinger equation for a
four-dimensional isotropic oscillator

A® + 2'2‘ [5 - no®u®/2]2 = 0 (7)

with -4E = pw®/2 and % = 4Ze>.

The KS-transformation is thoroughly described in ref.
(5], and application of it to the connection between a
hydrogen atom and a four-dimensional isotropic oscillator
can be found, e.q., in refs. [1] and [6].

4. COORDINATES AND BASES
We s8hall make use of the following coordinates and

bases:
1. Four-dimensional coordinates and bases of an

oscillator
a) Cartesian coordinates

@<y o, -0y o, t® < U< o, ~® < u <o
- z— ar o ar
,n‘nznsn‘> = A an ()\ui)gtn (kuz)a‘.’n ()\ua)gt’n (Xu‘) (8)
1 2 3 4
where X o= ¥ uwst s n, = n+ n+ n_+ n, is the

principal gquantum number, 3 = ¢uﬂno+2), is the energy

e i&i;.*.};;ﬂ,ﬁg_%
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spectrum, and

_ X /2
% (x) = 2 (x) ;
n 1/ 4 n_y n
n 2 n!

b) Canonical hyperspherical coordinates

u.= u-siny-sin®-sgine , u,= u-sine-cosd
u,= u-siny-sind®-cose , u,= u-cosy (9)
0 fywy=<n, 09 =<n, 0 < p £ 21
In,J mm> = Ry J.(lJ»)'YJ.m nl¥ &%)
o] 1 2
where Jj = 0,2,....,no and J = 1,3,....,n°, respectivety,
*)
for even and odd n,, 0= n<j, |m2] = m,

c) Noncanonical hyperspherical coordinates

u = u'sgina-sing , u_= u-coga-siny
= u-sina-cosf’ , u,= u-cosa-cosy (10)

u
2
02 acz<n/, 0<p =<2, 02y < 2n

Ingd X,> = Ry () Yy g (05.7)

where |k | < j , [k
1)3:---:3.'“{1' 3

= 0,2,...,j-[k‘l , or |k

d) Double polar coordinates
u, = p;sinﬁ , u= pésinr

*) The bases of a four-dimensional isotropic oscillator and a
hydrogen atom are explicitly given in Appendix A.



u,= p;cosp , ) u, = P cosy (11) 3
0 £p=ow, 0 = pzs © , 0 =35 2n , 0 £y < 2n
— 22,5, 2 2, 2 2, iq f3+iq_p
't‘tzqiqz> = \/2 ft q(h P,) ft q(x P, e 2
171 272
with n = 2t +2t + |q | + |q,]
2. Three-dimensional coordinates and bases of a
hydrogen atom
a) Spherical coordinates
X = r-sin®-sinp , Yy = r-sin®-cose , zZ = r-cosd®
This choice corresponds to the so-called canonical tree {73
and is convenient for further computations. The
KS-transformation transforms the three-dimentional
spherical coordinates into the noncanonical coordinates
9 = 2a , =06+ 7 (12)
The spherical basis of a hydrogen atom is of the form

In 1m> = Rnl(r)'Ylm(S,P) (13)

where n is the principal quantum number, 1 = 0,1,....,n is

the orbital moment, and |m} £ 1 is the azimuthal number.

b) Parabolic coordinates

x = ¥ vu sing y = ¥ vu cose , z2 = (v - u)/2

The KS-transformation connects the parabolic and double
polar coordinates as follows

v=2'p:. I-'=2'P:, =p+r (14)



The parabolic basis is

img
Ppm> = 2a3/n f (o) - £ (ay)=§—————— (15)
' 12 plm pzm Y 21:
2
where n=p+ p + |mj + 1, a-= rZe .
1 2 *2

5. THE KS-TRANSFORMATIONS OF STATE VECTORS (A)

Now let us write all the eight expansions that connect
the bases of a hydrogen atom with those of a
four-dimensional isotropic oscillator

