
J. Phys. A: Math. Gen. 16 (1983) 711-728. Printed in Great Britain 

Spheroidal analysis of the hydrogen atom 
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Abstract. A hydrogen atom is analysed in spheroidal coordinates. Limiting transforma- 
tions R + 0 and R +CO, R being a dimensional parameter characterising the spheroidal 
coordinates, are considered in trinomial recurrence relations and spheroidal wavefunctions. 
Expansions are found for normalised spheroidal wavefunctions of the hydrogen atom 
over spherical and parabolic bases, and relevant limiting transformations are studied. 

1. Introduction 

Quantum systems with hidden symmetry possess a remarkable property: variables in 
the Schrodinger equation for such systems separate in several systems of coordinates, 
and the corresponding solutions for a given energy are complete bases with respect 
to other quantum numbers. This property is a manifestation of the accidental 
degeneracy. A basis is chosen by reason of convenience, and often it is necessary to 
go from one basis to another. An example of such an interconverting transformation 
is the expansion of a plane wave over spherical waves in scattering theory. At present 
the problem of interconverting transformations constitutes an independent trend of 
the theory of systems with hidden symmetry; many of its aspects are described by 
Miller (1977), Malkin and Man’ko (1979) and Komarov et a1 (1976). Some intercon- 
verting transformations are applied in the three-body problem (Faifman et a1 1976), 
in low-energy nuclear physics (Smirnov and Shitikova 1977) and in calculating overlap 
integrals in quantum molecular theory (Bell 1970, Doktorov et a1 1976). The discovery 
of hidden symmetry in the hydrogen atom (Fock 1935) and the success of symmetry 
schemes in elementary particle physics have stimulated the development of a group- 
theoretical approach to problems with a Coulomb field (Bander and Itzykson 1966). 
The theory of interconverting transformations was pioneered by Eisenhart (1948) 
where the problem of separation of variables in the Schrodinger equation in different 
coordinate systems was solved. In the literature the first interconverting transformation 
in the Coulomb field was apparently the result found by Stone (1956). Stone derived, 
in momentum representation, an expansion of the hydrogen parabolic basis over the 
spherical one. Later, based on work by Fock (1935) and Bargmann (1936), Park 
(1960) found an expansion of the coordinate parabolic basis of the hydrogen atom 
over the spherical one. Then Tarter (1970) repeated the result of Park by a pure 
analytic approach, i.e. without group-theoretical methods. Perelomov and Popov 
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(1968) obtained an expansion of the Rutherford wavefuncl ion over the spherical 
basis and Majumdar and Basu (1974) found an expansion of the general, not necessarily 
scattering, parabolic basis over the spherical one. Pogosyan and Ter-Antonyan (1980) 
derived an expansion of the spherical over the parabolic basis for the continuous 
spectrum. Coulson and Robinson (1958) investigated the hydrogen atom in spheroidal 
coordinates, while Coulson and Joseph (1967) obtained trinomial recurrence relations 
for the matrix of transformation from the spheroidal to the spherical basis. 

Spheroidal coordinates represent a natural means of investigating many problems 
in mathematical physics (Komarov et al 1976). These include the diffraction of scalar 
and electromagnetic waves on prolate and oblate spheroids (Bowman et a1 1969), the 
induced electromagnetic radiation from a spheroidal antenna (Page 1944), normal 
modes of an open resonator (Boyd and Gordon 1961), the behaviour of a particle in 
a spheroidal potential well (Rainwater 1950), the propagation of neutrons (Cupta 
1968) and others. In quantum mechanics the spheroidal coordinates turned out to 
be useful in describing the behaviour of a charged particle in the field of two Coulomb 
centres. The distance between centres R is taken as a dimensional parameter charac- 
terising spheroidal coordinates and has a dynamic meaning, i.e., it enters into the 
energy-spectrum expression. We have studied most thoroughly the system H l ,  knowl- 
edge of whose properties is required to solve various problems in astrophysics, plasma 
physics, the theory of the chemical bond, atomic physics, etc. Many studies are devoted 
to the energy spectrum of a hydrogen molecular ion; the corresponding references 
are given by Bates and Reid (1968). If the charge of one centre is put as zero, one 
arrives at a one-centre problem, and the parameter R becomes purely kinematic; this 
simplifies the problem considerably. At the same time the mathematical structure of 
the spheroidal coordinates remains the same, because the energy enters into both the 
radial and angular equations. Consequently, the spheroidal analysis of a hydrogen 
atom becomes the first step in the investigation of the two-centre Coulomb problem. 
Wavefunctions of the two-centre problem provide the basis for expansions of solutions 
of more complicated problems (for instance, wavefunctions of a three-body problem 
with a Coulomb interaction). 

