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It is shown that a delta-shaped term V(x)=£QJ(x) changes radically the linear oscillator spectroscopy and in some limiting
cases leads to the production of anomalous double degenerate energy levels for one-dimensional quantum mechanics and to the

falling of a particle onto the centre.

1. Introduction

In the programme of investigations to be per-

- formed at LEP of much importance will be the quark

physics at small distances, in particular, the topon-

1um physics {1]. In this connection it is interesting

to elucidate how sensitive physical observables in

quantum mechanics are to the change of a potential
in the vicinity of the coordinate origin.

In the present paper this problem is investigated

in the simple model of the singular linear oscillator

U(x) =tuw?x? +Q6(x) .

In other words, to the linear oscillator hamiltonian
is added the delta-shaped term V{(x)=£06(x) and the
changes in the oscillator energy spectrum following
after this addition are found.

2. Wavefunctions

The Schrodinger equation for the singular linear
oscillator can be transformed into
& d(z)
dz?

+[A+i—422—yd(x)]1D(2)=0. 1)

The following notation is used:

z=(2uw/h)"?*x, A=Elhw-4,

y=(QIh)Quhw)"? .

The parabolic cylinder functions D;(z) and D,( —z)
are linear independent solutions of eq. (1) at [z| #0
so that

&, =AD,(z) +BD,(-z), z>0,

®,=CD,;(z)+ED;(-2), z<O0. (2)
Solutions (2) should satisfy the standard conditions
lim @,(z)=0, (3)
jz]| »co

lim @,(z) = lim @,(z)=P(0), (4)
z-0+ z—0—
(dD, dtbz) _

( dZ )z=0+ _( dZ z=0— _y¢(0) ' (5)

It follows from the asymptotic formulae [2]

20

D;_(Z)—"e —22/421 R

Z— —Q0
V2R e i

D;(2) -—*fr(—l)e e*z ,

that the condition (3) holds only if B=C=0.
Thus,

D,(2)=AD)(2) , DP:(z)=ED;(-2). (6)

The function D;,(z) is expressed through the degen-
erate hypergeometric functions [2],
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Dx(z)=2"’2e'22"‘(—-——-—r(%) F(—3i4; 3, 4z%) }\
rGa-ay P
3
z I'(1-1) ) 2
LS T2 Bl —-A): 212 .
+\/§r(l—%}») (2(1 )')s 2 ZZ ) (7) 1
At negative integers A=N, D,(z) is connected with 0 '
the Hermite polynomials [2], “.1-05 !
Dn(z)=2""2e~"*H\(2/\/2) . (8)
Now taking into account (7) and (14) we have
A-FE 0 i 9) Fig. 1. Dependence of index 4 on the parameter y (yo=—0.6).
rga-a)=

Two cases are possible:

(a) A=2n+1, n=0,1,..,

(b) A=E.
In case (a), as follows from (8) and (6),

O, =A2-"""2e~H,,, \(2//2), z>0,

®,=—E2-"""2e~"1H,, . (2//2), 2<0.

Substituting these functions into (5) and consid-
ering that (a) @(0)=0, we get that A= —E. Thus,
in case (a) the singular oscillator states coincide with
odd states of an ordinary linear oscillator,

RV 7 N U
2 )(x)_(nh) 25 2n+1)!

xexp[ — (uw/2h)x? | Hypy 1 (/R X) . (10)

In case (b) the wavefunction (6) is even in z and
can be written down by a single formula

D1 (2)=AD,(12]) . (11)

3. Energy spectrum

In the previous section we have found that odd
states of the linear oscillator do not react on the
inclusion of the delta-shaped potential. The situa-
tion changes for even states. Indeed, from (11), (7)
and (5) one can easily derive the transcendental
equation
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—y= (- (-3), (12)

defining the dependence of the energy spectrum,
described by the wavefunctions (11), on the param-
eter y and consequently on £. It follows from (12)
that at y =0 the index A runs through non-negative
even values. The dependence of the first even levels
A(0)=0 and A(0) =2 on the parameter y is depicted
according to (12) by a diagram (fig. 1). With chang-
ing parameter y the remaining excited levels with
positive parity for which 1(0) =4,6 behave qualita-
tively in the same manner as the level 1(0)=2.
Therefore, we can draw the following conclusions:

(a) Upon including the delta-potential, the ini-
tially excited even levels A(0)=2,4,6,... acquire
additions with the sign of the parameter y.