Ipapzm > = z <t1t2q1q2|¥ pzm >|t1t2q1q2> (16)
In1m>=Ec«<xjkk[nlm >IngJ k k> (17)
le,p,m > = E<n_j k k,|p,p,m >in_J k, k,> (18)
in 1m> =% <t1t2q1qz|n 1m >|t1tquq2> (19)
jIn1m>=F <n,J m1m2|n lm >|noj nm > (20)
In 1m>=¢ <a,nnn |nlm >jn,n_n.n > (21)
le,p,m > = E<n j mm |ppm>injmm> (22)
|p1pzm > =5 <n1n2n3n‘|p1pzm >]n1n2n3n‘> (23)

As mentioned above, the KS-transformation transforms
three-dimensional spherical and parabolic coordinates into
noncanonical hyperspherical and double polar coordinates,
respectively. Therefore, it may be said that the expansion
coefficients or transition matrices <t1t2q1qz|p1pzm > and
<n°j kikzln 1 m > are diagonal. That +the matrix
<t t.q.q |p1p2m > is diagonal has been proved by Kibler et

1 271472

al. [1]

1 rtZ 172
<t .t q.a jp,p.m> = == [ ] S & ) s (24)
17274321843 2n a pit1 pzt2 mg  mq,
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Here a is the Bohr radius, and n = 1,2,..... determines the
energy spectrum of a hydrogen atom.

We will now show that the matrix <n°j k1kz|n 1m>
is diagonal as well. Start with the identity (17). In the
left-hand side of (17) with the KS-transformation (3) we
transform the spherical coordinates into noncanonical ones
(& = 200 , ¢ = 3 + 7), take into account that the functions
exp(ik‘ﬁ) and exp(ikzr) are orthogonal and that the
Jacobi polynomials are connected with the Legendre
poclynomials (8]

(L + |b|)!-(sinZa)'b'pl("‘_"h’)‘.")(cosza) = 2/Plp!Pl (cos2a)

The result is

1 ﬂz 172
nyd Kk n 1m> = (_a ] *n®1,5/2%0k ®mk  (25)

where £ = exp {in(m + Iml)/2}

Thue, the matrices (24) and (25) are both diagonal.
The bases of a hydrogen atom and a four-dimensional
isotropic oscillator are expressed through each other only
by the KS-transformation.

Now let us calculate the coefficients <noj k‘k2}p1p2m>
and <t1t2q1qz|n 1 m >. Expansion of the parabolic basis

of a hydrogen atom over the spherical basis is given by the
Tarter matrix [8]. In accordance with ref. [10],

1+(n-1)/2

<n lm|pp,m> = (-1) 'fm'T%ﬁTl)/Z P (26)
!

where the Tarter matrix 1s expressed in terms
of the Clebsch-Gordan coefficients
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1, im|

1
a a,a-b;a,b-a+|m|

m _
T.'p, = C (27)

Inserting into the identity
< J kikzlptpzm >:E<noj k1k2]n lmo>nlmn |p‘p2m >(28)
the relations (25) and (26) we get

<n_} k‘kzlpipzm > =

1/2 .
- 2%_[ :Z ] (-1)PFImI+3/2

3/2,m (29)
nk “mk T (n-1)/2,p,

In a similar manner we can establish the following formula

1 27172

7 Y12 ¢ 1,
<,t,aaq nlm >=“§i‘[ 3 ] =D ‘+j/2‘-mT(nT1)/z,tf3°)

Thus, to complete solution of the problem, we are left
to compute the coefficients <n°jm‘m2|nlm>, <n1n2n3n‘|nlm>,
<n,j mm |p,p,m > and <nn,n.n |p,p,m>. To this end we

shall make uese of the identities

<nojm1mz|nlm>=£<n°j m1m2|n°j k‘kz><nojk1k2|n1m> (31a)

<n1nznan‘|nlm>:2<n1nzn3n‘lnoj k1k2><n°j kikzlnlm> (31b)

<n°jm1mz[p‘pzm>=z<nojm1mz|titzq1qz><tttzq‘qz|p1pzm> (31c)
<n1§2nsn‘|p1p2m>=2<n1nznsn‘|t1t2q1q2><t1tzq1qz|p‘p2m>(31d)
As the matrices <n°jk1k2|nlm> and <t1tzq‘q2]p1pzm> are
diagonal, the above identities provide summation over

"intermediate states", and only the coefficients connecting
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the corresponding basis of a four-dimensional isotropic

oscillator are to be calculated.