As R + 0 and R + CO spheroidal coordinates become spherical and parabolic ones 
if the position of the Coulomb centre and charged particle is fixed when taking .the 
limits. This signifies the ‘correspondence principle’ by which all formulae in spheroidal 
coordinates should change, in the above limits, into the corresponding spherical and 
parabolic analogues. Despite this natural principle, taking the limit is not a trivial 
task, because spheroidal Coulomb functions are expressed in terms of quantities 
obeying trinomial recurrence formulae, while spherical and parabolic Coulomb func- 
tions are constructed on the basis of binomial recurrence relations. Hence, to obtain 
the limiting transformation for wavefunctions, matrix elements and so forth, one 
should ascertain how the trinomial recurrence relations convert to the binomial ones 
in the above limits. 

In this paper the limiting process is considered in more detail than by Coulson 
and Joseph (1967) and Coulson and Robinson (1958). There are several reasons for 
this. First, as we have already mentioned, such limits are not trivial to obtain and 
these require a more careful analysis. Second, formulae of the spheroidal analysis of 
a hydrogen atom are generally rather complicated and therefore the ‘correspondence 
principle’ provides a further argument in favour of the validity of certain results. 

The paper is organised as follows. Upon recalling some information concerning 
the hydrogen atom in spheroidal coordinates, we investigate limiting processes R + 0 
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and R + CO in trinomial recurrence relations, Then the limiting transformations are 
obtained for the wavefunctions and it is proved that these obey the ‘correspondence 
principle’ provided the expansion for a solution of the Schrodinger equation is chosen 
in an appropriate way. The next step of our study is the expansion of the spheroidal 
over the spherical basis. Such an expansion was considered by Coulson and Joseph 
(1967) who found recurrence relations for coefficients generating the above expansion. 
We made further progress along these lines and obtained a formula which explicitly 
expresses these transformation coefficients in terms of coefficients defining the sh’ape 
of a spheroidal wavefunction. Then we carried out a detailed analysis of limiting 
transformations R + 0 and R +CO in the expression obtained and established that it 
agrees with the ‘correspondence principle’. Expansion of the spheroidal over the 
parabolic basis, which, as far as we know, has not yet been considered, represents an 
independent interest. This expansion is analysed in the latter part of the paper, where 
a closed expression is found for coefficients relating the spheroidal to the spherical 
basis and their agreement with the ‘correspondence principle’ is shown. In the 
conclusion we present some specific results. 

2. Basic formulation 

We now present the information necessary for further discussions. The spheroidal 
coordinates 6, v and rp are determined in the following way: 

~ = $ R [ ( [ ~ - l ) ( l - v  2 )] 1 / 2   COS^ 

y = $ R [ ( [ ~ - I ) ( I - ~  2 )I 1/2 sinrp 

z = $R([v + 1) 

where 1 S [ < C O ,  -1 sv s 1, O s c p  S ~ T .  As R + O  

( 2 . 1 ~ )  

and as R +a 

t + l + c ~ I R  17 + -1 + u/R (2.lb) 

where r and 8 are spherical coordinates, U and CL are parabolic coordinates: U = r + z ,  
CL = r -2. In both the limits the point ( x ,  y, z )  and the coordinates of the Coulomb 
centre are considered to be fixed. 