(b) With increasing |y| these excited levels
approach odd levels 1=3,5,7,... and A=1,3,5,..., for
y>0 and y <0, respectively.

(c) The normal level of the oscillator A(0)=0
raises with increasing y and approaches the first odd
level A(0)=1.

(d) With changing y towards negative values, the
normal level lowers gradually and at y=y,=—0.6
enters into a delta-shaped well and then goes down-
wards (Eg— —00).

(e) At |7] =co even excited levels fuse with odd
ones, i.e. there appear double degenerate energy lev-
els anomalous for the one-dimensional quantum
mechanics. An anomalous level occurs also in the
limit y =co upon fusing of the normal level of the
oscillator with its first odd level A=1.

Apart from (10) the anomalous level is described
by the even wavefunction
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¢j+)(x)=<%> expl — (uo/2)x°]

22 2n+ 1)
X Haps (/U007 | 1) . (13)

4. Falling onto the centre

As y-» —oco the normal level E,— — oo, i.e. a par-
ticle falls onto the centre. Let us show that one can
derive an explicit form of the function |@|? in this
limiting case. Let the wavefunction (11) obey the
normalisation condition

[1o09e0 1 ax=1.

Here, we use the formula [3]

l -— — f—
1Dy a2/ LUU=AN-WCAD

0

in which y is a logarithmic derivative of the gamma-
function, and determine the normalisation factor A:

P47 (x)

_ 4_/‘_‘2 1/4< I'(=4) >1/2
_(nft) v —w(—1n) DD

Let us pass in (14) to the limit y— —oo, i.e. to
A— —o0. Since, according to ref. [3],

A —o0

D;(z)—»ﬁ e (=1 exp( =/~ 121,

then using the asymptotic expression for the gamma-
function [2]

A+ —co

[(-i)——2n(—a)~*-17
the formula {4]

y(y)—lny—1/y,
and the representation of the delta-function as the
limit

Alim —dexp(—-2{/-4(z])=6(z),
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one can easily show that

lim | PP (x)]?2=6(x) .
A— —0c0
This relation implies that a particle is localised at the
coordinate origin as y - —co.

5. Conclusion

We have proved that with the delta-shaped inter-
action £24 (x) added, the spectroscopy of even states
of the linear oscillator changes completely and in
some limiting cases, which have been thoroughly dis-
cussed above, this leads to the appearance of double
degenerate energy levels anomalous for the one-
dimensional quantum mechanics and to the falling
of a particle onto the centre. The physical reason for
such changes lies in the phenomena of reflection and
capture at the singular point x=0 (see the boundary
condition (5)). The results obtained are in quali-
tative agreement with those known in an analogous
problem on the effects of the delta-shaped potential
Q06 (x) on the level of an infinite potential well [5];
this agreement testifies to our results being common.
Note one more interesting phenomenon that arises
upon including in the initial hamiltonian the system
of long-range attraction. It has been proved in ref.
[6] that in the one-dimensional Bose-gas model the
addition of such an interaction always leads to the
production of Bose-Einstein condensation. The most
striking features of the singular oscillator: the pres-
ence of double degenerate levels and falling onto the
centre are inherent in the potential U(x) = —a/|x]|
describing the so-called “one-dimensional hydrogen
atom” [7]. It has been proved in ref. [7] that the
assertion about nondegeneracy of the discrete spec-
trum in one-dimensional quantum mechanics [8] is
not rigorous and is violated if the potential pole is
simultaneously a zero of the wavefunctions as in the
“one-dimensional hydrogen atom™ [7] and in the
case of the singular oscillator (see (10) and (13)).
From the symmetric point of view, a double degen-
eracy of the spectrum in the field U= —a/|x| is
caused by the presence of a group of dynamical sym-
metry O(2) inherent in the “one-dimensional
hydrogen atom in the vicinity of the discrete spec-
trum [9].
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