5. INTERBASIS EXPANSIONS IN A FOUR-DIMENSIONAL

ISOTROPIC OSCILLATOR

In total, there are 12 expansions between bases in a
four-dimensional isotropic oscillator.Owing to the
unitarity condition, the coefficients of “direct” and
“"inverse” expansions follow from each other by complex
conjugation. So, it suffices to analyse the following six

expansions

In‘nznan‘> = L <t1tzq1qz§n‘n2n3n‘>|t‘t2q1qz> (32a)
|n1nzn3n‘) = E <n_J kikz|n‘nzn3n‘>|noj k1k2> (32b)
ln‘nzn3n4> = L <n_J m‘m2|n1nzn3n‘>jnoj m.m > (32¢)
]t1t2q1q2> =L <n°j kxkzltxtzq1q2>|noj kxkz> (32d)
Inoj m1m2> = L <t1t2q1q2|n°j m1m2>|t1tzq1q2> (32e)
lnoj nm,> = L <n°j k1k2'noj m1m2>‘noj k1k2> (32%)

The six coefficients in (32a-f) are explicitly expressed in
terms of three structure elements : a “"reduced"” Wigner
function d: v(n/Z), Clebsch-Gordan coefficients ng;bﬁ
objects Maz_bﬁ,analytic continuations of the usual

and

Clebsch-Gordan coefficients into one-fourth-integer values
of indices. In accordance with ref. [11],

172

A-p
T _ (-1) (T + X! (Tt - A)! ofrt+v -0
dx,v(n/Z)_ 27 { (7 + v)!i(r - v)!} Z (-1) [ o ][a+k—v]

MY - Sy, aep A(a,D,0) 7 Zovd
ao;b? T U(atb-c+1)0(c-b+a+l)O(c-a-3+1)

2 {c-a—b,a—a,—b—ﬁ
2

O(a+o+1)0(b-4+1)0(c+r+1)0(c-r+1) 1"
O(a-a+1)0(b+3+1)

}

c-a-f3+1,c-bra+l



In the latter formula,

- [ O(atb-c+1)0(a-b+c+1)0(b-ate+1))*"?
A(a,b,c) = { O(a+b+c+2)

Note that MZ:;bﬁ
expansions between bases in a three-dimensional isotropic
oscillator [14] and in some problems of the quantum theory
of the angular momentum [(15].Tables of those M cr a;bp Can be
found in ref. [14].

Now we shall write explicit form of the etudied

expansion coefficients

appeared earlier in the problem of

. T T
<t‘tzq‘ In n_n n_ > = elmp dkiv(n/Z) dk:vin/Z) (33a)

1 2 3
1 1

& = (24 2t,- n-n)/2, As= q,/2 , A= q,/2

TE g+ n)/2, T, (ng+on)/2

v=(n,-n)/2, v (n,- n.)/2
<n_Jj ktk [nnnn>=
ing Ty
= e ds‘vfn/Z) d (n/2) Caa bl? (33b)

§=(2n1+nz+na+no—j—Ik‘l)/2, s =k /2, s~k /2,
e,=3/2, r=(Ik 141k, 1)/2, a=(n ~Ik,I+Ik_[)/4,
b‘:(n°+|k1|—|kz|)/4, a1=(ns+n‘—n‘—nz+|k1|+lkzl)/4,
A=(n+n,-n_~n + |k |+k,[)/4