The spheroidal wavefunction of a hydrogen atom is 

Here Cn,(R) is the normalisation factor; the meaning of n, q and m will be explained 
further. It is known that 

( 2 . 3 ~ )  

(2.3b) 
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where f ( [ ,  R )  and g(q ,  R )  are polynomials of degree (n - (m 1 - 1) in 6 and T .  The 
functions Il,,,([, R )  and Znqm(q, R ) ,  usually known as radial and angular functions in 
the Coulomb system of units, satisfy the equations 

3 

d ER m 2  

d ER‘ m 2  
d77 2 1-77 
- (( 1 - 77’) E) + (-R. - -7 - 7 - A )  1 = 0. 

( 2 . 4 ~ )  

(2.46) 

A is a separation constant in spheroidal coordinates; it depends on R and the quantum 
numbers n, q and m, where n is the principal quantum number (E = -1/2n2), m is 
the azimuthal quantum number, and q varies in the limits 1 s q n - Im 1 and denotes 
n - Im 1 possible values of the separation constant A at fixed n and Im I. 

The orthogonality conditions in index q are 

(2.5b) 

Being eigenfunctions of the Hamiltonian and z projection of the angular momen- 
tum, the wavefunctions (2.2) are also orthogonal in the other two indices, n and m. 

3. Wavefunctions 

In the literature various types of expansions are used for the functions f (5 ,  R )  and 
g ( q ,  R )  in powers (6 - 1) and (77 - l ) ,  over the Laguerre polynomials of appropriate 
combinations of the variables 6 and 77, etc. Further we shall keep to the expansions 

( 3 . 1 ~ )  

(3 . lb)  

In § 5 it will be shown that it is just these expansions that satisfy the ‘correspondence 
principle’. Formulae (2.3), (2.4) and (3.1) result in the trinomial recurrence relations 

a s u , + ~ + P s a s  +Ry,as-l=O ( 3 . 2 ~ )  

-asbs+l +@,b, + Ry,b,-1= 0 (3.2b) 

where 

a, = 2(s + l ) (s  + Iml+ 1) ( 3 . 3 ~ )  

(3.3b) 

(3.3c) 

(3.3d) 

Ps = (s + Iml)(s + /mi+ 1) + (R/n)(n - / m (  - 1-2s)  - (R2/4n2)+A 

bS = (s + Iml)(s + \mi+ 1) -(R/n)(n - Iml- 1-2s) - (R2/4n2)  + A  

ys = (n - Im 1 - s )/n. 
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The ‘cut-off conditions’ 

uo= 1 

bo= 1 

a-1 = & - I m \  = 0 

b-1= bn-lmi = 0 

hold as well. 
Let the wavefunction obey the normalisation condition 

Hence, as will be shown further, it follows that 

(3.4b) 

where 1, n l  and n 2  are known spherical and parabolic quantum numbers, and the 
phases 4o and 4m are as yet arbitrary. 

4. Limiting transformations in recurrence relations 

The recurrence relation ( 3 . 2 ~ )  is a set of linear homogeneous equations for a,, and 
thus the corresponding determinant should vanish. In the limit R +CO, one may 
neglect coefficients as in this determinant compared with infinite coefficients PE and 
R y ,  and represent the determinant by a product of all Ps.  In order that the determinant 
vanish one of the multipliers P,  must vanish as well. Replacing the s in Ps by n 2  we have 

Analogously, for (3.26) we can show that there should exist some n l ,  for which 
= 0 and consequently 

A ( R )  ( R / n ) ( n  - Iml- 1 - 2 n l )  + ( R 2 / 4 n 2 ) .  ( 4 . l b )  

Formulae ( 4 . 1 ~ )  and (4.16) are compatible if n = n l + n 2 + l m ( + l ,  i.e. if n1 and n2 are 
parabolic quantum numbers. From (4.1), (3.3b) and ( 3 . 3 ~ )  it follows that at s f n l ,  
s # n z ,  

(4.2b) 

where the quantities pi” and Pi2’ are independent of R and have the form 

( 4 . 2 ~ )  ( 2 )  pS1’ = 2 ( n 2 - s ) / n  os = -2(nl - s ) / n .  
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These formulae and the cut-off conditions a-l = 0 and b-1= 0 show that trinomial 

a,aSrl + RPj”a, = 0 ( 4 . 3 ~ )  

-a,b,+l+ RPJz’b, = 0 (4.36) 

if 0 s s s n l  - 1 and 0 s s s n2 - 1. Using formulae (4.2) and the cut-off conditions 
a,,-~,,~ = 0 and 6,,+,~ = 0, we see that in the limit R +CO (3.2) becomes 

recurrence relations (3.2) in the limit R + 00 become the binomial relations 

( 4 . 4 ~ )  

(4.46) 

if n l +  1 s s  .sn -1ml- 1 or n z +  1 s s  sn - \mi-  1. 
Consider now the cases when s = n l  and s = nz. As R + 00 the constant A can be 

expanded in powers of 1/R and according to (4.14) and (4.lb) this expansion can 
contain only terms with powers of 1/R not higher than -2. 

Thus, it follows that 

A ( R ) z A O - ( R / n ) ( n  - I m l - l - 2 n ~ ) + ( R ~ / 4 n ~ )  ( 4 . 5 ~ )  

A(R)  = A o +  (R/n)(n - [mi- 1 -2nl) +(R2/4n2) (4.5b) 

as there the condition n = n + nz + Im I + 1 must hold. Substituting these formulae into 
(3.3b) and ( 3 . 3 ~ )  we obtain 

P n 2 =  (nz+ImI)(nz+ImI+1)+Ao 

P n ,  = ( n i  + Iml)(nl+ lm/ + 1) +Ao. 
The constant A. can be determined from the recurrence relation ( 3 . 2 ~ )  at s = n2: 

af12af12+l +Pn2an2+Ryn2un2-1 = 0 
if we use the expressions 

resulting from the binomial recurrence relations ( 4 . 3 ~ )  and ( 4 . 4 ~ ) .  Then we have 

A o =  2nz  - 2 n l ( n  -1mI- l)-(lml+ l ) ( n  - 1). 

Note that this formula has been obtained by Coulson and Robinson (1958) from 
the analysis of recurrence relations arising in the case when the functions f(6, R )  and 
g(7, R )  are represented by expansions over the Laguerre polynomials. 

The limit R + O  may be investigated analogously. In this case equations (3.2) 
become the binomial recurrence relations 

( 4 . 6 ~ )  

(4.66) 

&a, + Ry,a,-l = 0 ( 4 . 7 ~ )  

psb, + Ry,b,-l= 0 (4.7b) 
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if l - \ m \ + l < s < n - l m \ - l .  In these relations 

p, =(~+Iml ) ( s+Iml+ l )+A(O) .  

Consider the case when s = I - Im 1. At small R 

A (R ) 2 A (0)  + R (dA/dR)R = o  + O(R '). 

717 

(4.7c) 

Coulson and Robinson (1958) showed that A(0) = -Z(1+ 1). With this and (3.36) 
and ( 3 . 3 ~ )  taken into account we obtain 

( 4 . 8 ~ )  

R - 0  - 
PI-imI - Ef-lmlR + O(R2) (4.86) 

where 

n + ( m ( - l - 2 1  

- n +Iml- 1-21 

Ef-lmj = - (g) R -0' n 

(g) R = O  - n EI-lml' - 

It follows from these formulae that the recurrence relations (3.2) at s = 1 - Im \ take 
the form 

(Yf-lmlal-lml+l+ E f - i m l R a l - l m l + R Y f - l m l a f - l m l - l =  0 (4.9a) 

- a ~ - l m l b l - l m l + ~  + El-lmlRbl-lml +RYl-lmlbl-lml-l= 0-  (4.96) 

According to (4.6) and (4.7) the quantities a l - l m i + l ,  Ul-lml-1, bL-Iml+l and bL-lml-1 

are expressed via al-jml and bl-lml. Therefore equations (4.9) should lead to constraints 
under which the cut-off conditions at s = -1 and s = n - Im I are consistent. Using 
equations (4.8) we can easily show that the condition (dA/dR)R=o = 0 is just such a 
restriction. 