<n,j m m |n1n2nsn‘>

Cat'y

aa b /3 Maga;;baﬁ; (33¢c)

z ‘”“"d L (n/2) M2



8= (Imji-n)/2 , 1= m /2 , ¢, 3/2 , 7,7 m/2

a= (n°+m‘+1)/4 s a= (n°—2n4+m1+1)/4

bz= (n°~m‘—1)/4 , Bz= (2n4—n°+m1+1)/4
c,= (2m-1)/4 , r,= (2Im,1-1)/4
a= (ngn+n +im 1)/4 , o= (n+n,-n_+im 1)/4

b3= (n1+nz+n3—lmzl—1)/4 s ﬁaz (na—ni—nz+lmzl—1)/4
. cr
. ing e
= =] =}
<n_J k‘kz|t‘tzq1qz> e q;kz qzkzca‘a4;b‘ﬁ‘ (33d)

¢ = (2t4n,-3)/2 , c,=3/2 , 7= (la,l+lq,1)/2

a ;= (t+t +la,l)/2 a= (t,-t +lq,l)/2
b= (t+t +lq 1)/2 , B,= (t-t +la,1)/2
<t1tzq‘q2|noj m,m > =

cr, m m

ei.n¢ 5 12 (33e)

am, 00,8052, -x 5 5/2,x 4%
¢ = (n_+2t +2m +2lq,i+Im,1-q,)/2

. m m
ing 172
5 . .
e mzk’c‘]/Z,si—sz;,]/z,siﬂs2 (33£)

<nJ k‘kzlnoa m m,>

¢ = (§ +m+21k I+Ik,1)/2

The coefficients (33b), (33c) and (33f) were computed
by the methods proposed in refs. [12] and [13] which can be
used for an isotropic oscillator of any dimensionality.
Formula (33a) was derived as follows : First, we
substituted thee xplicit form of bases into (32a), passed
over to the double polar coordinates in the left-hand side
of (32a), tended in both its sides P, and P, to infinity,
used the orthogonality of the functions exp(i.q‘{?) and
exp('»qzr), and finally compare the result with the integral

representation for the Wigner function [11]
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M ) L () 12
(a+m) t (o-2 !}

i—z— -'L_f_ J-u’
I (e cos—’;—ﬂe zsing—] .

—i—: P i———: P J+u'u‘
[ e ~cos——tie sin—7—} e™MPdp

To derive formula (33d) it is necessary : to insert
the explicit form of bases into (32d), to pass over to the
noncanonical coordinates in the left-hand side of (32d), to
tend in Dboth its &eides to infinity, to use +the
orthogonality of functions exp(tktﬁ), exp(ikzr), and the
Jacobi polynomials [8]. Then, we are to calculate the
integral

1

t +1k | t+1k | (lk |,1k_ 1)
2=j'(sin2a) Yt (cos®a) 202 P, * % " (cos2a)dcos2a
-1

where L = (J-1k I-1k,1)/2.

The last step i1s to apply the Rodrigues formula for the
Jacobi polynomials and the following integral
representation for the Clebsch-Gordan coefficients [11]

csr b
ac,;
41
_(~1)37¢¥ (ctr)!(s-2c)! (2ct1) }5.
BT (a-a) I (a+a) I (b-A) ! (b+R) | (c-7) 1 (3=22) T(I-2D) !

1
F(1-0%7 (14x)P" ’?d— { (1-x)"723 (14x)”7%P } dx
-1

J=a+b+ c.
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Formula (33e) is derived by substituting (33f) and the
complex conjugation of (33d) into the formula :

<t1t2q1q2’n0j m1m2>:z<t1t2q1qzln0j k1k2><n0j kxkz;no‘j m1m2>

6.THE KS-TRANSFORMATION OF STATE VECTORS (B)

We have proved the following assertion. Coefficicients
of transitions between bases of a hydrogen atom and those
of a four-dimensional isotropic oscillator are expressed
through the coefficients of certain expansions relating one
basis with another of the four-dimensional oscillator. We
are only left to load those coefficients with information
on the quantum numbers of the corresponding states of a
hydrogen atom.