5. Limiting transformations for the wavefunction 

The functions f(5; R) and g(7, R )  as R -* 03 according to (2.lb) are 

From the binomial recurrence relations (4.3) and (4.4) it follows that 

a0 . . . a,-] 
l < s < n l  (5.lb) 

(5.k) Yn*+l  ' ' * Ys R-m 
a, - (-l),- ( 1 )  anz nz+ 1 G s s n l +  n2 

&l;+I. . . P s  
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so the functions f(Q, R )  and g(v,  R )  become polynomials of powers n 2  and n l ,  
respectively. According to (5.la),  (5 . lb) ,  ( 3 . 3 ~ )  and ( 4 . 2 ~ )  

R-m (-1)' n 2 !  Iml! R' 
n s  ( n 2 - s ) !  (s+Iml)! s! 

R-m (-1)' nl! / m J !  R' 
n s  (n l - s ) !  ( s + l m ( ) !  s !  

as--- - l s s G n 2  

bs-------- - l s s s n 1  

( 5 . 2 ~ )  

( 5 . 2 b )  

and, consequently, 

f(5, R )  =F(-n2;  lml+ 1 ;  ~ / n )  

g(v,  R )  - F ( - n l ;  Im/ + 1 ;  v/n). 
R-m 

Now by using (3.46) it is easy to show that as R +oo (2.2) becomes the normalised 
wavefunction in parabolic coordinates: 

x exp[ - (v + p ) / 2 n  F(-n 1 ; Im 1 + 1 ; v/n ) 

x ~ ( - n ~ ;  lml+l; p / n )  exp(imcp)/JG 

if &, = 0. 
In the limit R + 0 according to ( 2 . 1 ~ )  

(5.3) 

(5.4a) 

(5.4b) 
s = o  

From the binomial recurrence relations (4.6) and (4.7) it follows that 
- - 

( 5 . 5 2  
R-0 P o  * * . P s - 1  

a, - (-1)' 
a0 * * . C l - 1  

(5.56 

( 5 5 )  

(5 .5d)  

if I - Im I + 1 <s s II - Im I - 1. Substituting y, a and p from (3.3d), ( 3 . 3 ~ )  and ( 4 . 7 ~ )  
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into ( 5 . 5 )  and (5.56) we obtain 

(5.66) 

In the first case 1 s s s n - 1 - 1, while in the second 1 s s G 1 - Im 1. It follows from 
these formulae that 

R-0 

s ( ~ , R ) -  (sin e)lm'F(-i+lm(,  [ + ( m ( + l ;  ( m ( + 1 ; t ( l + c o s e ) ) .  

wavefunction in spherical coordinates 

(5.76) 

With ( 3 . 4 ~ )  it is easy to show that the wavefunction (2.2) becomes the normalised 

( 5 . 8 )  

if 40 = r[l+ i ( m  - Im I)]. It is necessary here to use the formula (Varshalovich et a1 
1975) 

x ~ ( - l +  jm 1 ;  I + Iml+ I ;  J m l +  I, $(I +cos e)). 
So, it is proved that the wavefunction (2.2) does satisfy the 'correspondence principle'. 

6. Spherical-basis expansion 

Let us write the expansion we are interested in as 

4 n q m  (5,773 CP ; R = C Wft:4nlm (r, 8, C F )  
n-1  

f=lml 

and perform the following operations. First, we change $film from spherical coordinates 
to spheroidal ones 

cos 8 = (1 + (q ) /  (5 + 7) r = kR (5 + 7) 
and then let 5 tend to infinity on both sides of (6.1). As a result 

c+m 4 - a  
r - iR5 cos e - 7 

and the dependence on the variable 5 in (6.1) is removed. Using this fact we multiply 
both sides of (6.1) by PI;" ' (q)  and integrate over q. Then owing to the orthogonality 
condition of the associated Legendre polynomials we get the equality 
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where 

1 
2 lmIl2 Iml 

EL:(R)=/ ( 1 - 7  p /  (q)gnqm(q,R)dq* 
-1 

With the use of (3 . lb )  the latter integral can be expressed via the coefficients b,: 
n - I n - 1  1 

= 1 b,(R) I (1 - ~ 2 ) ' m ' ' 2 ( 1 + ~ ) s P ~ m ' ( ~ )  dv. 
S = O  - 1  

By integration by parts we find that the integral in the sum is not zero only at 
I - Jm 1 s s s n - Im 1 - 1, and consequently, by changing the sum index we obtain 

where 
1 J " = [ - l ( l - ~ 2 ) 1 ( l + ~ ) s  dq = 2  2 1 + S l l  I !  (s +I)! 

(21 +s + l)!. 

As a result 

where 
fl-1-1 2'(s + I)! (s + I  - /m I)! 

s !  (s + 2 I +  l ) !  ' 
Bnlm(R)= 1 b s + ~ - l m \  

s =o 
(6.3) 

Now we turn to the limiting transformations. As R + 0 the separation constant 
A ( R ) +  -l'(I' + 1) so, according to (3.36), 

R - 0  - 
pS - ps = (s + Im I - I')(s + Im I + l '+  1). 

Then, from (5 .5d)  we obtain 

R - 0  R s f f - / '  
r(i - 1 1  + 1)' bs+l-lml - 

It follows that at I > l', 6s+i-lml+ 0 for s 2 0, and at I < I f ,  bscl-iml = 0 due to a gamma 
function in the denominator. At 1 = I '  in the sum (6.3) as R + 0 only the term with 
s = 0 differs from zero, so taking ( 3 . 4 ~ )  and (5.66) into account we conclude that at 
I = 1' W $  ( R )  + 1 and therefore 
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Consider now the limit R +W.  From (3 .4b ) ,  ( 5 . 1 ~ )  and ( 5 . 1 ~ )  it follows that 

That means that in (6.3) we can restrict ourselves to the summation, starting from 
s = n l  i.e. 

(s + n 1 + Im I)! (s + n I)! 
R-bm " 2  2s+n,-t+lml 

Bnlm(R)- bs+n, 
s = o  (s +n1--l+lml)! (s + n 1 + l m l + l +  l)! .  

From ( 4 . 2 ~ )  and (5.ld) it follows that 

Thus, Bnlm can be written in the form 

Now we use the two formulae 

c, b, e -a  r(i - f + a ) r ( i  +b f c  -f) e -a, e - b, e -c  
*'{e, 1 + b + c  - f 1'1 = r(l +e  - f)r(l -e  -f+ a + b + c )  

(6 .4)  
S, S I ,  -N r(t + s + N)F( t )  

3F2 { t ' ,  1 - N  - t l l l  =r( t+s ) I ' ( t  + N )  (6 .5 )  

The first is taken from Smorodinsky and Shepelev (1971), the second from Bailey 
(1935). Successively applying them we obtain 

Further, according to (5.lc),  ( 5 . 2 ~ )  and (5 .2b )  

(-l)"* Iml! R"2 
nn* (nz+JmJ)!  2"' U n - ) m l - l  = - 

so with (3.46) taken into account at q5m = 0 we have 

The limiting expression obtained coincides with the result of a paper by Tarter 
(1970). Thus, in both the limits required formulae have been established. 
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7. Parabolic-basis expansion 

We write an expansion we are looking for in the form 

$ n q m ( [ , q , V ; R ) =  C U ~ ~ f 1 2 ( R ) $ n , n , m ( v , C L , V ) .  (7.1) 

According to (5.3) the parabolic wavefunction is expressed via the Laguerre 

nl+n2=n-lml-l 

polynomials of the variables 

CL = % (6 - 1)(1- 7) 

and 

v = + R ( [ + l ) ( l + q ) .  

Let q = -1 in (7.1). Taking the new variable t = 6 -  1 and using the property of 
orthogonality 

we obtain 

Further, as 

s+lml+1 =(;) ( - 1 p  /m I! s !  (Im I +s)! 
(n2 + J m  I)!r(s + 1 - n2)  

then 

Now we investigate the limiting cases. As R + 00, as mentioned before, there exists 
such a value s = n; ,  for which Pn; = 0. According to ( 5 . l a )  and ( 5 . 1 ~ )  the ratio a s / R S  
in this limit is different from zero when 0 s s s n ;  so the maximum value of s in the 
sum (7.2) can be changed to nh. Thus, using ( 5 . 1 ~ )  and (3.46) we see that at n ;  < n 2  
the sum in (7.2) becomes zero, and at n i  2 n2 

~ + a  n l ! n z ! ( n \  + l m ~ ) ! ( n ; + l m ~ ) ! ) " 2 n ~ - n 2  
U,"An2 ( R )  - ( n;! n ; !  ( n l  + ImI) ! (n2+ Iml)! ,=o  c s ! r ( n b  - n 2 - s  + 1)' 
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It is easy to show that the latter can take only two values: zero and unity. This depends 
on either n ;  >n2 or n ;  = n2. Therefore, 

R+m 
U;,$' (R) + &,$n2. 