Inserting formulae (33a), (33b), (33e), (33f), (30)
and (29) into (31a)-(31d), resp., we get

<n jJmm {n 1lmo>=
[o) 1 2

41

~ 1+Im] {m)-m
_ 1 frn 2]z, _ ) 1 m,m
"I [_a] (-1) ; °m n®1,3/27 1,1 (34a)
<n1n2n3n‘|n 1 m>=
1
- 1-|m| m+n -n T
1 fn 22 . a1 1
2n —E—J (-1) * d mxz,v("/z)
(34b)
T
d % (ns2) T Lom
mrz,v, ‘n-vrz,m +n, - im|s2

1

_ 1 n )7 P ,Iml_ma
<ngd mm,|ppm > = 2n—[“a—] (-1) ¢ “nm’

(34c)

vz, j/zT(n—n/z , p1
1
— P 4P n +n
_ 1 [ Z)a 1 72 1 a3,
<n1n2nan‘|pip2m > % Zn [ a ] -1 (=9
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T T

da* (n/2) d
1

2
m-z,v
2

(n/2) (344)

m-z,v

So, the searched matrices are expressed in terms of
the Kronecker symbols, Clebsch-Gordan coefficients and
Wigner functions d: u,(ﬂ) at p=n/2.

7.CONCLUSION

We have calculated the coefficiente of expansions of
the parabolic and spherical bases of a hydrogen atom over
the double polar, canonical, noncanonical and Cartesian
bases of a four-dimensional isotroplc oscillator. The
problem was solved in three &teps : i) diagonal
coefficients were found ; ii) the Tarter matrix was used ;
111) explicit form was utilized of the coefficients of
expansions between bases in the oscillator. Along that way,
no difficulties arise characteristic of the method based on
direct investigation of the overlap integrals [1] which in
thie problem represent multiple integrals of the product of
epecial functions of "very tangled” arguments. This merit
allowed exact solution of the problem.

8. APPENDIX
We shall here write the explicit form of bases of a
four-dimensional isotropic oscillator and a

three-dimensional hydrogen atom.
1. Canonical and noncanonical hyperspherical bases
|n°l mm> =R . (u) Yj nm (¥99)

nOJ 1 2

In,d kk,> = Ry 5 (W Yy kK, (0P

_ 2>\‘(‘ +3+1) N2 ow)d AP,
Ry (®) = { AT } o ©



- F(-n";3+2;2%0%)
n” = (n,-3)/2

n
(-1) 2 ()¢ {(25+2)(5-m ) ! (J+m +1)1}*77
L3 ’8) = -
YJ mlmz(w ﬂ) 1L/72 m1-2J+‘
k24 (2j+1)' 2
m, (Ei,ﬁ;)
(siny) Pj_m (cosw) Y, m (8,9p)
1 1 2
where Yl m(S,p) - is the conventional spherical function,
Pga’ﬁ)(x) - is the Jacobi polinomial
. | _ i 172
ij g (0f7) = = { (;:;)i%;?‘::(i(’ 07)'} (sina)lk‘|-
172 ot /)" Jo oz)'
Ik, | (lk‘l,lkzl)
(cosa) . jo'”: (cosZa)exp{th}szr}
We used the notation : E;=(2m1+1)/2, ﬁ;:(mz-lmzl)/Z,
Jo=3/2, 0‘=(|k1|+lkzl)/2, °5=(|k1|-|kzl)/2-
2. The double polar basis
(t+1a)1** -x*vz
T | 1 S NI

ta

Lo« J  ar
3. The spherical basis of a hydrogen atom

12
arz2

R, (r) = 2o (2ar)* { (ntl)! } e .
Yn {21+1)! (n-1-1)!
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* F (1-n+1;21+2; 2ar)

4. The parabolic basis of a hydrogen atom

-xs2

(p+Iml) 1% e
£ (x) = { } xIB/2 b met;x)
p! Y

All the bases are normalized to unity.
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