Consider now the limit R + 0. From (5.5u),  ( 5 . 6 ~ )  and (3.46) it follows that in this limit 

I !  - n + l + l , I + l , I - l m l + l  
X 

(21 + l ) !  (1 - Im I - nz)! 

Using formulae (6.4) and (6.5) we obtain 

R - O  l + : ( m - l m l )  ( n  -ImI-I)! (21+1)(1+jm/)!(nl+Im/)!(n2+ImI)! 
n 1! n2! ( I  - Im I)! ( n  -1  - I ) !  u,"An2(R)- (-1) 

Iml! 

-I+lml, l + l m l + l ,  -n2 

i.e. the result of Tarter (1970). 
Formulae ( 3 . 4 ~ )  and (3.4b) have been used essentially in the investigation of the 

limiting transformations for the wavefunction (2.2) and transformation coefficients. 
The result is the following. Substituting expansions ( 3 . 1 ~ )  and (3.16) into the 
normalisation condition of the wavefunction (2.2), we obtain 

where the summation runs over all the indices in the limits (0, n - /m I - 11, and I$ ,  J?' 
are expressed via confluent hypergeometric functions (Bateman and Erdelyi 1953): 

I;, = (Iml + s  + s f ) !  $(]mi + s  + s ' +  1; 21ml + s  + s ' + 2 ;  2 R / n )  

Iml! (Iml +t  +t ' ) !  
(21ml+ t + t '+ l)! J $ '  = F(lml+ t +t '+ 1; 2)ml + t  + t'+ 2;  - 2 R l n ) .  

Udng asymptotes of these functions as R + 0 and R + 00 and formulae (5.1) and 
( 5 3 ,  we arrive at just the results (3 .4a)  and (3.4b). 

8. Particular cases and tables 

Let us introduce the notation 

@2 (R 1 = w:: (R )/Cnqm (R 1. 
As the transformation coefficients Wiy (R) satisfy the condition 

l = l m  

we obtain the formula convenient for the calculation of the normalisation constant 
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Let us present here some particular results: 

clq0 = JZ 

hR 
C2q1= - 16 

.- 

648 

R A ‘ + 6  
Gq1=-(--) 27 A ’ + 4  

where A’ = A - R2/4n2. Possible values of A and the normalised spheroidal wavefunc- 
tions have the form 

41qo = (I/&) exp[-% (5 + 7711 A’=O 

A ’ + 2 = 0  2 112 
~ 2 ~ 1 = + z  exp[-!(5+77)1[(5~-1)(1-77 )I exp(icp)/JG 

A’(A’+ 2) = :R2 

(Ir3ql=-(-) R A ’ + 6  l J 2  ex~[-bR(5+q)1[(5~-1)(1-t7 2 )I 112 

27 A ’ + 4  

(A’ + 2)(A’ + 6) = $R 

exP[- iR (5 + 77 )I 
J% $3qO = 

A A’R 
2 24 

+ 77) +-(1 +er/) -- 

1 /2 

A1(A’+2)(A’+6) =$R2(A’+4).  

It is easy to show that these formulae coincide to within normalisation constants 
with analogous formulae given by Coulson and Robinson (1958). 

We recall that the index q denotes the eigenvalues of the separation constant A 
and takes the values 1 s q s n - Im/. These eigenvalues are determined from the 
equations together with the wavefunctions. For illustration we write down the transfor- 
mation coefficients W Z  and U,“An2 in the same particular cases (see tables 1 and 2). 

The transformation coefficients were first tabulated by Coulson and Joseph (1967) 
for several values of the quantum numbers. We have enlarged this table slightly and, 
as can be verified, have obtained agreement with their results. Substituting the values 
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Table 1. The transformation coefficients W!,:. 

1 0 0 1  
1 A'+2 

JT A + l  

A'JZ A'+2 
R A + l  

2 0 0 -(-) 
2 0 1 -(-) 
2 1 1 - 1  

21 A" 

27 A!2 At2 -112 3 0 2 _-(l+--+- A' 

3 1 1 --(-) Js A + 4  

J 2 ( ~ ' + 6 )  8 R 2  2(A'+6)') 

1 A'+6 ' I 2  

3 1 2 ---(-j112 3 (A'+2) A'+6 

3 2 2 1  

Js R A + 4  

A'=O 

A'(A'+2) = i R 2  

A'[A' + 2 )  = aR 

A'+2=0 

A'(A'+Z)(A'+ 6 )  = $R2(A'+4) 

A'(A'+ 2)(A'+ 6 )  = $R '(A'+4) 

A'(A'+2)(A'+6) = $R2(A' +4 )  

(A '+ 2)(A'+6) = i R 2  

(A'+2)iA'+6) = $R2 

A'+6=0 

Table 2. The transformation coefficients UqnA"2. 

n m n2 U:An2 A' 

1 0 0 1  A'=O 

A'(A'+2) = :R2 

A'(A'+ 2 )  = i R 2  

A'+2=0 

A'(A'+2)(A'+6) = $R2(A'+4) 

2 1 0 1  
-112 

Af(A'+2)(A'+6) = $R2(A'+4) 

A'(A'+ 2)(A'+6) = $R2(A'+4) )( 8 R 2(A'+6)* 2 A'+6 2R 
45 A'+4 3A' 27A" 

3 0 2 -(-+- 1+-7+-- - - -  

2R 
3 1 1 -(A'+2+-)(-j 3 R A'+6 

2R 3 A + 4  

(A'+2)(A'+6)=$R2 

(A'+ 2)(A'+ 6 )  = $R2 

3 2 0 1  A'+6=0 

of coefficients WL: and U~A"* into relations (6.1) and (7.1) one can easily find strong 
connections. In the following, spheroidal, spherical and parabolic wavefunctions are 
denoted by lnqm), llnlm) and Illnln2m), respectively. 
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11 lo) = 11100) A’=O 
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(A’)1= -1 +(1 +$R2)’/’ 

1220) = ( ( I + $ R ~ ) - ( I + ~ R  R 
2(1 +iR2) 

1 2 1/2 ( A ’ ) z = l - ( l + ~ R  ) 
1211) = -11211) A ’ =  -2 

R 
6 

- -{2[( 1 ++a 2, + (1 +&id? 2)1~2]}-1’2~~321) 

(A ‘)I = -4 + 2( 1 + &R ’)’/’ 
2 1/2 112 

) 11311) 
( ~ + & R ~ ) - - ( I + & R  ) 1321) = -( 

2(1+&R2) 

R 
6 + -{2[(1+ +d? 2, - (1 + 2)1/2]}-1/21(32 1) 

(A1)2=-4-2(1+$R2)1/2 
(312) = 11322) A ’ =  -6 

11 lo) = ~ll000) A’= 0 

1 1  ( I + $ R ~ ) - ( I + $ R  I( (1+$R2) 
1220) = [ - + - + (1 + i R 2 ) 1 / 2  

2 R  

3 R  
R 6  

I3 1 1 ) = - [ - + 3 - ( 1 + &R 2) 1 /21  ( (1 + 
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3 R  
R 6  

1321) =-[-+3 +(1 +a2)’/’ 

(A’)2= -4-2(1+&?2)”2 

1312) = //1002) A’ = -6. 

9. Conclusion 

In this paper we have developed a spheroidal analysis of the hydrogen atom in which 
conditions following from the ‘correspondence principle’ are fulfilled at all steps: 
equations, recurrence relations, wavefunctions, transformation coefficients, etc. The 
formula suitable for calculating the normalisation constant and expansions of the 
spheroidal wavefunction over the spherical basis and parabolic basis are found. 

Systematic spheroidal analysis of the Coulomb problem comprises a lot of related 
problems. The present paper is the first step to the solution of this problem. The 
next step concerns the continuous spectrum. 
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